RESUMEN
DNA G-quadruplex(G4) is a guanine-rich single-stranded DNA sequence that spontaneously folds into a spherical four-stranded DNA secondary structure in oncogene promoter sequences and telomeres. G4s are highly associated with the occurrence and development of cancer and have emerged as promising anticancer targets. Natural products have long been important sources of anticancer drug development. In recent years, significant progress has been made in the discovery of natural drugs targeting DNA G4s, with many DNA G4s have been confirmed as promising targets of natural products, including MYC-G4, KRAS-G4, PDGFR-ß-G4, BCL-2-G4, VEGF-G4, and telomeric G4. This review summarizes the research progress in discovering natural small molecules that target DNA G4s and their binding mechanisms. It also discusses the opportunities of and challenges in developing drugs targeting DNA G4s. This review will serve as a valuable reference for the research on natural products, particularly in the development of novel antitumor medications.
Asunto(s)
Productos Biológicos , G-Cuádruplex , G-Cuádruplex/efectos de los fármacos , Productos Biológicos/química , Productos Biológicos/farmacología , Humanos , Animales , ADN/química , ADN/genética , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Antineoplásicos/química , Antineoplásicos/farmacologíaRESUMEN
EGFR tyrosine kinase inhibitors have made remarkable success in targeted cancer therapy. However, therapeutic resistance inevitably occurred and EGFR-targeting therapy has been demonstrated to have limited efficacy or utility in glioblastoma, colorectal cancer, and hepatocellular carcinoma. Therefore, there is a high demand for the development of new targets to inhibit EGFR signaling. Herein, we found that the EGFR oncogene proximal promoter sequence forms a unique type of snap-back loop containing G-quadruplex (G4), which can be targeted by small molecules. For the first time, we determined the NMR solution structure of this snap-back EGFR-G4, a three-tetrad-core, parallel-stranded G4 with naturally occurring flanking residues at both the 5'-end and 3'-end. The snap-back loop located at the 3'-end region forms a stable capping structure through two stacked G-triads connected by multiple potential hydrogen bonds. Notably, the flanking residues are consistently absent in reported snap-back G4s, raising the question of whether such structures truly exist under in vivo conditions. The resolved EGFR-G4 structure has eliminated the doubt and showed distinct structural features that distinguish it from the previously reported snap-back G4s, which lack the flanking residues. Furthermore, we found that the snap-back EGFR-G4 structure is highly stable and can form on an elongated DNA template to inhibit DNA polymerase. The unprecedented high-resolution EGFR-G4 structure has thus contributed a promising molecular target for developing alternative EGFR signaling inhibitors in cancer therapeutics. Meanwhile, the two stacked triads may provide an attractive site for specific small-molecule targeting.
Asunto(s)
G-Cuádruplex , Neoplasias , Humanos , Regiones Promotoras Genéticas , Oncogenes , Receptores ErbB/genéticaRESUMEN
Guanine (G)-oxidation to 8-oxo-7,8-dihydroguanine (OG) by reactive oxygen species in genomic DNA has been implicated with various human diseases. G-quadruplex (G4)-forming sequences in gene promoters are highly susceptible to G-oxidation, which can subsequently cause gene activation. However, the underlying G4 structural changes that result from OG modifications remain poorly understood. Herein, we investigate the effect of G-oxidation on the BLM gene promoter G4. For the first time, we show that OG can induce a G-vacancy-containing G4 (vG4), which can be filled in and stabilized by guanine metabolites and derivatives. We determined the NMR solution structure of the cGMP-fill-in oxidized BLM promoter vG4. This is the first complex structure of an OG-induced vG4 from a human gene promoter sequence with a filled-in guanine metabolite. The high-resolution structure elucidates the structural features of the specific 5'-end cGMP-fill-in for the OG-induced vG4. Interestingly, the OG is removed from the G-core and becomes part of the 3'-end capping structure. A series of guanine metabolites and derivatives are evaluated for fill-in activity to the oxidation-induced vG4. Significantly, cellular guanine metabolites, such as cGMP and GTP, can bind and stabilize the OG-induced vG4, suggesting their potential regulatory role in response to oxidative damage in physiological and pathological processes. Our work thus provides exciting insights into how oxidative damage and cellular metabolites may work together through a G4-based epigenetic feature for gene regulation. Furthermore, the NMR structure can guide the rational design of small-molecule inhibitors that specifically target the oxidation-induced vG4s.
Asunto(s)
G-Cuádruplex , Guanina , Guanina/química , Humanos , Oxidación-Reducción , Estrés Oxidativo , Regiones Promotoras GenéticasRESUMEN
Two pairs of unprecedented ß-carboline-phenylpropanoid heterogeneous alkaloids, (±)-pheharmines A-B (1-4), characterized by a morpholino[4,3,2-hi]ß-carboline core with two chiral centers, were isolated from the roots of Peganum harmala. The structures, including their absolute configurations, were identified using spectroscopic analyses and electronic circular dichroism (ECD) calculations. The biosynthetic hypothesis for the formation of pheharmines A-B was proposed. Compounds 1-4 exhibited moderate cytotoxic activities against HL-60 cell lines.
Asunto(s)
Alcaloides , Peganum , Humanos , Peganum/química , Peganum/metabolismo , Morfolinos/análisis , Morfolinos/metabolismo , Semillas , Estructura Molecular , Alcaloides/farmacología , Alcaloides/química , Carbolinas/farmacología , Carbolinas/químicaRESUMEN
The G-quadruplexes (G4s) formed in the PDGFR-ß gene promoter are transcriptional modulators and amenable to small-molecule targeting. Berberine (BER), a clinically important natural isoquinoline alkaloid, has gained increasing attention due to its potential as anticancer drug. We previously showed that the PDGFR-ß gene promoter forms a unique vacancy G4 (vG4) that can be filled in and stabilized by guanine metabolites, such as dGMP. Herein, we report the high-resolution NMR structure of a ternary complex of berberine bound to the dGMP-fill-in PDGFR-ß vG4 in potassium solution. This is the first small-molecule complex structure of a fill-in vG4. This ternary complex has a 2:1:1 binding stoichiometry with a berberine molecule bound at each the 5'- and 3'-end of the 5'-dGMP-fill-in PDGFR-ß vG4. Each berberine recruits the adjacent adenine residue from the 5'- or 3'-flanking sequence to form a "quasi-triad plane" that covers the external G-tetrad of the fill-in vG4, respectively. Significantly, berberine covers and stabilizes the fill-in dGMP. The binding of berberine involves both π-stacking and electrostatic interactions, and the fill-in dGMP is covered and well-protected by berberine. The NMR structure can guide rational design of berberine analogues that target the PDGFR-ß vG4 or dGMP-fill-in vG4. Moreover, our structure provides a molecular basis for designing small-molecule guanine conjugates to target vG4s.
Asunto(s)
G-CuádruplexRESUMEN
Aberrant expression of PDGFR-ß is associated with a number of diseases. The G-quadruplexes (G4s) formed in PDGFR-ß gene promoter are transcriptional modulators and amenable to small molecule targeting. The major G4 formed in the PDGFR-ß gene promoter was previously shown to have a broken G-strand. Herein, we report that the PDGFR-ß gene promoter sequence forms a vacancy G-quadruplex (vG4) which can be filled in and stabilized by physiologically relevant guanine metabolites, such as dGMP, GMP, and cGMP, as well as guanine-derivative drugs. We determined the NMR structure of the dGMP-fill-in PDGFR-ß vG4 in K+ solution. This is the first structure of a guanine-metabolite-fill-in vG4 based on a human gene promoter sequence. Our structure and systematic analysis elucidate the contributions of Hoogsten hydrogen bonds, sugar, and phosphate moieties to the specific G-vacancy fill-in. Intriguingly, an equilibrium of 3'- and 5'-end vG4s is present in the PDGFR-ß promoter sequence, and dGMP favors the 5'-end fill-in. Guanine metabolites and drugs were tested and showed a conserved selectivity for the 5'-vacancy, except for cGMP. cGMP binds both the 3'- and 5'-end vG4s and forms two fill-in G4s with similar population. Significantly, guanine metabolites are involved in many physiological and pathological processes in human cells; thus, our results provide a structural basis to understand their potential regulatory functions by interaction with promoter vG4s. Moreover, the NMR structure can guide rational design of ligands that target the PDGFR-ß vG4.
Asunto(s)
ADN/metabolismo , Nucleótidos de Desoxiguanina/metabolismo , G-Cuádruplex , Regiones Promotoras Genéticas , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , ADN/genética , Humanos , Resonancia Magnética Nuclear BiomolecularRESUMEN
MYC is one of the most important oncogenes and is overexpressed in the majority of cancers. G-Quadruplexes are noncanonical four-stranded DNA secondary structures that have emerged as attractive cancer-specific molecular targets for drug development. The G-quadruplex formed in the proximal promoter region of the MYC oncogene (MycG4) has been shown to be a transcriptional silencer that is amenable to small-molecule targeting for MYC suppression. Indenoisoquinolines are human topoisomerase I inhibitors in clinical testing with improved physicochemical and biological properties as compared to the clinically used camptothecin anticancer drugs topotecan and irinotecan. However, some indenoisoquinolines with potent anticancer activity do not exhibit strong topoisomerase I inhibition, suggesting a separate mechanism of action. Here, we report that anticancer indenoisoquinolines strongly bind and stabilize MycG4 and lower MYC expression levels in cancer cells, using various biochemical, biophysical, computer modeling, and cell-based methods. Significantly, a large number of active indenoisoquinolines cause strong MYC downregulation in cancer cells. Structure-activity relationships of MycG4 recognition by indenoisoquinolines are investigated. In addition, the analysis of indenoisoquinoline analogues for their MYC-inhibitory activity, topoisomerase I-inhibitory activity, and anticancer activity reveals a synergistic effect of MYC inhibition and topoisomerase I inhibition on anticancer activity. Therefore, this study uncovers a novel mechanism of action of indenoisoquinolines as a new family of drugs targeting the MYC promoter G-quadruplex for MYC suppression. Furthermore, the study suggests that dual targeting of MYC and topoisomerase I may serve as a novel strategy for anticancer drug development.
Asunto(s)
ADN-Topoisomerasas de Tipo I/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Indenos/farmacología , Isoquinolinas/farmacología , Proteínas Proto-Oncogénicas c-myc/antagonistas & inhibidores , Inhibidores de Topoisomerasa I/farmacología , Sitios de Unión/efectos de los fármacos , G-Cuádruplex/efectos de los fármacos , Humanos , Indenos/química , Isoquinolinas/química , Estructura Molecular , Regiones Promotoras Genéticas/efectos de los fármacos , Regiones Promotoras Genéticas/genética , Estabilidad Proteica/efectos de los fármacos , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Relación Estructura-Actividad , Inhibidores de Topoisomerasa I/químicaRESUMEN
Seventeen quinazoline alkaloids and derivatives, containing two pairs of new epimers, named as (S)- and (R)-1-(2-aminobenzyl)-3-hydroxypyrrolidin-2-one ß-d-glucopyranosyl-(1â¯ââ¯6)-ß-d-glucopyranoside (1, 2), (S)- and (R)-vasicinone ß-d-glucopyranosyl-(1â¯ââ¯6)-ß-d-glucopyranoside (3, 4), and a new enantiomer (12b), together with six known ones (5-8, 10, and 12a), and three pairs of known enantiomers (9, 11, and 13), were isolated from the ethanol extracts of the seeds of Peganum harmala L.. Their structures including the absolute configuration were elucidated by using 1D and 2D NMR, and ECD calculation approaches. The cytotoxic activities of all isolated compounds were evaluated. 11 showed moderate cytotoxicity against PC-3 cells with an IC50 value of 15.41⯵M.
Asunto(s)
Alcaloides/farmacología , Antineoplásicos Fitogénicos/farmacología , Peganum/química , Quinazolinas/farmacología , Semillas/química , Alcaloides/química , Alcaloides/aislamiento & purificación , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Quinazolinas/química , Quinazolinas/aislamiento & purificación , Relación Estructura-ActividadRESUMEN
Neobraclactones A-C (1-3), featuring an unprecedented further rearranged prenylxanthone skeleton with a unique octahydro-2H-1,3-dioxacyclopenta[c,d]inden-2-one scaffold, along with their biosynthesis-related known compound neobractatin (4), were isolated from the leaves of Garcinia bracteata. Their structures with absolute configurations were determined by extensive analyses of spectroscopic data and ECD calculations. Compounds 1 and 2 showed significant growth inhibition activities against the human leukaemia HL-60 and K562 cell lines with GI50 values from 0.40 to 0.86 µM.
Asunto(s)
Garcinia/química , Xantonas/aislamiento & purificación , Conformación Molecular , Xantonas/químicaRESUMEN
Investigation of the alkaloids from Peganum harmala seeds yielded two pairs of unique racemic pyrroloindole alkaloids, (±)-peganines A-B (1-2); two rare thiazole derivatives, peganumals A-B (3-4); six new ß-carboline alkaloids, pegaharmines F-K (5-10); and 12 known analogues. Their structures, including stereochemistry, were elucidated through spectroscopic analyses, quantum chemistry calculations, and single-crystal X-ray diffraction. Notably, the incorporation of pyrrole and indole moieties in peganines A-B, thiazole fragments in peganumals A-B, and a C-1 α,ß-unsaturated ester motif in pegaharmine F (5) are all rare, and their presence in the genus Peganum were demonstrated for the first time. All isolates were tested for antiproliferative activities against the HL-60, PC-3, and SGC-7901 cancer cell lines, and compounds 9, 11, 12, and 13 exhibited moderate cytotoxicity against HL-60 cancer cell lines with IC50 values in the range of 4.36-9.25 µM.
Asunto(s)
Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/aislamiento & purificación , Alcaloides Indólicos/química , Alcaloides Indólicos/aislamiento & purificación , Peganum/química , Semillas/química , Antineoplásicos Fitogénicos/farmacología , Carbolinas/química , Ensayos de Selección de Medicamentos Antitumorales , Medicamentos Herbarios Chinos/farmacología , Células HL-60 , Humanos , Alcaloides Indólicos/farmacología , Concentración 50 Inhibidora , Estructura Molecular , Resonancia Magnética Nuclear BiomolecularRESUMEN
Inspired by the intriguing structures and bioactivities of dimeric alkaloids, 11 new thalifaberine-type aporphine-benzylisoquinoline alkaloids, thalicultratines A-K, a tetrahydroprotoberberine-aporphine alkaloid, thalicultratine L, and five known ones were isolated from the roots of Thalictrum cultratum. Their structures were defined on the basis of NMR and HRESIMS data. The antiproliferative activities of compounds 1-17 were evaluated against human leukemia HL-60 and prostate cancer PC-3 cells. Most alkaloids showed potent cytotoxicity against selected cancer cells. Preliminary SARs are discussed. The most active new compound (3), with an IC50 value of 1.06 µM against HL-60 cells, was selected for mechanism of action studies. The results revealed that compound 3 induced apoptosis and arrested the HL-60 cell cycle at the S phase with the loss of mitochondria membrane potential. The nuclear morphological Hoechst 33258 staining assay was also carried out, and the results confirmed apoptosis.
Asunto(s)
Alcaloides/aislamiento & purificación , Alcaloides/farmacología , Antineoplásicos Fitogénicos/aislamiento & purificación , Antineoplásicos Fitogénicos/farmacología , Aporfinas/aislamiento & purificación , Aporfinas/farmacología , Medicamentos Herbarios Chinos/aislamiento & purificación , Medicamentos Herbarios Chinos/farmacología , Raíces de Plantas/química , Thalictrum/química , Alcaloides/química , Antineoplásicos Fitogénicos/química , Aporfinas/química , Alcaloides de Berberina , Medicamentos Herbarios Chinos/química , Células HL-60 , Humanos , Concentración 50 Inhibidora , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Relación Estructura-ActividadRESUMEN
Two prenylated biflavonoids, podoverines B-C, were isolated from the dried roots and rhizomes of Sinopodophyllum emodi using a Sephadex LH-20 column (SLHC) and high-speed counter-current chromatography (HSCCC). The 95% ethanol extract was partitioned with ethyl acetate in water. Target compounds from the ethyl acetate fraction were further enriched and purified by the combined application of SLHC and HSCCC. n-Hexane-ethyl acetate-methanol-water (3.5:5:3.5:5, v/v) was chosen as the two phase solvent system. The flow rate of mobile phase was optimized at 2.0 mL·min(-1). Finally, under optimized conditions, 13.8 mg of podoverine B and 16.2 mg of podoverine C were obtained from 200 mg of the enriched sample. The purities of podoverines B and C were 98.62% and 99.05%, respectively, as determined by HPLC. For the first time, podoverins B and C were found in the genus Sinopodophyllum. Their structures were determined by spectroscopic methods (HR-ESI-MS, ¹H-NMR, (13)C-NMR, HSQC, HMBC). Their absolute configurations were elucidated by comparison of their experimental and calculated ECD spectra. The cytotoxic activities were evaluated against MCF-7 and HepG2 cell lines. The separation procedures proved to be practical and economical, especially for trace prenylated biflavonoids from traditional Chinese medicine.
Asunto(s)
Biflavonoides/aislamiento & purificación , Raíces de Plantas/química , Podophyllum/química , Rizoma/química , Biflavonoides/química , Biflavonoides/farmacología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Distribución en Contracorriente/métodos , Dextranos/química , Células Hep G2 , Humanos , Células MCF-7 , Estructura MolecularRESUMEN
OBJECTIVES: This study aimed to discover novel antifungals targeting Candida albicans glyceraldehyde-3-phosphate dehydrogenase (CaGAPDH), have an insight into inhibitory mode, and provide evidence supporting CaGAPDH as a target for new antifungals. METHODS: Virtual screening was utilized to discover inhibitors of CaGAPDH. The inhibitory effect on cellular GAPDH was evaluated by determining the levels of ATP, NAD, NADH, etc., as well as examining GAPDH mRNA and protein expression. The role of GAPDH inhibition in C. albicans was supported by drug affinity responsive target stability and overexpression experiments. The mechanism of CaGAPDH inhibition was elucidated by Michaelis-Menten enzyme kinetics and site-specific mutagenesis based on docking. Chemical synthesis was used to produce an improved candidate. Different sources of GAPDH were used to evaluate inhibitory selectivity across species. In vitro and in vivo antifungal tests, along with anti-biofilm activity, were carried out to evaluate antifungal potential of GAPDH inhibitors. RESULTS: A natural xanthone was identified as the first competitive inhibitor of CaGAPDH. It demonstrated in vitro anti-C. albicans potential but also caused hemolysis. XP-W, a synthetic side-chain-optimized xanthone, demonstrated a better safety profile, exhibiting a 50-fold selectivity for CaGAPDH over human GAPDH. XP-W also exhibited potent anti-biofilm activity and displayed broad-spectrum anti-Candida activities in vitro and in vivo, including multi-azole-resistant C. albicans. CONCLUSIONS: These results demonstrate for the first time that CaGAPDH is a valuable target for antifungal drug discovery, and XP-W provides a promising lead.
Asunto(s)
Antifúngicos , Candida albicans , Gliceraldehído-3-Fosfato Deshidrogenasas , Xantonas , Candida albicans/efectos de los fármacos , Candida albicans/enzimología , Xantonas/farmacología , Xantonas/química , Antifúngicos/farmacología , Gliceraldehído-3-Fosfato Deshidrogenasas/antagonistas & inhibidores , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Animales , Biopelículas/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Humanos , Candidiasis/tratamiento farmacológico , Candidiasis/microbiología , Simulación del Acoplamiento Molecular , Inhibidores Enzimáticos/farmacología , Ratones , Descubrimiento de DrogasRESUMEN
Global temperatures will continue to increase in the future. The â¼640,000-km2 Loess Plateau (LP) is a typical arid and semi-arid region in China. Similar regions cover â¼41% of the Earth, and its soils are some of the most severely eroded anywhere in the world. It is very important to understand the vegetation change and its ecological threshold under climate change on the LP for the sustainable development in the Yellow River Basin. However, little is known about how vegetation on the LP will respond to climate change and what is the sustainable threshold level of vegetation cover on the LP. Here we show that the temperature on the LP has risen 0.27 °C per decade over the past 50 years, a rate that is 30% higher than the average warming rate across China. During historical times, vegetation change was regulated by environmental factors and anthropogenic activities. Vegetation coverage was about 53% on the LP from the Xia Dynasty to the Spring and Autumn and Warring States period. Over the past 70 years, however, the environment has gradually improved and the vegetation cover had increased to â¼65% by 2021. We forecast future changes of vegetation cover on the LP in 2030s, in 2050s and in 2070s using SDM (Species Distribution Model) under Low-emission scenarios, Medium-emission scenarios and High-emission scenarios. An average value of vegetation cover under the three emission scenarios will be 64.67%, 62.70% and 61.47%, respectively. According to the historical record and SDM forecasts, the threshold level of vegetation cover on the LP is estimated to be 53-65%. Currently, vegetation cover on the LP has increased to the upper limit of the threshold value (â¼65%). We conclude that the risk of ecosystem collapse on the LP will increase with further temperature increases once the vegetated area and density exceed the threshold value. It is urgent to adopt sustainable strategies such as stopping expanding vegetation area and scientifically optimizing the vegetation structure on the LP to improve the ecological sustainability of the Yellow River Basin.
RESUMEN
Phytoconstituents of the peels of Callistemon viminalis has been investigated for the first time. As a result, two pair of diastereomers of hybrids of ß-triketone and α-phellandrene, named viminalisones A-B (1-2) and viminalisones CD (3-4), and three known analogues were obtained. Their structures and absolute configurations were elucidated through a combination of the analysis of their MS data, NMR spectra, single-crystal X-ray diffraction, and their experimental and calculated electronic circular dichroism (ECD) spectra. All isolates were evaluated for their antimicrobial activities against Botrytis cinerea and Cutibacterium acnes. Meroterpenoid 7 exhibited antibacterial activity against Botrytis cinerea with a MIC value of 0.256 mg/mL.
Asunto(s)
Monoterpenos , Myrtaceae , Estructura Molecular , Pruebas de Sensibilidad Microbiana , Myrtaceae/químicaRESUMEN
Gastric cancer (GC) remains the third leading cause of cancer-related mortality in the world, and ninety-five percent of GC are stomach adenocarcinomas (STAD). The active ingredients of Croci Stigma, such as Isorhamnetin, Crocin, Crocetin and Kaempferol, all have antitumor activity. However, their chemical and pharmacological profiles remain to be elusive. In this study, network pharmacology was used to characterize the action mechanism of Croci Stigma. All compounds were obtained from the traditional Chinese medicine systems pharmacology (TCMSP) database, and active ingredients were selected by their oral bioavailability and drug-likeness index. The targets of Croci Stigma active ingredients were obtained from the traditional Chinese medicine integrated database (TCMID), whereas the related genes of STAD were obtained from DisGeNET platform. Cytoscape was used to undertake visual analyses of the Drug Ingredients-Gene Symbols-Disease (I-G-D) network, and 2 core genes including MAPK14, ERBB3 were obtained, which are the predicted targets of isorhamnetin (IH) and quercetin, respectively. Data analysis from TCGA platform showed that MAPK14 and ERBB3 all upregulated in STAD patients, but only the effect of MAPK14 expression on STAD patients' survival was significant. Molecular docking showed that IH might affect the function of MAPK14 protein, and then the underlying action mechanisms of IH on STAD were experimentally validated using human gastric cancer cell line, HGC-27 cells. The results showed that IH can inhibit cell proliferation, migration, clonal formation, and arrest cell cycle, but promote the apoptosis of HGC-27 cells. qRT-PCR data demonstrated that IH downregulated the MAPK14 mRNA expression and EMT related genes. WB results showed that IH regulates MAPK/mTOR signaling pathway. These findings suggest that IH has the therapeutic potential for the treatment of STAD.
Asunto(s)
Adenocarcinoma , Medicamentos Herbarios Chinos , Proteína Quinasa 14 Activada por Mitógenos , Neoplasias Gástricas , Humanos , Quercetina/farmacología , Simulación del Acoplamiento Molecular , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Transducción de Señal , Serina-Treonina Quinasas TOR/genética , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/genéticaRESUMEN
KRAS is one of the most highly mutated oncoproteins, which is overexpressed in various human cancers and implicated in poor survival. The G-quadruplex formed in KRAS oncogene promoter (KRAS-G4) is a transcriptional modulator and amenable to small molecule targeting. However, no available KRAS-G4-ligand complex structure has yet been determined, which seriously hinders the structure-based rational design of KRAS-G4 targeting drugs. In this study, we report the NMR solution structures of a bulge-containing KRAS-G4 bound to berberine and coptisine, respectively. The determined complex structure shows a 2:1 binding stoichiometry with each compound recruiting the adjacent flacking adenine residue to form a "quasi-triad plane" that stacks over the two external G-tetrads. The binding involves both π-stacking and electrostatic interactions. Moreover, berberine and coptisine significantly lowered the KRAS mRNA levels in cancer cells. Our study thus provides molecular details of ligand interactions with KRAS-G4 and is beneficial for the design of specific KRAS-G4-interactive drugs.
Asunto(s)
Berberina , G-Cuádruplex , Adenina , Berberina/análogos & derivados , Berberina/farmacología , Genes ras , Humanos , Ligandos , Proteínas Proto-Oncogénicas p21(ras)/genética , ARN MensajeroRESUMEN
Changes in land use type can lead to variations in soil water characteristics. The objective of this study was to identify the responses of soil water holding capacity (SWHC) and soil water availability (SWA) to land use type (grassland, shrubland and forestland). The soil water characteristic curve describes the relationship between gravimetric water content and soil suction. We measured the soil water characteristic parameters representing SWHC and SWA, which we derived from soil water characteristic curves, in the 0-50 cm soil layer at sites representing three land use types in the Ziwuling forest region, located in the central part of the Loess Plateau, China. Our results showed that the SWHC was higher at the woodland site than the grassland and shrubland, and there was no significant difference between the latter two sites, the trend of SWA was similar to the SWHC. From grassland to woodland, the soil physical properties in the 0-50 cm soil layer partially improved, BD was significantly higher at the grassland site than at the shrubland and woodland sites, the clay and silt contents decreased significantly from grassland to shrubland to woodland and sand content showed the opposite pattern, the soil porosity was higher in the shrubland and woodland than that in the grassland, the soil physical properties across the 0-50 cm soil layer improved. Soil texture, porosity and bulk density were the key factors affecting SWHC and SWA. The results of this study provide insight into the effects of vegetation restoration on local hydrological resources and can inform soil water management and land use planning on the Chinese Loess Plateau.
RESUMEN
The concentrations of PBDEs, NBFRs, DP, PCBs, and OCPs were analyzed in water samples of the Yellow River Basin (YRB) and in soil and maize samples collected from basin irrigation areas to understand the status of POPs and associated health risks. The results showed: (1) the congeners of eight PBDEs and seven NBFRs were detected in 10 tributaries, with average concentrations of 1575 and 4288 pg. L-1. Thirty-three congeners of PCBs were detected, and the average concentration of PCB was 232 pg. L-1. Five HCHs were the primary congeners among twenty-three congeners of OCPs in the ten tributaries, accounting for 79% of the total. The average concentration of OCPs was 8287 pg. L-1. (2) Similar congeners of HFRs, PCBs, and OCPs were found in the trunk water. The ranking based on the HFR concentration was upstream > downstream > midstream, and that of the PCB and OCP concentration was downstream > upstream > midstream. (3) PCBs and OCPs in the trunk water of the YRB and in the soil and maize irrigated with river water pose potential carcinogenic and non-carcinogenic risks. The results indicate considerable organic pollution in the YRB, suggesting that national emission standards for POPs should be implemented soon.
Asunto(s)
Hidrocarburos Clorados , Plaguicidas , Bifenilos Policlorados , Contaminantes Químicos del Agua , China , Monitoreo del Ambiente , Hidrocarburos Clorados/análisis , Plaguicidas/análisis , Bifenilos Policlorados/análisis , Medición de Riesgo , Contaminantes Químicos del Agua/análisisRESUMEN
Microbiome plays an important role in evaluating soil quality for sustainable agriculture. However, the suitability of biological indicators in reclaimed farmland is less understood. Using high-throughput sequencing, we evaluated the soil microbial community of the newly created farmland (NF) after reclamation with two local high-yield farmlands (slope farmland (SF), check-dam farmland (CF)) on the Loess Plateau. Soil enzyme activities and the amount of culturable microorganism were also quantified to assess the soil quality. Results showed that the microbial diversity, cultural microorganism abundance, and soil enzyme activities indicated poor soil quality in NF. The dominant bacterial phyla were Proteobacteria, Bacteroidetes, Acidobacteria, and Cyanobacteria. The abundance of Acidobacteria was significantly lower in NF (13.31%) than in SF (27.25%) and CF (27.91%). Soil enzyme activities had a significant correlation with the abundance of culturable microorganism, Proteobacteria and Bacteroidetes, soil organic matter, total nitrogen, cation exchange capacity, and pH, suggesting that soil microbes have driven the formation of nutrition and further mediated crop growth. Therefore, the application of bacterial fertilizers could be a potential way to improve the soil quality of reclaimed farmland for crop growth.