Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; 20(16): e2307027, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38018336

RESUMEN

Fast charging lithium (Li)-ion batteries are intensively pursued for next-generation energy storage devices, whose electrochemical performance is largely determined by their constituent electrode materials. While nanosizing of electrode materials enhances high-rate capability in academic research, it presents practical limitations like volumetric packing density and high synthetic cost. As an alternative to nanosizing, microscale electrode materials cannot only effectively overcome the limitations of the nanosizing strategy but also satisfy the requirement of fast-charging batteries. Therefore, this review summarizes the new emerging microscale electrode materials for fast charging from the commercialization perspective. First, the fundamental theory of electronic/ionic motion in both individual active particles and the whole electrode is proposed. Then, based on these theories, the corresponding optimization strategies are summarized toward fast-charging microscale electrode materials. In addition, advanced functional design to tackle the mechanical degradation problems related to next generation high capacity alloy- and conversion-type electrode materials (Li, S, Si et al.) for achieving fast charging and stable cycling batteries. Finally, general conclusions and the future perspective on the potential research directions of microscale electrode materials are proposed. It is anticipated that this review will provide the basic guidelines for both fundamental research and practical applications of fast-charging batteries.

2.
Anim Genet ; 55(1): 66-78, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37881102

RESUMEN

Our previous studies showed that SYISL is a negative regulator of muscle growth and regeneration in mice, pigs and humans. SYISL knockout resulted in an increase in the density of muscle fibers and muscle growth. However, it is unclear whether there are natural mutations in pig SYNPO2 intron sense-overlapping lncRNA (pSYISL) that affect the expression of pSYISL and muscle growth traits. In this study, three SNPs in exons and six SNPs within the promoter of pSYISL were identified. Association analysis showed that the two SNPs in exons are significantly associated with loin muscle area (p < 0.05); the six SNPs in the promoter that show complete linkage are significantly associated with live backfat thickness and live loin muscle area in American Large White pigs. Bioinformatics and luciferase reporter assays as well as in vitro binding experiments indicated that the mutation of SNP rs702045770 (g.539G>A) leads to the loss of YY1 binding to the promoter, thus affecting the expression level of pSYISL, and we found that Jiangshan Black pigs with genotype GG have a higher expression level of pSYISL than genotype AA individuals, but the muscle fiber density was significantly lower than in genotype AA individuals. Furthermore, the association analysis showed that the carcass backfat thickness of genotype GG of SNP rs702045770 was significantly higher than that of other genotypes in (Pietrain × Duroc) × (Landrace × Yorkshire) crossbred pigs (p < 0.05). The glycolytic potential of genotype GG was significantly higher than that of other genotypes (p < 0.05). These results provide novel insight into the identification of functional SNPs in non-coding genomic regions.


Asunto(s)
Fibras Musculares Esqueléticas , Polimorfismo de Nucleótido Simple , Humanos , Porcinos , Animales , Ratones , Fenotipo , Genotipo , Regiones Promotoras Genéticas
3.
Sensors (Basel) ; 24(10)2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38793907

RESUMEN

(1) Background: This study evaluates the effectiveness of low-frequency repetitive transcranial magnetic stimulation (LF-rTMS) in improving gait in post-stroke hemiplegic patients, using wearable sensor technology for objective gait analysis. (2) Methods: A total of 72 stroke patients were randomized into control, sham stimulation, and LF-rTMS groups, with all receiving standard medical treatment. The LF-rTMS group underwent stimulation on the unaffected hemisphere for 6 weeks. Key metrics including the Fugl-Meyer Assessment Lower Extremity (FMA-LE), Berg Balance Scale (BBS), Modified Barthel Index (MBI), and gait parameters were measured before and after treatment. (3) Results: The LF-rTMS group showed significant improvements in the FMA-LE, BBS, MBI, and various gait parameters compared to the control and sham groups (p < 0.05). Specifically, the FMA-LE scores improved by an average of 5 points (from 15 ± 3 to 20 ± 2), the BBS scores increased by 8 points (from 35 ± 5 to 43 ± 4), the MBI scores rose by 10 points (from 50 ± 8 to 60 ± 7), and notable enhancements in gait parameters were observed: the gait cycle time was reduced from 2.05 ± 0.51 s to 1.02 ± 0.11 s, the stride length increased from 0.56 ± 0.04 m to 0.97 ± 0.08 m, and the walking speed improved from 35.95 ± 7.14 cm/s to 75.03 ± 11.36 cm/s (all p < 0.001). No adverse events were reported. The control and sham groups exhibited improvements but were not as significant. (4) Conclusions: LF-rTMS on the unaffected hemisphere significantly enhances lower-limb function, balance, and daily living activities in subacute stroke patients, with the gait parameters showing a notable improvement. Wearable sensor technology proves effective in providing detailed, objective gait analysis, offering valuable insights for clinical applications in stroke rehabilitation.


Asunto(s)
Marcha , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Estimulación Magnética Transcraneal , Dispositivos Electrónicos Vestibles , Humanos , Masculino , Femenino , Estimulación Magnética Transcraneal/métodos , Estimulación Magnética Transcraneal/instrumentación , Persona de Mediana Edad , Accidente Cerebrovascular/fisiopatología , Accidente Cerebrovascular/terapia , Marcha/fisiología , Anciano , Rehabilitación de Accidente Cerebrovascular/instrumentación , Rehabilitación de Accidente Cerebrovascular/métodos , Análisis de la Marcha/métodos
4.
Mol Pharm ; 20(11): 5668-5681, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37856874

RESUMEN

Despite significant progress in vaccine development, especially in the fight against viral infections, many unexplored areas remain including innovative adjuvants, diversification of vaccine formulations, and research into the coordination of humoral and cellular immune mechanisms induced by vaccines. Effective coordination of humoral and cellular immunity is crucial in vaccine design. In this study, we used the spike protein (S) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or ovalbumin (OVA) as antigen models and CpG DNA (an activator of toll-like receptor 9, TLR9) as an adjuvant to prepare a multitargeted liposome (LIPO) vaccine. Once equipped with the ability to target lymph nodes (LN) and the endoplasmic reticulum (ER), the LIPO vaccine significantly enhances the cross-presentation ability of antigen-presenting cells (APCs) for exogenous antigens through the ER-associated protein degradation (ERSD) mechanism. Additionally, the vaccine could fine-tune the efficiency of ER-targeted antigen delivery, actively regulating the presentation of exogenous antigen proteins via the major histocompatibility complex (MHC-I) or MHC-II pathways. Immune data from in vivo mouse experiments indicated that the LIPO vaccine effectively stimulated both humoral and cellular immune responses. Furthermore, it triggers immune protection by establishing a robust and persistent germinal center. Moreover, the multifunctionality of this LIPO vaccine extends to the fields of cancer, viruses, and bacteria, providing insights for skilled vaccine design and improvement.


Asunto(s)
Inmunidad Humoral , Vacunas , Animales , Ratones , Liposomas/farmacología , Antígenos , Inmunidad Celular , Adyuvantes Inmunológicos
5.
Int J Mol Sci ; 24(5)2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36901791

RESUMEN

Melanin is a biological pigment formed by indoles and phenolic compounds. It is widely found in living organisms and has a variety of unique properties. Due to its diverse characteristics and good biocompatibility, melanin has become the focus in the fields of biomedicine, agriculture, the food industry, etc. However, due to the wide range of melanin sources, complex polymerization properties, and low solubility of specific solvents, the specific macromolecular structure and polymerization mechanism of melanin remain unclear, which significantly limits the further study and application of melanin. Its synthesis and degradation pathways are also controversial. In addition, new properties and applications of melanin are constantly being discovered. In this review, we focus on the recent advances in the research of melanin in all aspects. Firstly, the classification, source, and degradation of melanin are summarized. Secondly, a detailed description of the structure, characterization, and properties of melanin is followed. The novel biological activity of melanin and its application is described at the end.


Asunto(s)
Indoles , Melaninas , Melaninas/metabolismo , Solventes , Solubilidad
6.
Small ; 18(19): e2107491, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35195340

RESUMEN

Real-time observation of the electrochemical mechanistic behavior at various scales offers new insightful information to improve the performance of lithium-ion batteries (LIBs). As complementary to the X-ray-based techniques and electron microscopy-based methodologies, neutron scattering provides additional and unique advantages in materials research, owing to the different interactions with atomic nuclei. The non-Z-dependent elemental contrast, in addition to the high penetration ability and weak interaction with matters, makes neutron scattering an advanced probing tool for the in operando mechanistic studies of LIBs. The neutron-based techniques, such as neutron powder diffraction, small-angle neutron scattering, neutron reflectometry, and neutron imaging, have their distinct functionalities and characteristics regimes. These result in their scopes of application distributed in different battery components and covering the full spectrum of all aspects of LIBs. The review surveys the state-of-the-art developments of real-time investigation of the dynamic evolutions of electrochemically active compounds at various scales using neutron techniques. The atomic-scale, the mesoscopic-scale, and at the macroscopic-scale within LIBs during electrochemical functioning provide insightful information to battery researchers. The authors envision that this review will popularize the applications of neutron-based techniques in LIB studies and furnish important inspirations to battery researchers for the rational design of the new generation of LIBs.

7.
Small ; 17(43): e2101576, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34155817

RESUMEN

Potassium-ion batteries (PIBs) are recognized as promising alternatives for lithium-ion batteries as the next-generation energy storage systems. However, the larger radius of K+ hinders the K+ insertion into the conventional carbon electrode and results in sluggish potassiation kinetics and poor cycling stability. Here, nitrogen and fluorine dual doping of soft carbon nanotubes (NFSC) anode are synthesized in one pot, achieving extraordinary electrochemical performance for PIBs. It is demonstrated that NFSC with a doping dose of 5.6 at% nitrogen and 1.3 at% fluorine together exhibits the highest reversible capacity of 238 mAh g-1 at 0.2 A g-1 and cycling stability of 186 mAh g-1 after 1000 cycles at 1 A g-1 . The extraordinary electrochemical performance can be attributed to the hollow structure, expanded interlayer distance, nitrogen and fluorine dual doping, and the binding ability of abundant defect sites. Moreover, density functional theory shows that the extra fluorine modification can dramatically enhance the conventional nitrogen doping effect and reduces the formation energy which makes a great contribution to the improvement of electrical conduction and K-ions insert. This work may promote the development of low-cost and sustainable carbon-based materials for PIBs and other advanced energy storage devices.

8.
Sens Actuators B Chem ; 348: 130706, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34493903

RESUMEN

The lateral flow immunoassay (LFIA) has played a crucial role in early diagnosis during the current COVID-19 pandemic owing to its simplicity, speed and affordability for coronavirus antibody detection. However, the sensitivity of the commercially available LFIAs needs to be improved to better prevent the spread of the infection. Here, we developed an ultra-sensitive surface-enhanced Raman scattering-based lateral flow immunoassay (SERS-based LFIA) strip for simultaneous detection of anti-SARS-CoV-2 IgM and IgG by using gap-enhanced Raman nanotags (GERTs). The GERTs with a 1 nm gap between the core and shell were used to produce the "hot spots", which provided about 30-fold enhancement as compared to conventional nanotags. The COVID-19 recombinant antigens were conjugated on GERTs surfaces and replaced the traditional colloidal gold for the Raman sensitive detection of human IgM and IgG. The LODs of IgM and IgG were found to be 1 ng/mL and 0.1 ng/mL (about 100 times decrease was observed as compared to commercially available LFIA strips), respectively. Moreover, under the condition of common nano-surface antigen, precise SERS signals proved the unreliability of quantitation because of the interference effect of IgM on IgG.

9.
Brain Behav Immun ; 67: 118-129, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28823624

RESUMEN

Mechanical brain injury (MBI) is a common neurotrosis disorder of the central nervous system (CNS), which has a higher mortality and disability. In the case of MBI, neurons death leads to loss of nerve function. To date, there was no satisfactory way to restore neural deficits caused by MBI. Endogenous neural stem cells (NSCs) can proliferate, differentiate and migrate to the lesions after brain injury, to replace and repair the damaged neural cells in the subventricular zone (SVZ), hippocampus and the regions of brain injury. In the present study, we first prepared a mouse model of cortical stab wound brain injury. Using the immunohistochemical and hematoxylin-eosin (H&E) staining method, we demonstrated that osthole (Ost), a natural coumarin derivative, was capable of promoting the proliferation of endogenous NSCs and improving neuronal restoration. Then, using the Morris water maze (MWM) test, we revealed that Ost significantly improved the learning and memory function in the MBI mice, increased the number of neurons in the regions of brain injury, hippocampus DG and CA3 regions. Additionally, we found that Ost up-regulated the expression of self-renewal genes Notch 1 and Hes 1. However, when Notch activity was blocked by the γ-secretase inhibitor DAPT, the expression of Notch 1 and Hes 1 mRNA was down-regulated, augmentation of NICD and Hes 1 protein was ameliorated, the proliferation-inducing effect of Ost was abolished. These results suggested that the effects of Ost were at least in part mediated by activation of Notch signaling pathway. Our findings support that Ost is a potential drug for treating MBI due to its neuronal restoration.


Asunto(s)
Lesiones Encefálicas/metabolismo , Proliferación Celular/efectos de los fármacos , Cumarinas/administración & dosificación , Células-Madre Neurales/fisiología , Receptor Notch1/metabolismo , Factor de Transcripción HES-1/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Lesiones Encefálicas/complicaciones , Supervivencia Celular , Disfunción Cognitiva/complicaciones , Aprendizaje por Laberinto , Ratones Endogámicos C57BL , Células-Madre Neurales/efectos de los fármacos , ARN Mensajero/metabolismo , Transducción de Señal , Regulación hacia Arriba
11.
J Air Waste Manag Assoc ; 66(5): 499-507, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26853329

RESUMEN

UNLABELLED: This study examined physicochemical parameters to assess their effectiveness as stability and maturity indicators during the process of composting pig manure and fungus residue at different ratios. The results showed that composting mixtures with all ratios of pig manure to fungus residue maintained a temperature exceeding 50 °C for more than 10 days during composting and met the requirement for pathogen destruction. The treatment containing mainly pig manure showed higher nitrogen loss and a shorter thermophilic phase and maturity time than the treatment containing mainly fungus residue. The germination index (GI) values indicated that compost maturity was achieved in the final compost with initial ratios of pig manure to fungus residue of 9:1-7:3 (GIs of 101.4%, 91.2%, and 81.3%); the ratio of 6:4 did not reach compost maturity (GI of 63.8%) and had an inhibitory effect on seed germination. The results of this study suggest that a ratio of pig manure to fungus residue of approximately 8:2 can be considered suitable for the efficient and quality composting of pig manure and fungus residue. IMPLICATIONS: Co-composting of pig manure and edible fungi residue with appropriate proportion can effectively reduce the risk of environmental pollution caused by agricultural wastes, as well as achieve a safer and high-quality organic fertilizer, which can be used to improve physical and chemical properties of the soil, increase crop yields, and promote agricultural sustainable development. Therefore, technique of co-composting of pig manure and edible fungi residue has a wide prospect of application in practical production all over the world.


Asunto(s)
Hongos/aislamiento & purificación , Estiércol/análisis , Sus scrofa , Administración de Residuos , Animales , Temperatura
12.
FEMS Yeast Res ; 15(7)2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26323599

RESUMEN

The high-affinity calcium influx system (HACS) consisted of CaCch1, CaMid1 and CaEcm7 controls calcium influx into the cell in response to environmental stimuli. The plasma membrane protein CaRch1 is a negative regulator of calcium influx in Candida albicans. In this study, we show that deletion of any of the HACS components suppresses the calcium hypersensitivity of, and the elevated activation level of calcium/calcineurin signaling in, C. albicans cells lacking CaRCH1. In contrast, CaRCH1 is epistatic to the HACS system in the tolerance of antifungal drugs. In addition, cells lacking CaRCH1 are sensitive to tunicamycin, show a delay in in vitro filamentation and an altered colony surface morphology, and are attenuated in virulence in a mouse systemic model. Cells lacking CaCCH1 and CaMID1, but not CaECM7, are sensitive to tunicamycin. Deletion of CaRCH1 increases the tunicamycin sensitivity of cells lacking CaECM7 or CaMID1, but not CaCCH1. Furthermore, deletion of CaRCH1 suppresses the defect in hyphal development due to the deletion of CaCCH1 or CaECM7, and increases the virulence of cells lacking any of the HACS components. Therefore, CaRch1 genetically interacts with the HACS components in different fashions for these functions.


Asunto(s)
Canales de Calcio/metabolismo , Calcio/metabolismo , Candida albicans/fisiología , Regulación Fúngica de la Expresión Génica , Homeostasis , Estrés Fisiológico , alfa Carioferinas/metabolismo , Animales , Candida albicans/citología , Candida albicans/genética , Candida albicans/metabolismo , Candidiasis/microbiología , Candidiasis/patología , Modelos Animales de Enfermedad , Tolerancia a Medicamentos , Eliminación de Gen , Ratones , Virulencia
13.
J Colloid Interface Sci ; 661: 59-67, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38295703

RESUMEN

Potassium-ion batteries (PIBs) with high potassium abundance, low redox potential of K/K+ and similar energy storage mechanism to lithium-ion batteries are potential candidates for large-scale energy storage in the future. However, due to the large size of K+ (1.38 Å), PIBs exhibit poor kinetics in existing commercial graphite anode materials system. Additionally, they can degrade the material structure and induce significant volume effects, leading to material fragmentation and pulverization in the process of long cycling. It is not straightforward to achieve compatibility with existing potassium anode systems, which forces us to develop new high-performance, low-strain anode materials with outstanding structural stability. Hence, nitrogen doping low-strain and large diameter soft carbon microspheres (NDCS) anodes were successfully developed to meet the demands of high-performance PIBs. Due to its large diameter and low strain characteristics, the Coulomb efficiency is as high as 98.7 %, and the capacity retention is close to 70 % after 4000 cycles at a current density of 1 A/g. Furthermore, we employed advanced computed tomography (CT) techniques to enhance the comprehension of electrochemically driven reactions from the surface to the bulk. This work provides a promising and viable technical solution for exploring PIBs anode materials with low strain and long cycling capabilities to meet the requirements of various application scenarios.

14.
Front Neurosci ; 17: 1297887, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38075278

RESUMEN

Background: Transcutaneous auricular vagus nerve stimulation (taVNS) emerges as a promising neuromodulatory technique. However, taVNS uses left ear stimulation in stroke survivors with either left or right hemiparesis. Understanding its influence on the cortical responses is pivotal for optimizing post-stroke rehabilitation protocols. Objective: The primary objective of this study was to elucidate the influence of taVNS on cortical responses in stroke patients presenting with either left or right hemiparesis and to discern its potential ramifications for upper limb rehabilitative processes. Methods: We employed functional near-infrared spectroscopy (fNIRS) to ascertain patterns of cerebral activation in stroke patients as they engaged in a "block transfer" task. Additionally, the Lateralization Index (LI) was utilized to quantify the lateralization dynamics of cerebral functions. Results: In patients exhibiting left-side hemiplegia, there was a notable increase in activation within the pre-motor and supplementary motor cortex (PMC-SMC) of the unaffected hemisphere as well as in the left Broca area. Conversely, those with right-side hemiplegia displayed heightened activation in the affected primary somatosensory cortex (PSC) region following treatment.Significantly, taVNS markedly amplified cerebral activation, with a pronounced impact on the left motor cortical network across both cohorts. Intriguingly, the LI showcased consistency, suggesting a harmonized enhancement across both compromised and uncompromised cerebral regions. Conclusion: TaVNS can significantly bolster the activation within compromised cerebral territories, particularly within the left motor cortical domain, without destabilizing cerebral lateralization. TaVNS could play a pivotal role in enhancing upper limb functional restoration post-stroke through precise neuromodulatory and neuroplastic interventions.

15.
Int J Biol Macromol ; 246: 125678, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37414317

RESUMEN

Multifunctional drug delivery carriers have emerged as a promising cancer drug delivery strategy. Here, we developed a vitamin E succinate-chitosan-histidine (VCH) multi-program responsive drug carrier. The structure was characterized by FT-IR and 1H NMR spectrum, and the DLS and SEM results showed typical nanostructures. The drug loading content was 21.0 % and the corresponding encapsulation efficiency was 66.6 %. The UV-vis and fluorescence spectra demonstrated the existence of the π-π stacking interaction between DOX and VCH. Drug release experiments implied good pH sensitivity and sustained-release effect. The DOX/VCH nanoparticles could be efficiently taken up by HepG2 cancer cells and the tumor inhibition rate was up to 56.27 %. The DOX/VCH reduced the tumor volume and weight efficiently with a TIR of 45.81 %. The histological analysis results showed that DOX/VCH could effectively inhibit tumor growth and proliferation, and there was no damage to normal organs. VCH nanocarriers could combine the advantages of VES, histidine and chitosan to achieve pH sensitivity and P-gp inhibition, and effectively improve the drug solubility, targeting and lysosomal escape. Through the program response of different micro-environment, the newly developed polymeric micelles could successfully be utilized as a multi-program responsive nanocarrier system for the treatment of cancers.


Asunto(s)
Quitosano , Doxorrubicina , Doxorrubicina/farmacología , Doxorrubicina/química , alfa-Tocoferol/química , Quitosano/química , Histidina , Espectroscopía Infrarroja por Transformada de Fourier , Portadores de Fármacos/química , Micelas , Concentración de Iones de Hidrógeno
16.
ACS Nano ; 2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36622271

RESUMEN

Potassium (K) metal batteries have attracted great attention owing to their low price, widespread distribution, and comparable energy density. However, the arbitrary dendrite growth and side reactions of K metal are attributed to high environmental sensitivity, which is the Achilles' heel of its commercial development. Interface engineering between the current collector and K metal can tailor the surface properties for K-ion flux accommodation, dendrite growth inhibition, parasitic reaction suppression, etc. We have designed bifunctional layers via prepassivation, which can be recognized as an O/F-rich Sn-K alloy and a preformed solid-electrolyte interphase (SEI) layer. This Sn-K alloy with high substrate-related binding energy and Fermi level demonstrates strong potassiophilicity to homogeneously guide K metal deposition. Simultaneously, the preformed SEI layer can effectually eliminate side reactions initially, which is beneficial for the spatially and temporally KF-rich SEI layer on K metal. K metal deposition and protection can be implemented by the bifunctional layers, delivering great performance with a low nucleation overpotential of 0.066 V, a high average Coulombic efficiency of 99.1%, and durable stability of more than 900 h (1 mA cm-2, 1 mAh cm-2). Furthermore, the high-voltage platform, energy, and power densities of K metal batteries can be realized with a conventional Prussian blue analogue cathode. This work provides a paradigm to passivate fragile interfaces for alkali metal anodes.

17.
Front Neurosci ; 17: 1286267, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37920298

RESUMEN

This review provides an in-depth exploration of the mechanisms and applications of transcutaneous auricular vagus nerve stimulation (taVNS) in treating disorders of consciousness (DOC). Beginning with an exploration of the vagus nerve's role in modulating brain function and consciousness, we then delve into the neuroprotective potential of taVNS demonstrated in animal models. The subsequent sections assess the therapeutic impact of taVNS on human DOC, discussing the safety, tolerability, and various factors influencing the treatment response. Finally, the review identifies the current challenges in taVNS research and outlines future directions, emphasizing the need for large-scale trials, optimization of treatment parameters, and comprehensive investigation of taVNS's long-term effects and underlying mechanisms. This comprehensive overview positions taVNS as a promising and safe modality for DOC treatment, with a focus on understanding its intricate neurophysiological influence and optimizing its application in clinical settings.

18.
ACS Nano ; 17(22): 22508-22526, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37948096

RESUMEN

Macrophages are central to the pathogenesis of kidney disease and serve as an effective therapeutic target for kidney injury and fibrosis. Among them, M2-type macrophages have double-edged effects regarding anti-inflammatory effects and tissue repair. Depending on the polarization of the M2 subtypes (M2a or M2c) in the diseased microenvironment, they can either mediate normal tissue repair or drive tissue fibrosis. In renal fibrosis, M2a promotes disease progression through macrophage-to-myofibroblast transition (MMT) cells, while M2c possesses potent anti-inflammatory functions and promotes tissue repair, and is inhibited. The mechanisms underlying this differentiation are complex and are currently not well understood. Therefore, in this study, we first confirmed that M2a-derived MMT cells are responsible for the development of renal fibrosis and demonstrated that the intensity of TGF-ß signaling is a major factor determining the differential polarization of M2a and M2c. Under excessive TGF-ß stimulation, M2a undergoes a process known as MMT cells, whereas moderate TGF-ß stimulation favors the polarization of M2c phenotype macrophages. Based on these findings, we employed targeted nanotechnology to codeliver endoplasmic reticulum stress (ERS) inhibitor (Ceapin 7, Cea or C) and conventional glucocorticoids (Dexamethasone, Dex or D), precisely modulating the ATF6/TGF-ß/Smad3 signaling axis within macrophages. This approach calibrated the level of TGF-ß stimulation on macrophages, promoting their polarization toward the M2c phenotype and suppressing excessive MMT polarization. The study indicates that the combination of ERS inhibitor and a first-line anti-inflammatory drug holds promise as an effective therapeutic approach for renal fibrosis resolution.


Asunto(s)
Enfermedades Renales , Humanos , Enfermedades Renales/patología , Macrófagos , Factor de Crecimiento Transformador beta/farmacología , Fibrosis , Antiinflamatorios/farmacología
19.
J Phys Chem Lett ; 13(25): 5977-5985, 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35736130

RESUMEN

Uncontrollable growth of lithium (Li) dendrites and low Coulombic efficiency induce security hazards and a short cycling lifespan of Li metal batteries. In this study, well-aligned ZnO nanorods on a periodic three-dimensional (3D) copper mesh (CM) are modified as lithiophilic anchor points to regulate the electrodeposition behavior of Li metal anodes. The in situ generated LiZn/Li2O arrays can efficiently guide the homogeneous Li electrodeposition along the nanorods. The porous structure of CM provides void space for the well-controlled lateral growth of Li starting from nanorod arrays. Moreover, the high surface area generated by both CM and the ZnO nanorods favors the charge transfer with low local current densities along the anode. Compared with bare Li anodes, Li-ZnO@CM anodes exhibited prolonged cycling stability for symmetric cells and superior capacity retention within Li/LiFePO4 full cells, demonstrating the effective design principles of ZnO@CM for stabilizing Li metal batteries.

20.
Adv Sci (Weinh) ; 9(4): e2104375, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34894097

RESUMEN

The "shuttle effect" of soluble polysulfides and slow reaction kinetics hinder the practical application of Li-S batteries. Transition metal oxides are promising mediators to alleviate these problems, but the poor electrical conductivity limits their further development. Herein, the homogeneous CoNiO2 /Co4 N nanowires have been fabricated and employed as additive of graphene based sulfur cathode. Through optimizing the nitriding degree, the continuous heterostructure interface can be obtained, accompanied by effective adjustment of energy band structure. By combining the strong adsorptive and catalytic properties of CoNiO2 and electrical conductivity of Co4 N, the in situ formed CoNiO2 /Co4 N heterostructure reveals a synergistic enhancement effect. Theoretical calculation and experimental design show that it can not only significantly inhibit "shuttle effect" through chemisorption and catalytic conversion of polysulfides, but also improve the transport rate of ions and electrons. Thus, the graphene composite sulfur cathode supported by these CoNiO2 /Co4 N nanowires exhibits improved sulfur species reaction kinetics. The corresponding cell provides a high rate capacity of 688 mAh g-1 at 4 C with an ultralow decaying rate of ≈0.07% per cycle over 600 cycles. The design of heterostructure nanowires and graphene composite structure provides an advanced strategy for the rapid capture-diffusion-conversion process of polysulfides.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA