Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Cell ; 186(15): 3208-3226.e27, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37379838

RESUMEN

N7-methylguanosine (m7G) modification, routinely occurring at mRNA 5' cap or within tRNAs/rRNAs, also exists internally in messenger RNAs (mRNAs). Although m7G-cap is essential for pre-mRNA processing and protein synthesis, the exact role of mRNA internal m7G modification remains elusive. Here, we report that mRNA internal m7G is selectively recognized by Quaking proteins (QKIs). By transcriptome-wide profiling/mapping of internal m7G methylome and QKI-binding sites, we identified more than 1,000 high-confidence m7G-modified and QKI-bound mRNA targets with a conserved "GANGAN (N = A/C/U/G)" motif. Strikingly, QKI7 interacts (via C terminus) with the stress granule (SG) core protein G3BP1 and shuttles internal m7G-modified transcripts into SGs to regulate mRNA stability and translation under stress conditions. Specifically, QKI7 attenuates the translation efficiency of essential genes in Hippo signaling pathways to sensitize cancer cells to chemotherapy. Collectively, we characterized QKIs as mRNA internal m7G-binding proteins that modulate target mRNA metabolism and cellular drug resistance.


Asunto(s)
ADN Helicasas , ARN Helicasas , ADN Helicasas/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/genética , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , ARN Helicasas/metabolismo , Gránulos de Estrés , Proteínas de Unión a Poli-ADP-Ribosa/genética , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Proteínas de Unión al GTP/metabolismo , ARN Mensajero/metabolismo , Gránulos Citoplasmáticos/metabolismo
2.
Trends Genet ; 38(5): 454-467, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34991904

RESUMEN

N6-methyladenine (6mA) is the most prevalent DNA modification in prokaryotes. However, its presence and significance in eukaryotes remain elusive. Recently, with methodology advances in detection and sequencing of 6mA in eukaryotes, 6mA is back in the spotlight. Although multiple studies have reported that 6mA is an important epigenetic mark in eukaryotes and plays a regulatory role in DNA transcription, transposon activation, stress response, and other bioprocesses, there are some discrepancies in the current literature. We review the recent advances in 6mA research in eukaryotes, especially in mammals. In particular, we describe the abundance/distribution of 6mA, its potential role in regulating gene expression, identified regulators, and pathological roles in human diseases, especially in cancer. The limitations faced by the field and future perspectives in 6mA research are also discussed.


Asunto(s)
Adenina , Metilación de ADN , Adenina/metabolismo , Animales , ADN/genética , Desoxiadenosinas , Eucariontes/genética , Humanos , Mamíferos/genética
3.
Clin Transl Med ; 14(6): e1666, 2024 Jun.
Artículo en Italiano | MEDLINE | ID: mdl-38880983

RESUMEN

Dysregulated RNA modifications, stemming from the aberrant expression and/or malfunction of RNA modification regulators operating through various pathways, play pivotal roles in driving the progression of haematological malignancies. Among RNA modifications, N6-methyladenosine (m6A) RNA modification, the most abundant internal mRNA modification, stands out as the most extensively studied modification. This prominence underscores the crucial role of the layer of epitranscriptomic regulation in controlling haematopoietic cell fate and therefore the development of haematological malignancies. Additionally, other RNA modifications (non-m6A RNA modifications) have gained increasing attention for their essential roles in haematological malignancies. Although the roles of the m6A modification machinery in haematopoietic malignancies have been well reviewed thus far, such reviews are lacking for non-m6A RNA modifications. In this review, we mainly focus on the roles and implications of non-m6A RNA modifications, including N4-acetylcytidine, pseudouridylation, 5-methylcytosine, adenosine to inosine editing, 2'-O-methylation, N1-methyladenosine and N7-methylguanosine in haematopoietic malignancies. We summarise the regulatory enzymes and cellular functions of non-m6A RNA modifications, followed by the discussions of the recent studies on the biological roles and underlying mechanisms of non-m6A RNA modifications in haematological malignancies. We also highlight the potential of therapeutically targeting dysregulated non-m6A modifiers in blood cancer.


Asunto(s)
Neoplasias Hematológicas , Humanos , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/metabolismo , Neoplasias Hematológicas/patología , Procesamiento Postranscripcional del ARN/genética , ARN/genética , ARN/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/genética
4.
Cell Rep Med ; 5(7): 101645, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39019012

RESUMEN

Fms-like tyrosine kinase 3 (FLT3) mutations, present in over 30% of acute myeloid leukemia (AML) cases and dominated by FLT3-internal tandem duplication (FLT3-ITD), are associated with poor outcomes in patients with AML. While tyrosine kinase inhibitors (TKIs; e.g., gilteritinib) are effective, they face challenges such as drug resistance, relapse, and high costs. Here, we report that metformin, a cheap, safe, and widely used anti-diabetic agent, exhibits a striking synergistic effect with gilteritinib in treating FLT3-ITD AML. Metformin significantly sensitizes FLT3-ITD AML cells (including TKI-resistant ones) to gilteritinib. Metformin plus gilteritinib (low dose) dramatically suppresses leukemia progression and prolongs survival in FLT3-ITD AML mouse models. Mechanistically, the combinational treatment cooperatively suppresses polo-like kinase 1 (PLK1) expression and phosphorylation of FLT3/STAT5/ERK/mTOR. Clinical analysis also shows improved survival rates in patients with FLT3-ITD AML taking metformin. Thus, the metformin/gilteritinib combination represents a promising and cost-effective treatment for patients with FLT3-mutated AML, particularly for those with low income/affordability.


Asunto(s)
Compuestos de Anilina , Proteínas de Ciclo Celular , Sinergismo Farmacológico , Leucemia Mieloide Aguda , Metformina , Mutación , Quinasa Tipo Polo 1 , Proteínas Serina-Treonina Quinasas , Proteínas Proto-Oncogénicas , Pirazinas , Transducción de Señal , Tirosina Quinasa 3 Similar a fms , Metformina/farmacología , Metformina/uso terapéutico , Tirosina Quinasa 3 Similar a fms/genética , Tirosina Quinasa 3 Similar a fms/metabolismo , Tirosina Quinasa 3 Similar a fms/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Humanos , Animales , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Transducción de Señal/efectos de los fármacos , Pirazinas/farmacología , Pirazinas/uso terapéutico , Compuestos de Anilina/farmacología , Compuestos de Anilina/uso terapéutico , Ratones , Mutación/genética , Línea Celular Tumoral , Tiofenos/farmacología , Tiofenos/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Factor de Transcripción STAT5/metabolismo , Factor de Transcripción STAT5/genética , Femenino , Ensayos Antitumor por Modelo de Xenoinjerto , Masculino , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Serina-Treonina Quinasas TOR/metabolismo
5.
Genes Dis ; 11(1): 382-396, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37588203

RESUMEN

As the most common internal modification of mRNA, N6-methyladenosine (m6A) and its regulators modulate gene expression and play critical roles in various biological and pathological processes including tumorigenesis. It was reported previously that m6A methyltransferase (writer), methyltransferase-like 3 (METTL3) adds m6A in primary microRNAs (pri-miRNAs) and facilitates its processing into precursor miRNAs (pre-miRNAs). However, it is unknown whether m6A modification also plays a role in the maturation process of pre-miRNAs and (if so) whether such a function contributes to tumorigenesis. Here, we found that YTHDF2 is aberrantly overexpressed in acute myeloid leukemia (AML) patients, especially in relapsed patients, and plays an oncogenic role in AML. Moreover, YTHDF2 promotes expression of miR-126-3p (also known as miR-126, as it is the main product of precursor miR-126 (pre-miR-126)), a miRNA that was reported as an oncomiRNA in AML, through facilitating the processing of pre-miR-126 into mature miR-126. Mechanistically, YTHDF2 recognizes m6A modification in pre-miR-126 and recruits AGO2, a regulator of pre-miRNA processing, to promote the maturation of pre-miR-126. YTHDF2 positively and negatively correlates with miR-126 and miR-126's downstream target genes, respectively, in AML patients, and forced expression of miR-126 could largely rescue YTHDF2/Ythdf2 depletion-mediated suppression on AML cell growth/proliferation and leukemogenesis, indicating that miR-126 is a functionally important target of YTHDF2 in AML. Overall, our studies not only reveal a previously unappreciated YTHDF2/miR-126 axis in AML and highlight the therapeutic potential of targeting this axis for AML treatment, but also suggest that m6A plays a role in pre-miRNA processing that contributes to tumorigenesis.

6.
J Hematol Oncol ; 17(1): 7, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302992

RESUMEN

BACKGROUND: While liver cancer stem cells (CSCs) play a crucial role in hepatocellular carcinoma (HCC) initiation, progression, recurrence, and treatment resistance, the mechanism underlying liver CSC self-renewal remains elusive. We aim to characterize the role of Methyltransferase 16 (METTL16), a recently identified RNA N6-methyladenosine (m6A) methyltransferase, in HCC development/maintenance, CSC stemness, as well as normal hepatogenesis. METHODS: Liver-specific Mettl16 conditional KO (cKO) mice were generated to assess its role in HCC pathogenesis and normal hepatogenesis. Hydrodynamic tail-vein injection (HDTVi)-induced de novo hepatocarcinogenesis and xenograft models were utilized to determine the role of METTL16 in HCC initiation and progression. A limiting dilution assay was utilized to evaluate CSC frequency. Functionally essential targets were revealed via integrative analysis of multi-omics data, including RNA-seq, RNA immunoprecipitation (RIP)-seq, and ribosome profiling. RESULTS: METTL16 is highly expressed in liver CSCs and its depletion dramatically decreased CSC frequency in vitro and in vivo. Mettl16 KO significantly attenuated HCC initiation and progression, yet only slightly influenced normal hepatogenesis. Mechanistic studies, including high-throughput sequencing, unveiled METTL16 as a key regulator of ribosomal RNA (rRNA) maturation and mRNA translation and identified eukaryotic translation initiation factor 3 subunit a (eIF3a) transcript as a bona-fide target of METTL16 in HCC. In addition, the functionally essential regions of METTL16 were revealed by CRISPR gene tiling scan, which will pave the way for the development of potential inhibitor(s). CONCLUSIONS: Our findings highlight the crucial oncogenic role of METTL16 in promoting HCC pathogenesis and enhancing liver CSC self-renewal through augmenting mRNA translation efficiency.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Células Madre Neoplásicas , Animales , Humanos , Ratones , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Autorrenovación de las Células/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Metiltransferasas/genética , Metiltransferasas/metabolismo , Células Madre Neoplásicas/patología , Biosíntesis de Proteínas , Ribosomas/metabolismo , ARN
7.
Front Public Health ; 11: 1149221, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37033053

RESUMEN

Introduction: The COVID Stress Scales (CSS) assess six domains of COVID-19-related stress, including (a) COVID danger, (b) COVID socioeconomic consequences, (c) COVID xenophobia, (d) COVID contamination, (e) COVID traumatic stress symptoms, and (f) COVID compulsive checking. Although the CSS have been validated in various cultural contexts, their psychometric properties in Hong Kong have not been examined. This study endeavors to validate the traditional Chinese version of the 36-item CSS (CSS-36) and the 18-item CSS (CSS-18) in Hong Kong. Method: Participants were 521 Hong Kong undergraduate students (61% female) aged from 18 to 26 years (M = 20.65, SD = 1.56). An online questionnaire was used for data collection. Results: The results of confirmatory factor analyses supported a six-factor structure for both the CSS-36 and the CSS-18. Multiple-group confirmatory factor analyses established the gender invariance of the six-factor model for both the CSS-36 and the CSS-18. The CSS-36 and the CSS-18 exhibited good internal consistency reliability and concurrent validity with fear of COVID-19 and negative emotional states. Discussion: The findings offer evidence for the psychometric properties of the traditional Chinese version of the CSS-36 and the CSS-18 in the Hong Kong context.


Asunto(s)
COVID-19 , Humanos , Femenino , Adolescente , Adulto Joven , Adulto , Masculino , Hong Kong/epidemiología , Psicometría , Reproducibilidad de los Resultados , COVID-19/diagnóstico , COVID-19/epidemiología , Encuestas y Cuestionarios
8.
Nat Cell Biol ; 25(9): 1359-1368, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37640841

RESUMEN

N6-methyladenosine (m6A) methylation can be deposited on chromatin-associated RNAs (caRNAs) by the RNA methyltransferase complex (MTC) to regulate chromatin state and transcription. However, the mechanism by which MTC is recruited to distinct genomic loci remains elusive. Here we identify RBFOX2, a well-studied RNA-binding protein, as a chromatin factor that preferentially recognizes m6A on caRNAs. RBFOX2 can recruit RBM15, an MTC component, to facilitate methylation of promoter-associated RNAs. RBM15 also physically interacts with YTHDC1 and recruits polycomb repressive complex 2 (PRC2) to the RBFOX2-bound loci for chromatin silencing and transcription suppression. Furthermore, we found that this RBFOX2/m6A/RBM15/YTHDC1/PRC2 axis plays a critical role in myeloid leukaemia. Downregulation of RBFOX2 notably inhibits survival/proliferation of acute myeloid leukaemia cells and promotes their myeloid differentiation. RBFOX2 is also required for self-renewal of leukaemia stem/initiation cells and acute myeloid leukaemia maintenance. Our study presents a pathway of m6A MTC recruitment and m6A deposition on caRNAs, resulting in locus-selective chromatin regulation, which has potential therapeutic implications in leukaemia.


Asunto(s)
Leucemia Mieloide , Humanos , Diferenciación Celular/genética , Cromatina/genética , ARN , Factores de Empalme de ARN/genética , Proteínas Represoras/genética
9.
Cell Stem Cell ; 30(1): 52-68.e13, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36608679

RESUMEN

N6-methyladenosine (m6A), the most prevalent internal modification in mammalian mRNAs, is involved in many pathological processes. METTL16 is a recently identified m6A methyltransferase. However, its role in leukemia has yet to be investigated. Here, we show that METTL16 is a highly essential gene for the survival of acute myeloid leukemia (AML) cells via CRISPR-Cas9 screening and experimental validation. METTL16 is aberrantly overexpressed in human AML cells, especially in leukemia stem cells (LSCs) and leukemia-initiating cells (LICs). Genetic depletion of METTL16 dramatically suppresses AML initiation/development and maintenance and significantly attenuates LSC/LIC self-renewal, while moderately influencing normal hematopoiesis in mice. Mechanistically, METTL16 exerts its oncogenic role by promoting expression of branched-chain amino acid (BCAA) transaminase 1 (BCAT1) and BCAT2 in an m6A-dependent manner and reprogramming BCAA metabolism in AML. Collectively, our results characterize the METTL16/m6A/BCAT1-2/BCAA axis in leukemogenesis and highlight the essential role of METTL16-mediated m6A epitranscriptome and BCAA metabolism reprograming in leukemogenesis and LSC/LIC maintenance.


Asunto(s)
Autorrenovación de las Células , Leucemia Mieloide Aguda , Ratones , Humanos , Animales , Leucemia Mieloide Aguda/patología , Carcinogénesis/patología , ARN Mensajero/metabolismo , Aminoácidos de Cadena Ramificada/genética , Aminoácidos de Cadena Ramificada/metabolismo , Células Madre Neoplásicas/patología , Mamíferos/metabolismo , Transaminasas/genética , Transaminasas/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo
10.
Cell Stem Cell ; 30(8): 1072-1090.e10, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37541212

RESUMEN

TET2 is recurrently mutated in acute myeloid leukemia (AML) and its deficiency promotes leukemogenesis (driven by aggressive oncogenic mutations) and enhances leukemia stem cell (LSC) self-renewal. However, the underlying cellular/molecular mechanisms have yet to be fully understood. Here, we show that Tet2 deficiency significantly facilitates leukemogenesis in various AML models (mediated by aggressive or less aggressive mutations) through promoting homing of LSCs into bone marrow (BM) niche to increase their self-renewal/proliferation. TET2 deficiency in AML blast cells increases expression of Tetraspanin 13 (TSPAN13) and thereby activates the CXCR4/CXCL12 signaling, leading to increased homing/migration of LSCs into BM niche. Mechanistically, TET2 deficiency results in the accumulation of methyl-5-cytosine (m5C) modification in TSPAN13 mRNA; YBX1 specifically recognizes the m5C modification and increases the stability and expression of TSPAN13 transcripts. Collectively, our studies reveal the functional importance of TET2 in leukemogenesis, leukemic blast cell migration/homing, and LSC self-renewal as an mRNA m5C demethylase.


Asunto(s)
Dioxigenasas , Leucemia Mieloide Aguda , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Médula Ósea/metabolismo , Carcinogénesis/metabolismo , Células Madre/metabolismo , Desmetilación , Células Madre Neoplásicas/metabolismo , Tetraspaninas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dioxigenasas/metabolismo
11.
Sci Transl Med ; 15(689): eabq8513, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36989375

RESUMEN

Although the overall survival rate of B cell acute lymphoblastic leukemia (B-ALL) in childhood is more than 80%, it is merely 30% in refractory/relapsed and adult patients with B-ALL. This demonstrates a need for improved therapy targeting this subgroup of B-ALL. Here, we show that the ten-eleven translocation 1 (TET1) protein, a dioxygenase involved in DNA demethylation, is overexpressed and plays a crucial oncogenic role independent of its catalytic activity in B-ALL. Consistent with its oncogenic role in B-ALL, overexpression of TET1 alone in normal precursor B cells is sufficient to transform the cells and cause B-ALL in mice within 3 to 4 months. We found that TET1 protein is stabilized and overexpressed because of its phosphorylation mediated by protein kinase C epsilon (PRKCE) and ATM serine/threonine kinase (ATM), which are also overexpressed in B-ALL. Mechanistically, TET1 recruits STAT5B to the promoters of CD72 and JCHAIN and promotes their transcription, which in turn promotes B-ALL development. Destabilization of TET1 protein by treatment with PKC or ATM inhibitors (staurosporine or AZD0156; both tested in clinical trials), or by pharmacological targeting of STAT5B, greatly decreases B-ALL cell viability and inhibits B-ALL progression in vitro and in vivo. The combination of AZD0156 with staurosporine or vincristine exhibits a synergistic effect on inhibition of refractory/relapsed B-ALL cell survival and leukemia progression in PDX models. Collectively, our study reveals an oncogenic role of the phosphorylated TET1 protein in B-ALL independent of its catalytic activity and highlights the therapeutic potential of targeting TET1 signaling for the treatment of refractory/relapsed B-ALL.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras , Proteínas Proto-Oncogénicas , Animales , Ratones , Proteínas Proto-Oncogénicas/metabolismo , Fosforilación , Estaurosporina , Transducción de Señal , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Proteínas de Unión al ADN/metabolismo
12.
Theranostics ; 12(13): 5727-5743, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35966596

RESUMEN

RNA N6 -methyladenosine (m6A) modification and its regulators fine tune gene expression and contribute to tumorigenesis. This study aims to uncover the essential role and the underlying molecular mechanism(s) of the m6A reader YTHDC1 in promoting triple negative breast cancer (TNBC) metastasis. METHODS: In vitro and in vivo models were employed to determine the pathological function of YTHDC1 in TNBC metastasis. To identify bona fide YTHDC1 target RNAs, we conducted RNA-seq, m6A-seq, and RIP-seq, followed by integrative data analysis and validation assays. RESULTS: By analyzing The Cancer Genome Atlas (TCGA) dataset, we found that elevated expression of YTHDC1 is positively correlated with poor prognosis in breast cancer patients. Using a mammary fat pad mouse model of TNBC, YTHDC1 significantly promoted lung metastasis of TNBC cells. Through multiple transcriptome-wide sequencing and integrative data analysis, we revealed dysregulation of metastasis-related pathways following YTHDC1 depletion and identified SMAD3 as a bona fide YTHDC1 target RNA. Depletion of YTHDC1 caused nuclear retention of SMAD3 mRNA, leading to lower SMAD3 protein levels. Loss of YTHDC1 led to impaired TGF-ß-induced gene expression, leading to inhibition of epithelial-mesenchymal transition (EMT) and suppressed TNBC cell migration and invasion. SMAD3 overexpression was able to restore the response to TGF-ß in YTHDC1 depleted TNBC cells. Furthermore, we demonstrated that the oncogenic role of YTHDC1 is mediated through its recognition of m6A as m6A-binding defective mutants of YTHDC1 were unable to rescue the impaired cell migration and invasion of YTHDC1 knockout TNBC cells. CONCLUSIONS: We show that YTHDC1 plays a critical oncogenic role in TNBC metastasis through promoting the nuclear export and expression of SMAD3 to augment the TGF-ß signaling cascade. Overall, our study demonstrates that YTHDC1 is vital for TNBC progression by enhancing TNBC cell survival and TGF-ß-mediated EMT via SMAD3 to enable the formation of distant metastasis and highlights the therapeutic potential of targeting the YTHDC1/m6A/SMAD3 axis for TNBC treatment.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Animales , Movimiento Celular/genética , Transición Epitelial-Mesenquimal/genética , Humanos , Ratones , Proteínas del Tejido Nervioso/metabolismo , ARN , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Neoplasias de la Mama Triple Negativas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA