Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(10): 4487-4499, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38422483

RESUMEN

Per- and poly-fluoroalkyl substances (PFASs) are persistent, toxic chemicals that pose significant hazards to human health and the environment. Screening large numbers of chemicals for their ability to act as endocrine disruptors by modulating the activity of nuclear receptors (NRs) is challenging because of the time and cost of in vitro and in vivo experiments. For this reason, we need computational approaches to screen these chemicals and quickly prioritize them for further testing. Here, we utilized molecular modeling and machine-learning predictions to identify potential interactions between 4545 PFASs with ten different NRs. The results show that some PFASs can bind strongly to several receptors. Further, PFASs that bind to different receptors can have very different structures spread throughout the chemical space. Biological validation of these in silico findings should be a high priority.


Asunto(s)
Disruptores Endocrinos , Fluorocarburos , Humanos , Receptores Citoplasmáticos y Nucleares , Disruptores Endocrinos/química , Disruptores Endocrinos/metabolismo
2.
Environ Res ; 217: 114832, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36403651

RESUMEN

Due to their persistence and toxicity, perfluoroalkyl and polyfluoroalkyl substances (PFASs) constitute significant hazards to human health and the environment. Their effects include immune suppression, altered hormone levels, and osteoporosis. Recently, the most studied PFAS, perfluorooctanoic acid (PFOA), was shown to competitively binding to the Vitamin D receptor (VDR). VDR plays a crucial role in regulating genes involved in maintaining immune, endocrine, and calcium homeostasis, suggesting it may be a target for at least some of the health effects of PFAS. Hence, this study examined the potential binding of 5206 PFASs to VDR using molecular docking, molecular dynamics, and free energy binding calculations. We identified 14 PFAS that are predicted to interact strongly with VDR, similar to the natural ligands. We further investigated the interactions of VDR with 256 PFASs of established commercial importance. Eighty-three (32%) of these 256 commercially important PFAS were predicted to be stronger binders to VDR than PFOA. At least 16 PFASs of regulatory importance, because they have been identified in water supplies and human blood samples, were also more potent binders to VDR than PFOA. Further, PFASs are usually found together in contaminated drinking water and human blood samples, which raises the concern that multiple PFASs may act together as a mixture on VDR function, potentially producing harmful effects on the immune, endocrine, and bone homeostasis.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Humanos , Simulación del Acoplamiento Molecular , Receptores de Calcitriol , Fluorocarburos/toxicidad , Caprilatos/toxicidad
3.
Int J Mol Sci ; 24(16)2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37628845

RESUMEN

PIK3R1 (also known as p85α) is a regulatory subunit of phosphoinositide 3-kinases (PI3Ks). PI3K, a heterodimer of a regulatory subunit and a catalytic subunit, phosphorylates phosphatidylinositol into secondary signaling molecules involved in regulating metabolic homeostasis. PI3K converts phosphatidylinositol 4,5-bisphosphate (PIP2) to phosphatidylinositol 3,4,5-triphosphate (PIP3), which recruits protein kinase AKT to the inner leaflet of the cell membrane to be activated and to participate in various metabolic functions. PIK3R1 stabilizes and inhibits p110 catalytic activity and serves as an adaptor to interact with insulin receptor substrate (IRS) proteins and growth factor receptors. Thus, mutations in PIK3R1 or altered expression of PIK3R1 could modulate the activity of PI3K and result in significant metabolic outcomes. Interestingly, recent studies also found PI3K-independent functions of PIK3R1. Overall, in this article, we will provide an updated review of the metabolic functions of PIK3R1 that includes studies of PIK3R1 in various metabolic tissues using animal models, the mechanisms modulating PIK3R1 activity, and studies on the mutations of human PIK3R1 gene.


Asunto(s)
Resistencia a la Insulina , Animales , Humanos , Resistencia a la Insulina/genética , Genes Reguladores , Factores de Transcripción , Homeostasis , Dominio Catalítico , Proteínas Sustrato del Receptor de Insulina , Fosfatidilinositol 3-Quinasa Clase Ia/genética
4.
J Biol Chem ; 296: 100395, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33567340

RESUMEN

Chronic glucocorticoid exposure causes insulin resistance and muscle atrophy in skeletal muscle. We previously identified phosphoinositide-3-kinase regulatory subunit 1 (Pik3r1) as a primary target gene of skeletal muscle glucocorticoid receptors involved in the glucocorticoid-mediated suppression of insulin action. However, the in vivo functions of Pik3r1 remain unclear. Here, we generated striated muscle-specific Pik3r1 knockout (MKO) mice and treated them with a dexamethasone (DEX), a synthetic glucocorticoid. Treating wildtype (WT) mice with DEX attenuated insulin activated Akt activity in liver, epididymal white adipose tissue, and gastrocnemius (GA) muscle. This DEX effect was diminished in GA muscle of MKO mice, therefore, resulting in improved glucose and insulin tolerance in DEX-treated MKO mice. Stable isotope labeling techniques revealed that in WT mice, DEX treatment decreased protein fractional synthesis rates in GA muscle. Furthermore, histology showed that in WT mice, DEX treatment reduced GA myotube diameters. In MKO mice, myotube diameters were smaller than in WT mice, and there were more fast oxidative fibers. Importantly, DEX failed to further reduce myotube diameters. Pik3r1 knockout also decreased basal protein synthesis rate (likely caused by lower 4E-BP1 phosphorylation at Thr37/Thr46) and curbed the ability of DEX to attenuate protein synthesis rate. Finally, the ability of DEX to inhibit eIF2α phosphorylation and insulin-induced 4E-BP1 phosphorylation was reduced in MKO mice. Taken together, these results demonstrate the role of Pik3r1 in glucocorticoid-mediated effects on glucose and protein metabolism in skeletal muscle.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase Ia/metabolismo , Glucocorticoides/farmacología , Glucosa/metabolismo , Resistencia a la Insulina , Músculo Estriado/efectos de los fármacos , Músculo Estriado/metabolismo , Atrofia Muscular/metabolismo , Animales , Fosfatidilinositol 3-Quinasa Clase Ia/genética , Modelos Animales de Enfermedad , Insulina/metabolismo , Masculino , Ratones , Ratones Noqueados , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Músculo Estriado/patología , Atrofia Muscular/inducido químicamente , Atrofia Muscular/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
5.
Mol Med ; 28(1): 44, 2022 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-35468719

RESUMEN

BACKGROUND: Menopausal hormone therapy (MHT) is recommended for only five years to treat vasomotor symptoms and vulvovaginal atrophy because of safety concerns with long-term treatment. We investigated the ability of 2',3',4'-trihydroxychalcone (2',3',4'-THC) to modulate estrogen receptor (ER)-mediated responses in order to find drug candidates that could potentially prevent the adverse effects of long-term MHT treatment. METHODS: Transfection assays, real time-polymerase chain reaction, and microarrays were used to evaluate the effects of 2',3',4'-THC on gene regulation. Radioligand binding studies were used to determine if 2',3',4'-THC binds to ERα. Cell proliferation was examined in MCF-7 breast cancer cells by using growth curves and flow cytometry. Western blots were used to determine if 2',3',4'-THC alters the E2 activation of the MAPK pathway and degradation of ERα. Chromatin immunoprecipitation was used to measure ERα binding to genes. RESULTS: The 2',3',4'-THC/E2 combination produced a synergistic activation with ERα on reporter and endogenous genes in human U2OS osteosarcoma cells. Microarrays identified 824 genes that we termed reprogrammed genes because they were not regulated in U2OS-ERα cells unless they were treated with 2',3',4'-THC and E2 at the same time. 2',3',4'-THC blocked the proliferation of MCF-7 cells by preventing the E2-induced activation of MAPK and c-MYC transcription. The antiproliferative mechanism of 2',3',4'-THC differs from selective estrogen receptor modulators (SERMs) because 2',3',4'-THC did not bind to the E2 binding site in ERα like SERMs. CONCLUSION: Our study suggests that 2',3',4'-THC may represent a new class of ERα modulators that do not act as a direct agonists or antagonists. We consider 2',3',4'-THC to be a reprogramming compound, since it alters the activity of ERα on gene regulation and cell proliferation without competing with E2 for binding to ERα. The addition of a reprogramming drug to estrogens in MHT may offer a new strategy to overcome the adverse proliferative effects of estrogen in MHT by reprogramming ERα as opposed to an antagonist mechanism that involves blocking the binding of estrogen to ERα.


Asunto(s)
Neoplasias Óseas , Neoplasias de la Mama , Femenino , Humanos , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Proliferación Celular , Estradiol/metabolismo , Estradiol/farmacología , Receptor alfa de Estrógeno/agonistas , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Estrógenos/farmacología , Moduladores Selectivos de los Receptores de Estrógeno/metabolismo , Moduladores Selectivos de los Receptores de Estrógeno/farmacología
6.
J Biol Chem ; 294(23): 9213-9224, 2019 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-31053639

RESUMEN

Chronic or excess glucocorticoid exposure causes lipid disorders such as hypertriglyceridemia and hepatic steatosis. Angptl4 (angiopoietin-like 4), a primary target gene of the glucocorticoid receptor in hepatocytes and adipocytes, is required for hypertriglyceridemia and hepatic steatosis induced by the synthetic glucocorticoid dexamethasone. Angptl4 has also been shown to be required for dexamethasone-induced hepatic ceramide production. Here, we further examined the role of ceramide-mediated signaling in hepatic dyslipidemia caused by chronic glucocorticoid exposure. Using a stable isotope-labeling technique, we found that dexamethasone treatment induced the rate of hepatic de novo lipogenesis and triglyceride synthesis. These dexamethasone responses were compromised in Angptl4-null mice (Angptl4-/-). Treating mice with myriocin, an inhibitor of the rate-controlling enzyme of de novo ceramide synthesis, serine palmitoyltransferase long-chain base subunit 1 (SPTLC1)/SPTLC2, decreased dexamethasone-induced plasma and liver triglyceride levels in WT but not Angptl4-/- mice. We noted similar results in mice infected with adeno-associated virus-expressing small hairpin RNAs targeting Sptlc2. Protein phosphatase 2 phosphatase activator (PP2A) and protein kinase Cζ (PKCζ) are two known downstream effectors of ceramides. We found here that mice treated with an inhibitor of PKCζ, 2-acetyl-1,3-cyclopentanedione (ACPD), had lower levels of dexamethasone-induced triglyceride accumulation in plasma and liver. However, small hairpin RNA-mediated targeting of the catalytic PP2A subunit (Ppp2ca) had no effect on dexamethasone responses on plasma and liver triglyceride levels. Overall, our results indicate that chronic dexamethasone treatment induces an ANGPTL4-ceramide-PKCζ axis that activates hepatic de novo lipogenesis and triglyceride synthesis, resulting in lipid disorders.


Asunto(s)
Proteína 4 Similar a la Angiopoyetina/metabolismo , Ceramidas/metabolismo , Dexametasona/toxicidad , Hígado/efectos de los fármacos , Proteína Quinasa C/metabolismo , Proteína 4 Similar a la Angiopoyetina/deficiencia , Proteína 4 Similar a la Angiopoyetina/genética , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Acido Graso Sintasa Tipo I/genética , Acido Graso Sintasa Tipo I/metabolismo , Ácidos Grasos Monoinsaturados/farmacología , Hígado Graso/etiología , Hígado Graso/metabolismo , Hipertrigliceridemia/etiología , Hipertrigliceridemia/metabolismo , Lipogénesis/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Ratones Noqueados , Proteína Quinasa C/antagonistas & inhibidores , Proteína Fosfatasa 2/antagonistas & inhibidores , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Serina C-Palmitoiltransferasa/antagonistas & inhibidores , Serina C-Palmitoiltransferasa/genética , Serina C-Palmitoiltransferasa/metabolismo , Triglicéridos/sangre , Triglicéridos/metabolismo
7.
Am J Physiol Endocrinol Metab ; 318(5): E667-E677, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32045263

RESUMEN

The global prevalence of type 2 diabetes (T2D) has doubled since 1980. Human epidemiological studies support arsenic exposure as a risk factor for T2D, although the precise mechanism is unclear. We hypothesized that chronic arsenic ingestion alters glucose homeostasis by impairing adaptive thermogenesis, i.e., body heat production in cold environments. Arsenic is a pervasive environmental contaminant, with more than 200 million people worldwide currently exposed to arsenic-contaminated drinking water. Male C57BL/6J mice exposed to sodium arsenite in drinking water at 300 µg/L for 9 wk experienced significantly decreased metabolic heat production when acclimated to chronic cold tolerance testing, as evidenced by indirect calorimetry, despite no change in physical activity. Arsenic exposure increased total fat mass and subcutaneous inguinal white adipose tissue (iWAT) mass. RNA sequencing analysis of iWAT indicated that arsenic dysregulated mitochondrial processes, including fatty acid metabolism. Western blotting in WAT confirmed that arsenic significantly decreased TOMM20, a correlate of mitochondrial abundance; PGC1A, a master regulator of mitochondrial biogenesis; and, CPT1B, the rate-limiting step of fatty acid oxidation (FAO). Our findings show that chronic arsenic exposure impacts the mitochondrial proteins of thermogenic tissues involved in energy expenditure and substrate regulation, providing novel mechanistic evidence for arsenic's role in T2D development.


Asunto(s)
Tejido Adiposo Pardo/efectos de los fármacos , Arsenitos/farmacología , Compuestos de Sodio/farmacología , Termogénesis/efectos de los fármacos , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/efectos de los fármacos , Tejido Adiposo Blanco/metabolismo , Animales , Metabolismo Energético/efectos de los fármacos , Masculino , Proteínas de Transporte de Membrana/metabolismo , Metacrilatos , Ratones , Ratones Endogámicos C57BL , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Receptores de Superficie Celular/metabolismo , Siloxanos , Grasa Subcutánea/efectos de los fármacos , Grasa Subcutánea/metabolismo
8.
J Biol Chem ; 292(39): 16122-16134, 2017 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-28842503

RESUMEN

Angptl4 (Angiopoietin-like 4) is a circulating protein secreted by white and brown adipose tissues and the liver. Structurally, Angptl4 contains an N-terminal coiled-coil domain (CCD) connected to a C-terminal fibrinogen-like domain (FLD) via a cleavable linker, and both full-length Angptl4 and its individual domains circulate in the bloodstream. Angptl4 inhibits extracellular lipoprotein lipase (LPL) activity and stimulates the lipolysis of triacylglycerol stored by adipocytes in the white adipose tissue (WAT). The former activity is furnished by the CCD, but the Angptl4 domain responsible for stimulating adipocyte lipolysis is unknown. We show here that the purified FLD of Angptl4 is sufficient to stimulate lipolysis in mouse primary adipocytes and that increasing circulating FLD levels in mice through adenovirus-mediated overexpression (Ad-FLD) not only induces WAT lipolysis in vivo but also reduces diet-induced obesity without affecting LPL activity. Intriguingly, reduced adiposity in Ad-FLD mice was associated with increased oxygen consumption, fat utilization, and the expression of thermogenic genes (Ucp1 and Ppargc1a) in subcutaneous WAT. Moreover, Ad-FLD mice exhibited increased glucose tolerance. Chronically enhancing WAT lipolysis could produce ectopic steatosis because of an overflow of lipids from the WAT to peripheral tissues; however, this did not occur when Ad-FLD mice were fed a high-fat diet. Rather, these mice had reductions in both circulating triacylglycerol levels and the mRNA levels of lipogenic genes in the liver and skeletal muscle. We conclude that separating the FLD from the CCD-mediated LPL-inhibitory activity of full-length Angptl4 reveals lipolytic and thermogenic properties with therapeutic relevance to obesity and diabetes.


Asunto(s)
Grasa Abdominal/metabolismo , Angiopoyetinas/metabolismo , Metabolismo Energético , Lipólisis , Modelos Biológicos , Regulación hacia Arriba , Grasa Abdominal/citología , Grasa Abdominal/patología , Tejido Adiposo Beige/citología , Tejido Adiposo Beige/metabolismo , Tejido Adiposo Beige/patología , Adiposidad , Proteína 4 Similar a la Angiopoyetina , Angiopoyetinas/sangre , Angiopoyetinas/química , Angiopoyetinas/genética , Animales , Células Cultivadas , Hígado/enzimología , Hígado/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Músculo Esquelético/enzimología , Músculo Esquelético/metabolismo , Mutación , Obesidad/sangre , Obesidad/metabolismo , Obesidad/patología , Obesidad/prevención & control , Oligopéptidos/genética , Oligopéptidos/metabolismo , Fragmentos de Péptidos/sangre , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes de Fusión/sangre , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Triglicéridos/sangre , Triglicéridos/metabolismo
9.
Curr Opin Clin Nutr Metab Care ; 21(6): 437-443, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30148740

RESUMEN

PURPOSE OF REVIEW: The current review provides an update on secreted factors and mechanisms that promote a thermogenic program in beige adipocytes, and their potential roles as therapeutic targets to fight obesity. RECENT FINDINGS: We outline recent studies revealing unrecognized mechanisms controlling beige adipocyte physiology, and summarize in particular those that underlie beige thermogenesis independently of classical uncoupling. We also update strategies aimed at fostering beige adipogenesis and white-to beige adipocyte conversion. Finally, we summarize newly identified endogenous secreted factors that promote the thermogenic activation of beige adipocytes and discuss their therapeutic potential. SUMMARY: The identification of novel endogenous factors that promote beiging and regulate beige adipocyte-specific physiological pathways opens up new avenues for therapeutic engineering targeting obesity and related metabolic disorders.


Asunto(s)
Adipocitos Beige/fisiología , Adipogénesis/fisiología , Obesidad/fisiopatología , Termogénesis/fisiología , Adipocitos Blancos/fisiología , Animales , Humanos
10.
Am J Physiol Endocrinol Metab ; 310(7): E572-85, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26758684

RESUMEN

Glucocorticoids and FoxO3 exert similar metabolic effects in skeletal muscle. FoxO3 gene expression was increased by dexamethasone (Dex), a synthetic glucocorticoid, both in vitro and in vivo. In C2C12 myotubes the increased expression is due to, at least in part, the elevated rate of FoxO3 gene transcription. In the mouse FoxO3 gene, we identified three glucocorticoid receptor (GR) binding regions (GBRs): one being upstream of the transcription start site, -17kbGBR; and two in introns, +45kbGBR and +71kbGBR. Together, these three GBRs contain four 15-bp glucocorticoid response elements (GREs). Micrococcal nuclease (MNase) assay revealed that Dex treatment increased the sensitivity to MNase in the GRE of +45kbGBR and +71kbGBR upon 30- and 60-min Dex treatment, respectively. Conversely, Dex treatment did not affect the chromatin structure near the -17kbGBR, in which the GRE is located in the linker region. Dex treatment also increased histone H3 and/or H4 acetylation in genomic regions near all three GBRs. Moreover, using chromatin conformation capture (3C) assay, we showed that Dex treatment increased the interaction between the -17kbGBR and two genomic regions: one located around +500 bp and the other around +73 kb. Finally, the transcriptional coregulator p300 was recruited to all three GBRs upon Dex treatment. The reduction of p300 expression decreased FoxO3 gene expression and Dex-stimulated interaction between distinct genomic regions of FoxO3 gene identified by 3C. Overall, our results demonstrate that glucocorticoids activated FoxO3 gene transcription through multiple GREs by chromatin structural change and DNA looping.


Asunto(s)
Dexametasona/farmacología , Factores de Transcripción Forkhead/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Glucocorticoides/farmacología , Código de Histonas/efectos de los fármacos , Fibras Musculares Esqueléticas/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Acetilación/efectos de los fármacos , Animales , Cromatina/efectos de los fármacos , Cromatina/metabolismo , Proteína Forkhead Box O3 , Factores de Transcripción Forkhead/genética , Ratones , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Receptores de Glucocorticoides , Elementos de Respuesta , Transcripción Genética
11.
J Biol Chem ; 289(24): 17078-86, 2014 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-24811171

RESUMEN

Glucocorticoids contribute to adipocyte differentiation by cooperating with transcription factors, such as CCAAT/enhancer-binding protein ß (C/EBPß), to stimulate transcription of the gene encoding peroxisome proliferator-activated receptor (PPARγ), a master regulator of adipogenesis. However, the mechanism of PPARγ gene regulation by glucocorticoids, the glucocorticoid receptor (GR), and its coregulators is poorly understood. Here we show that two GR binding regions (GBRs) in the mouse PPARγ gene were responsive to glucocorticoid, and treatment of 3T3-L1 preadipocytes with glucocorticoid alone induced GR occupancy and chromatin remodeling at PPARγ GBRs, which also contain binding sites for C/EBP and PPARγ proteins. GR recruited cell cycle and apoptosis regulator 1 (CCAR1), a transcription coregulator, to the PPARγ gene GBRs. Notably, CCAR1 was required for GR occupancy and chromatin remodeling at one of the PPARγ gene GBRs. Moreover, depletion of CCAR1 markedly suppressed differentiation of mouse mesenchymal stem cells and 3T3-L1 preadipocytes to mature adipocytes and decreased induction of PPARγ, C/EBPα, and C/EBPδ. Although CCAR1 was required for stimulation of several GR-regulated adipogenic genes in 3T3-L1 preadipocytes by glucocorticoid, it was not required for GR-activated transcription of certain anti-inflammatory genes in human A549 lung epithelial cells. Overall, our results highlighted the novel and specific roles of GR and CCAR1 in adipogenesis.


Asunto(s)
Adipocitos/metabolismo , Adipogénesis , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ensamble y Desensamble de Cromatina , Receptores de Glucocorticoides/metabolismo , Transducción de Señal , Adipocitos/citología , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Glucocorticoides/metabolismo , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Células 3T3 NIH , PPAR gamma/genética , PPAR gamma/metabolismo
12.
Adv Exp Med Biol ; 872: 381-2, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26216004

RESUMEN

We hope this book has provided a robust introduction to glucocorticoid action. We have provided a historical perspective on discoveries related to glucocorticoid action: from the discovery of the hormones, their use as therapeutics for inflammatory disease, biochemical identification of receptors and finally the cloning of the glucocorticoid receptor. This has led to identification of not only the primary amino acid sequence, but structural information gleaned from both X-ray crystallography as well as nuclear magnetic resonance approaches. We hope the reader comes away with a better understanding of the many actions of glucocorticoids on various tissues and cell types. Indeed, one of the unanswered questions in our field is how one hormone and receptor can have such varied transcriptional responses in different cell types. Surely, some of this will be explained by epigenetic modifications that occur in different cell types.


Asunto(s)
Glucocorticoides/fisiología , Glucocorticoides/química , Humanos
13.
Adv Exp Med Biol ; 872: 3-31, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26215988

RESUMEN

The history of glucocorticoid hormone research is an excellent example of "bedside to bench" investigation. It started with two very insightful clinical observations. Thomas Addison described the syndrome of what came to be known as adrenal hormone insufficiency and Harvey Cushing the syndrome of glucocorticoid hormone excess. These dramatic and life-threatening conditions spawned 150 years of active research that has involved many disciplines; indeed some of the fundamental observations of molecular biology are the result of this work. We have a fundamental knowledge of how glucocorticoids regulate gene transcription, their major effect. The challenge facing current and future investigators is to discern how to use this information to make these powerful therapeutic agents safer and more effective.


Asunto(s)
Glucocorticoides/fisiología , Glándulas Suprarrenales/fisiología , Regulación de la Expresión Génica/fisiología , Humanos , Receptores de Glucocorticoides/fisiología , Transcripción Genética/fisiología
14.
Adv Exp Med Biol ; 872: 99-126, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26215992

RESUMEN

Glucocorticoids are steroid hormones that regulate multiple aspects of glucose homeostasis. Glucocorticoids promote gluconeogenesis in liver, whereas in skeletal muscle and white adipose tissue they decrease glucose uptake and utilization by antagonizing insulin response. Therefore, excess glucocorticoid exposure causes hyperglycemia and insulin resistance. Glucocorticoids also regulate glycogen metabolism. In liver, glucocorticoids increase glycogen storage, whereas in skeletal muscle they play a permissive role for catecholamine-induced glycogenolysis and/or inhibit insulin-stimulated glycogen synthesis. Moreover, glucocorticoids modulate the function of pancreatic α and ß cells to regulate the secretion of glucagon and insulin, two hormones that play a pivotal role in the regulation of blood glucose levels. Overall, the major glucocorticoid effect on glucose homeostasis is to preserve plasma glucose for brain during stress, as transiently raising blood glucose is important to promote maximal brain function. In this chapter we will discuss the current understanding of the mechanisms underlying different aspects of glucocorticoid-regulated mammalian glucose homeostasis.


Asunto(s)
Glucocorticoides/fisiología , Glucosa/metabolismo , Homeostasis , Animales , Gluconeogénesis , Glucógeno/metabolismo , Humanos
15.
Proc Natl Acad Sci U S A ; 109(28): 11160-5, 2012 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-22733784

RESUMEN

Glucocorticoids elicit a variety of biological responses in skeletal muscle, including inhibiting protein synthesis and insulin-stimulated glucose uptake and promoting proteolysis. Thus, excess or chronic glucocorticoid exposure leads to muscle atrophy and insulin resistance. Glucocorticoids propagate their signal mainly through glucocorticoid receptors (GR), which, upon binding to ligands, translocate to the nucleus and bind to genomic glucocorticoid response elements to regulate the transcription of nearby genes. Using a combination of chromatin immunoprecipitation sequencing and microarray analysis, we identified 173 genes in mouse C2C12 myotubes. The mouse genome contains GR-binding regions in or near these genes, and gene expression is regulated by glucocorticoids. Eight of these genes encode proteins known to regulate distinct signaling events in insulin/insulin-like growth factor 1 pathways. We found that overexpression of p85α, one of these eight genes, caused a decrease in C2C12 myotube diameters, mimicking the effect of glucocorticoids. Moreover, reducing p85α expression by RNA interference in C2C12 myotubes significantly compromised the ability of glucocorticoids to inhibit Akt and p70 S6 kinase activity and reduced glucocorticoid induction of insulin receptor substrate 1 phosphorylation at serine 307. This phosphorylation is associated with insulin resistance. Furthermore, decreasing p85α expression abolished glucocorticoid inhibition of protein synthesis and compromised glucocorticoid-induced reduction of cell diameters in C2C12 myotubes. Finally, a glucocorticoid response element was identified in the p85α GR-binding regions. In summary, our studies identified GR-regulated transcriptional networks in myotubes and showed that p85α plays a critical role in glucocorticoid-induced insulin resistance and muscle atrophy in C2C12 myotubes.


Asunto(s)
Regulación de la Expresión Génica , Insulina/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Receptores de Glucocorticoides/química , Animales , Atrofia , Sitios de Unión , Inmunoprecipitación de Cromatina , Modelos Animales de Enfermedad , Estudio de Asociación del Genoma Completo , Genómica , Glucocorticoides/metabolismo , Ratones , Músculo Esquelético/metabolismo , Músculos/patología , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteolisis , Interferencia de ARN , Transducción de Señal
16.
J Lipid Res ; 55(5): 919-28, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24565756

RESUMEN

Angiopoietin-like 4 (Angptl4) is a glucocorticoid receptor (GR) primary target gene in hepatocytes and adipocytes. It encodes a secreted protein that inhibits extracellular LPL and promotes adipocyte lipolysis. In Angptl4 null mice, glucocorticoid-induced adipocyte lipolysis and hepatic steatosis are compromised. Markedly, insulin suppressed glucocorticoid-induced Angptl4 transcription. To unravel the mechanism, we utilized small molecules to inhibit insulin signaling components and found that phosphatidylinositol 3-kinase and Akt were vital for the suppression in H4IIE cells. A forkhead box transcription factor response element (FRE) was found near the 15 bp Angptl4 glucocorticoid response element (GRE). Mutating the Angptl4 FRE significantly reduced glucocorticoid-induced reporter gene expression in cells. Moreover, chromatin immunoprecipitation revealed that GR and FoxO1 were recruited to Angptl4 GRE and FRE in a glucocorticoid-dependent manner, and cotreatment with insulin abolished both recruitments. Furthermore, in 24 h fasted mice, significant occupancy of GR and FoxO1 at the Angptl4 GRE and FRE was found in the liver. In contrast, both occupancies were diminished after 24 h refeeding. Finally, overexpression of dominant negative FoxO1 mutant abolished glucocorticoid-induced Angptl4 expression, mimicking the insulin suppression. Overall, we demonstrate that both GR and FoxO1 are required for Angptl4 transcription activation, and that FoxO1 negatively mediates the suppressive effect of insulin.


Asunto(s)
Angiopoyetinas/genética , Regulación de la Expresión Génica/efectos de los fármacos , Glucocorticoides/farmacología , Insulina/farmacología , Transcripción Genética/efectos de los fármacos , Proteína 4 Similar a la Angiopoyetina , Animales , Secuencia de Bases , Línea Celular Tumoral , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Ratones , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Transporte de Proteínas/efectos de los fármacos , Ratas , Receptores de Glucocorticoides/metabolismo , Elementos de Respuesta/genética , Transducción de Señal/efectos de los fármacos
17.
Am J Physiol Gastrointest Liver Physiol ; 306(8): G686-98, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24578341

RESUMEN

Lymphatic fluid is a plasma filtrate that can be viewed as having biological activity through the passive accumulation of molecules from the interstitial fluid. The possibility that lymphatic fluid is part of an active self-contained signaling process that parallels the endocrine system, through the activation of G-protein coupled receptors (GPCR), has remained unexplored. We show that the GPCR lysophosphatidic acid 5 (LPA5) is found in sensory nerve fibers expressing calcitonin gene-related peptide (CGRP) that innervate the lumen of lymphatic lacteals and enteric nerves. Using LPA5 as a model for nutrient-responsive GPCRs present on sensory nerves, we demonstrate that dietary protein hydrolysate (peptone) can induce c-Fos expression in enterocytes and nerves that express LPA5. Mesenteric lymphatic fluid (MLF) mobilizes intracellular calcium in cell models expressing LPA5 upon feeding in a time- and dose-dependent manner. Primary cultured neurons of the dorsal root ganglia expressing CGRP are activated by MLF, which is enhanced upon LPA5 overexpression. Activation is independent of the known LPA5 agonists, lysophosphatidic acid and farnesyl pyrophosphate. These data bring forth a pathway for the direct stimulation of sensory nerves by luminal contents and interstitial fluid. Thus, by activating LPA5 on sensory nerves, MLF provides a means for known and yet to be identified constituents of the interstitial fluid to act as signals to comprise a "neurolymphocrine" system.


Asunto(s)
Enterocitos/fisiología , Linfa/fisiología , Receptores del Ácido Lisofosfatídico/metabolismo , Células Receptoras Sensoriales/fisiología , Animales , Péptido Relacionado con Gen de Calcitonina/metabolismo , Fenómenos Fisiológicos Celulares , Proteínas en la Dieta/metabolismo , Ratones , Ratones Endogámicos C57BL , Peptonas/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores Acoplados a Proteínas G/metabolismo
18.
J Biol Chem ; 287(11): 8444-56, 2012 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-22267746

RESUMEN

Intracellular triacylglycerol (TG) hydrolysis and fatty acid release by the white adipose tissue (WAT) during a fast is stimulated by counter-regulatory factors acting in concert, although how adipocytes integrate these lipolytic inputs is unknown. We tested the role of angiopoietin-like 4 (Angptl4), a secreted protein induced by fasting or glucocorticoid treatment, in modulating intracellular adipocyte lipolysis. Glucocorticoid receptor blockade prevented fasting-induced tissue Angptl4 expression and WAT TG hydrolysis in mice, and TG hydrolysis induced by fasts of 6 or 24 h was greatly reduced in mice lacking Angptl4 (Angptl4(-/-)). Glucocorticoid treatment mimicked the lipolytic effects of fasting, although with slower kinetics, and this too required Angptl4. Thus, fasting-induced WAT TG hydrolysis requires glucocorticoid action and Angptl4. Both fasting and glucocorticoid treatment also increased WAT cAMP levels and downstream phosphorylation of lipolytic enzymes. Angptl4 deficiency markedly reduced these effects, suggesting that Angptl4 may stimulate lipolysis by modulating cAMP-dependent signaling. In support of this, cAMP levels and TG hydrolysis were reduced in primary Angptl4(-/-) murine adipocytes treated with catecholamines, which stimulate cAMP-dependent signaling to promote lipolysis, and was restored by treatment with purified human ANGPTL4. Remarkably, human ANGPTL4 treatment alone increased cAMP levels and induced lipolysis in these cells. Pharmacologic agents revealed that Angptl4 modulation of cAMP-dependent signaling occurs upstream of adenylate cyclase and downstream of receptor activation. We show that Angptl4 is a glucocorticoid-responsive mediator of fasting-induced intracellular lipolysis and stimulates cAMP signaling in adipocytes. Such a role is relevant to diseases of aberrant lipolysis, such as insulin resistance.


Asunto(s)
Adipocitos Blancos/metabolismo , Tejido Adiposo Blanco/metabolismo , Angiopoyetinas/metabolismo , Ayuno/fisiología , Lipólisis/fisiología , Sistemas de Mensajero Secundario/fisiología , Angiopoyetinas/genética , Angiopoyetinas/farmacología , Animales , AMP Cíclico/genética , AMP Cíclico/metabolismo , Glucocorticoides/metabolismo , Glucocorticoides/farmacología , Humanos , Resistencia a la Insulina/genética , Lipólisis/efectos de los fármacos , Ratones , Ratones Noqueados , Sistemas de Mensajero Secundario/efectos de los fármacos , Triglicéridos/genética , Triglicéridos/metabolismo
20.
Nat Commun ; 14(1): 3143, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37253782

RESUMEN

The classical dogma of glucocorticoid-induced insulin resistance is that it is caused by the transcriptional activation of hepatic gluconeogenic and insulin resistance genes by the glucocorticoid receptor (GR). Here, we find that glucocorticoids also stimulate the expression of insulin-sensitizing genes, such as Irs2. The transcriptional coregulator EHMT2 can serve as a transcriptional coactivator or a corepressor. Using male mice that have a defective EHMT2 coactivation function specifically, we show that glucocorticoid-induced Irs2 transcription is dependent on liver EHMT2's coactivation function and that IRS2 play a key role in mediating the limitation of glucocorticoid-induced insulin resistance by EHMT2's coactivation. Overall, we propose a model in which glucocorticoid-regulated insulin sensitivity is determined by the balance between glucocorticoid-modulated insulin resistance and insulin sensitizing genes, in which EHMT2 coactivation is specifically involved in the latter process.


Asunto(s)
Glucocorticoides , N-Metiltransferasa de Histona-Lisina , Resistencia a la Insulina , Animales , Masculino , Ratones , Glucocorticoides/farmacología , Insulina/metabolismo , Resistencia a la Insulina/genética , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA