Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Environ Sci Technol ; 58(27): 11887-11900, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38885123

RESUMEN

The detrimental effects of plastics on aquatic organisms, including those of macroplastics, microplastics, and nanoplastics, have been well established. However, knowledge on the interaction between plastics and terrestrial insects is limited. To develop effective strategies for mitigating the impact of plastic pollution on terrestrial ecosystems, it is necessary to understand the toxicity effects and influencing factors of plastic ingestion by insects. An overview of current knowledge regarding plastic ingestion by terrestrial insects is provided in this Review, and the factors influencing this interaction are identified. The pathways through which insects interact with plastics, which can lead to plastic accumulation and microplastic transfer to higher trophic levels, are also discussed using an overview and a conceptual model. The diverse impacts of plastic exposure on insects are discussed, and the challenges in existing studies, such as a limited focus on certain plastic types, are identified. Further research on standardized methods for sampling and analysis is crucial for reliable research, and long-term monitoring is essential to assess plastic trends and ecological impacts in terrestrial ecosystems. The mechanisms underlying these effects need to be uncovered, and their potential long-term consequences for insect populations and ecosystems require evaluation.


Asunto(s)
Insectos , Microplásticos , Animales , Microplásticos/toxicidad , Insectos/efectos de los fármacos , Plásticos/toxicidad , Ecosistema , Monitoreo del Ambiente
2.
Environ Sci Technol ; 58(5): 2360-2372, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38261758

RESUMEN

Having a tool to monitor the microbial abundances rapidly and to utilize the data to predict the reactor performance would facilitate the operation of an anaerobic membrane bioreactor (AnMBR). This study aims to achieve the aforementioned scenario by developing a linear regression model that incorporates a time-lagging mode. The model uses low nucleic acid (LNA) cell numbers and the ratio of high nucleic acid (HNA) to LNA cells as an input data set. First, the model was trained using data sets obtained from a 35 L pilot-scale AnMBR. The model was able to predict the chemical oxygen demand (COD) removal efficiency and methane production 3.5 days in advance. Subsequent validation of the model using flow cytometry (FCM)-derived data (at time t - 3.5 days) obtained from another biologically independent reactor did not exhibit any substantial difference between predicted and actual measurements of reactor performance at time t. Further cell sorting, 16S rRNA gene sequencing, and correlation analysis partly attributed this accurate prediction to HNA genera (e.g., Anaerovibrio and unclassified Bacteroidales) and LNA genera (e.g., Achromobacter, Ochrobactrum, and unclassified Anaerolineae). In summary, our findings suggest that HNA and LNA cell routine enumeration, along with the trained model, can derive a fast approach to predict the AnMBR performance.


Asunto(s)
Ácidos Nucleicos , Anaerobiosis , Citometría de Flujo , Ácidos Nucleicos/análisis , Ácidos Nucleicos/metabolismo , ARN Ribosómico 16S/genética , Reactores Biológicos , Eliminación de Residuos Líquidos , Metano
3.
J Environ Manage ; 361: 121252, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38820793

RESUMEN

Heavy metal pollution in farmland soil has become increasingly severe, and multi-element composite pollution has brought enormous harm to human production and life. Environmental changes in cold regions (such as freeze-thaw cycles and dry-wet alternations) may increase the potential physiological toxicity of heavy metals and exacerbate pollution risks. In order to reveal the effectiveness of sepiolite modified biochar in the remediation of the soil contaminated with lead (Pb), cadmium (Cd), and chromium (Cr), the rice husk biochar pyrolyzed at 500 and 800 °C were selected for remediation treatment (denoted as BC500 and BC800). Meanwhile, different proportions of sepiolite were used for modification (biochar: sepiolite = 1: 0.5 and 1: 1), denoted as MBC500/MBC800 and HBC500/HBC800, respectively. The results showed that modified biochar with sepiolite can effectively improve the immobilization of heavy metals. Under natural conservation condition, the amount of diethylenetriaminepentaacetic acid (DTPA) extractable Pb in BC500, MBC500, and HBC500 decreased by 5.95, 12.39, and 13.55%, respectively, compared to CK. Freeze-thaw cycles and dry-wet alternations activated soil heavy metals, while modified biochar increased adsorption sites and oxygen-containing functional groups under aging conditions, inhibiting the fractions transformation of heavy metals. Furthermore, freeze-thaw cycles promoted the decomposition and mineralization of soil organic carbon (SOC), while sepiolite hindered the release of active carbon through ion exchange and adsorption complexation. Among them, and the soil dissolved organic carbon (DOC) content in HBC800 decreased by 49.39% compared to BC800. Additionally, the high-temperature pyrolyzed biochar (BC800) enhanced the porosity richness and alkalinity of material, which effectively inhibited the migration and transformation of heavy metals compared to BC500, and reduced the decomposition of soil DOC.


Asunto(s)
Carbono , Carbón Orgánico , Arcilla , Metales Pesados , Contaminantes del Suelo , Suelo , Metales Pesados/química , Carbón Orgánico/química , Suelo/química , Arcilla/química , Contaminantes del Suelo/química , Carbono/química , Adsorción , Minerales/química , Restauración y Remediación Ambiental/métodos
4.
World J Microbiol Biotechnol ; 40(5): 143, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38530548

RESUMEN

Polystyrene (PS) is frequently used in the plastics industry. However, its structural stability and difficulty to break down lead to an abundance of plastic waste in the environment, resulting in micro-nano plastics (MNPs). As MNPs are severe hazards to both human and environmental health, it is crucial to develop innovative treatment technologies to degrade plastic waste. The biodegradation of plastics by insect gut microorganisms has gained attention as it is environmentally friendly, efficient, and safe. However, our knowledge of the biodegradation of PS is still limited. This review summarizes recent research advances on PS biodegradation by gut microorganisms/enzymes from insect larvae of different species, and schematic pathways of the degradation process are discussed in depth. Additionally, the prospect of using modern biotechnology, such as genetic engineering and systems biology, to identify novel PS-degrading microbes/functional genes/enzymes and to realize new strategies for PS biodegradation is highlighted. Challenges and limitations faced by the application of genetically engineered microorganisms (GEMs) and multiomics technologies in the field of plastic pollution bioremediation are also discussed. This review encourages the further exploration of the biodegradation of PS by insect gut microbes/enzymes, offering a cutting-edge perspective to identify PS biodegradation pathways and create effective biodegradation strategies.


Asunto(s)
Microbioma Gastrointestinal , Poliestirenos , Animales , Humanos , Poliestirenos/metabolismo , Plásticos , Biodegradación Ambiental , Insectos
5.
Environ Sci Technol ; 57(17): 7009-7017, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37010423

RESUMEN

Discarded plastics and microplastics (MPs) in the environment are considered emerging contaminants and indicators of the Anthropocene epoch. This study reports the discovery of a new type of plastic material in the environment─plastic-rock complexes─formed when plastic debris irreversibly sorbs onto the parent rock after historical flooding events. These complexes consist of low-density polyethylene (LDPE) or polypropylene (PP) films stuck onto quartz-dominated mineral matrices. These plastic-rock complexes serve as hotspots for MP generation, as evidenced by laboratory wet-dry cycling tests. Over 1.03 × 108 and 1.28 × 108 items·m-2 MPs were generated in a zero-order mode from the LDPE- and PP-rock complexes, respectively, following 10 wet-dry cycles. The speed of MP generation was 4-5 orders of magnitude higher than that in landfills, 2-3 orders of magnitude higher than that in seawater, and >1 order of magnitude higher than that in marine sediment as compared with previously reported data. Results from this investigation provide strong direct evidence of anthropogenic waste entering geological cycles and inducing potential ecological risks that may be exacerbated by climate change conditions such as flooding events. Future research should evaluate this phenomenon regarding ecosystem fluxes, fate, and transport and impacts of plastic pollution.


Asunto(s)
Plásticos , Contaminantes Químicos del Agua , Microplásticos , Polietileno/análisis , Ecosistema , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Polipropilenos/análisis
6.
Environ Res ; 232: 116423, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37327842

RESUMEN

Thiocyanate in irrigation water can adversely affect plant growth and development. A previously constructed microflora with effective thiocyanate-degrading ability was used to investigate the potential of bacterial degradation for thiocyanate bioremediation. The root and aboveground part dry weight of plants inoculated with the degrading microflora increased by 66.67% and 88.45%, respectively, compared to those plants without the microflora. The supplementation of thiocyanate-degrading microflora (TDM) significantly alleviated the interference of thiocyanate in mineral nutrition metabolism. Moreover, the supplementation of TDM significantly reduced the activities of antioxidant enzymes, lipid peroxidation, and DNA damage and it protected plants from excessive thiocyanate, while the crucial antioxidant enzyme (peroxidase) decreased by 22.59%. Compared with the control without TDM supplementation, the soil sucrase content increased by 29.58%. The abundances of Methylophilus, Acinetobacter, unclassified Saccharimonadales, and Rhodanobacter changed from 19.92%, 6.63%, 0.79%, and 3.90%-13.19%, 0.27%, 3.06%, and 5.14%, respectively, with TDM supplementation. Caprolactam, 5,6-dimethyldecane, and pentadecanoic acid seem to have an effect on the structure of the microbial community in the rhizosphere soil. The above results indicated TDM supplementation can significantly reduce the toxic effects of thiocyanate on the tomato-soil microenvironment.


Asunto(s)
Plantones , Solanum lycopersicum , Plantones/microbiología , Rizosfera , Antioxidantes/farmacología , Tiocianatos/farmacología , Plantas , Suelo/química , Microbiología del Suelo , Raíces de Plantas/microbiología
7.
World J Microbiol Biotechnol ; 39(1): 35, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36469179

RESUMEN

Thiocyanate is a common pollutant in gold mine, textile, printing, dyeing, coking and other industries. Therefore, thiocyanate in industrial wastewater is an urgent problem to be solved. This paper reviews the chemical properties, applications, sources and toxicity of thiocyanate, as well as the various treatment methods for thiocyanate in wastewater and their advantages and disadvantages. It is emphasized that biological systems, ranging from laboratory to full-scale, are able to successfully remove thiocyanate from factories. Thiocyanate-degrading microorganisms degrade thiocyanate in autotrophic manner for energy, while other biodegrading microorganisms use thiocyanate as a carbon or nitrogen source, and the biochemical pathways and enzymes involved in thiocyanate metabolism by different bacteria are discussed in detail. In the future, degradation mechanisms should be investigated at the molecular level, with further research aiming to improve the biochemical understanding of thiocyanate metabolism and scaling up thiocyanate degradation technologies from the laboratory to a full-scale.


Asunto(s)
Tiocianatos , Aguas Residuales , Aguas Residuales/química , Tiocianatos/metabolismo , Bacterias/metabolismo , Nitrógeno/metabolismo , Residuos Industriales/análisis , Eliminación de Residuos Líquidos/métodos
8.
Environ Sci Technol ; 55(9): 6012-6021, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33840192

RESUMEN

Microplastics (MPs) are drawing increasing attention from the international community due to their potential threats to the ecosystem and human health. Although their occurrence and spatial distribution have been extensively studied in recent years, the relationship between their abundance and sizes remains unclear. Moreover, the underlying mechanisms dominating their size distribution have rarely been explored. In the present study, we developed a novel conditional fragmentation model to describe MP size distribution in the soil environment. It is proposed that the distribution of MPs is not a coincidence but controlled by conditional aging. The applicability of this model was tested using data collected from different land use settings in Beijing, China. A distinct downsizing phenomenon from fibers, films, and fragments to granules is observed. Undisturbed land use types accumulated larger sized MPs with higher stability, while human interference accelerated the fragmentation of MPs. Both morphological analysis and time-of-flight secondary ion mass spectroscopy (TOF-SIMS) observations provided direct evidence for the conditional fragmentation process. Furthermore, the model has proven to be suitable for describing the size distribution of MPs from various sources (including atmospheric deposition, transportation, and agriculture) and aging processes (such as mechanical abrasion, chemical oxidation, and photochemical transformation). It is proposed that this model can be used for various purposes in MP-related studies, especially source identification, transport modeling, and risk assessment.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Beijing , China , Ecosistema , Monitoreo del Ambiente , Humanos , Plásticos , Contaminantes Químicos del Agua/análisis
9.
Environ Sci Technol ; 55(17): 12032-12042, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34372658

RESUMEN

Agricultural land degradation is posing a serious threat to global food security. Restoration of the degraded land has traditionally been viewed as an inherently sustainable practice; however, restoration processes render consequential environmental impacts which could potentially exceed the benefit of restoration itself. In the present study, an integrated life cycle assessment analysis was conducted to evaluate life cycle primary, secondary, and tertiary impacts associated with the restoration of the contaminated agricultural land. The results demonstrated the importance of including spatially differentiated impacts associated with managing the land and growing crops. Comparing four risk management scenarios at a contaminated field in Southern China, it was found that the primary and secondary impacts followed the order of no action > chemical stabilization > phytoextraction > alternative planting. However, when tertiary impacts were taken into account, alternative planting rendered much higher footprint in comparison with phytoextraction and chemical stabilization, which provides evidence against an emerging notion held by some policy makers. Furthermore, assuming that the loss of the rice paddy field in Southern China is compensated by the deforested land in the Amazon rainforest, the total global environmental impact would far exceed that of no action, resulting in 687 ton CO2-e ha-1 of climate change impact. Overall, the present study provides new research findings to support more holistic policy making and also sheds lights on the future development of various restoration technologies.


Asunto(s)
Restauración y Remediación Ambiental , Agricultura , Animales , China , Contaminación Ambiental , Estadios del Ciclo de Vida , Suelo
10.
Environ Sci Technol ; 54(23): 14797-14814, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33138356

RESUMEN

Biochar has triggered a black gold rush in environmental studies as a carbon-rich material with well-developed porous structure and tunable functionality. While much attention has been placed on its apparent ability to store carbon in the ground, immobilize soil pollutants, and improve soil fertility, its temporally evolving in situ performance in these roles must not be overlooked. After field application, various environmental factors, such as temperature variations, precipitation events and microbial activities, can lead to its fragmentation, dissolution, and oxidation, thus causing drastic changes to the physicochemical properties. Direct monitoring of biochar-amended soils can provide good evidence of its temporal evolution, but this requires long-term field trials. Various artificial aging methods, such as chemical oxidation, wet-dry cycling and mineral modification, have therefore been designed to mimic natural aging mechanisms. Here we evaluate the science of biochar aging, critically summarize aging-induced changes to biochar properties, and offer a state-of-the-art for artificial aging simulation approaches. In addition, the implications of biochar aging are also considered regarding its potential development and deployment as a soil amendment. We suggest that for improved simulation and prediction, artificial aging methods must shift from qualitative to quantitative approaches. Furthermore, artificial preaging may serve to synthesize engineered biochars for green and sustainable environmental applications.


Asunto(s)
Carbón Orgánico , Contaminantes del Suelo , Carbono , Suelo , Contaminantes del Suelo/análisis
11.
Cell Physiol Biochem ; 38(6): 2479-88, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27310004

RESUMEN

BACKGROUND/AIM: To investigate the role of kidney injury molecular 1 (KIM-1) in high glucose-induced autophagy and apoptosis in renal tubular epithelial cells. METHODS: Human renal tubular epithelial cells (HK2) were treated with normal glucose (NG, D -glucose 5.6 mmol/L), high glucose (HG, 30 mmol/L), high osmotic (HO, D-glucose 5.6 mmol/L + D-mannitol 24.4 mmol/L), HG + KIM-1 siRNA, HG + siRNA control. The expressions of KIM-1 and microtubule-associated protein 1 light chain 3II (LC3II) were measured by western blot as well as real time PCR; the number of autophagosome was detected by electron microscopy; and the level of apoptosis was analyzed by flow cytometry. RESULTS: In the HG group, the expressions of KIM-1 and LC3II were increased markedly, which was accompanied by more autophagosome and higher level of apoptosis compared with NG group. Silencing of KIM-1 by siRNA inhibited the increases in the levels of LC3II, autophagosome and apoptosis. CONCLUSION: KIM-1 may mediate high glucose-induced autophagy and apoptosis in renal tubular epithelial cells.


Asunto(s)
Apoptosis , Autofagia , Células Epiteliales/citología , Glucosa/metabolismo , Receptor Celular 1 del Virus de la Hepatitis A/metabolismo , Túbulos Renales/citología , Línea Celular , Células Epiteliales/metabolismo , Humanos , Túbulos Renales/metabolismo
12.
Biomimetics (Basel) ; 9(3)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38534807

RESUMEN

The facial expressions of humanoid robots play a crucial role in human-computer information interactions. However, there is a lack of quantitative evaluation methods for the anthropomorphism of robot facial expressions. In this study, we designed and manufactured a humanoid robot head that was capable of successfully realizing six basic facial expressions. The driving force behind the mechanism was efficiently transmitted to the silicone skin through a rigid linkage drive and snap button connection, which improves both the driving efficiency and the lifespan of the silicone skin. We used human facial expressions as a basis for simulating and acquiring the movement parameters. Subsequently, we designed a control system for the humanoid robot head in order to achieve these facial expressions. Moreover, we used a flexible vertical graphene sensor to measure strain on both the human face and the silicone skin of the humanoid robot head. We then proposed a method to evaluate the anthropomorphic degree of the robot's facial expressions by using the difference rate of strain. The feasibility of this method was confirmed through experiments in facial expression recognition. The evaluation results indicated a high degree of anthropomorphism for the six basic facial expressions which were achieved by the humanoid robot head. Moreover, this study also investigates factors affecting the reproduction of expressions. Finally, the impulse was calculated based on the strain curves of the energy consumption of the humanoid robot head to complete different facial expressions. This offers a reference for fellow researchers when designing humanoid robot heads, based on energy consumption ratios. To conclude, this paper offers data references for optimizing the mechanisms and selecting the drive components of the humanoid robot head. This was realized by considering the anthropomorphic degree and energy consumption of each part. Additionally, a new method for evaluating robot facial expressions is proposed.

13.
J Hazard Mater ; 467: 133615, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38325096

RESUMEN

Accumulation of plastic debris in the environment is a matter of global concern. As plastic ages, it generates microplastic (MP) particles with high mobility. Understanding how MPs are generated is crucial to controlling this emerging contaminant. In this study, we utilized high-density polyethylene (HDPE) plastic gauze, collected from urban settings, as a representative example of plastic waste. The plastic gauze was subjected to various aging conditions, including freeze-thaw cycling, mechanical abrasion, and UV irradiation. Following aging, the plastic gauze was rinsed with water, and the number of generated MPs were quantified. It was found that aged plastic gauze generated up to 334 million MP particles per m2 (> 10 µm) during rinsing, a number two orders of magnitude higher than unaged plastic. Fragmentation occurred in two dimensions for bulk MPs of all morphotypes. However, specific aging approaches (i.e., mechanical abrasion and UV irradiation) generated spheres and fibers via pseudo-3D fragmentation. Additionally, changes in molecular weight, size distribution, and surface oxidation characteristics unveiled a complex pattern (i.e., irregular changes with exposure time). This complexity underscores the intricate nature of plastic debris aging processes in the environment.

14.
Int Immunopharmacol ; 126: 111327, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38056198

RESUMEN

INTRODUCTION: Phospholipase A2 receptor (PLA2R)-associated membranous nephropathy (MN) is a common cause of nephrotic syndrome in nondiabetic adults who are also within the common age group for malignancy. How to treat patients with PLA2R-associated MN and malignancy effectively and safely still requires careful consideration. The aim of our study was to examine the outcomes and safety of rituximab (RTX) in these patients. METHODS: Retrospective analysis of clinical data was performed on 15 patients with PLA2R-associated MN and malignancy. Patients were followed every 1-3 months for a minimum of 24 months. Clinical data were collected, including CD19+ B cells, anti-PLA2R antibodies, 24-hour urinary protein, serum albumin, and serum creatinine. The percentage of patients who achieved clinical remission and immunological remission was also measured. RESULTS: Among these 15 patients, 14 patients with solid tumors received treatment for malignant diseases with complete resection. One patient received chemotherapy for chronic myeloid leukemia, and achieved complete remission 36 months before the diagnosis of MN. There were 6 (40.00 %) patients who achieved complete remission and 14 (93.33 %) patients who achieved complete or partial remission at the last visit after RTX treatment. At the last visit, patients were clinically improved, as evidenced by significant improvements in anti-PLA2R antibody titer [2.00 (2.00, 2.00) vs 35.25 (11.18, 91.58) RU/ml, P = 0.002], 24-hour urine protein [0.39 (0.11, 2.28) vs 9.22 (4.47, 14.73) g/d, P = 0.001], and serum albumin [38.15 (34.80, 43.20) vs 23.70 (18.70, 25.70) g/L, P = 0.001]. During the follow-up, the renal function of those patients remained stable. Recurrence of malignant tumors or the occurrence of new tumor events were not observed. CONCLUSION: In this single-center retrospective study with a small sample size, RTX therapy might be an effective and safe treatment in patients with PLA2R-associated MN and malignancy.


Asunto(s)
Glomerulonefritis Membranosa , Neoplasias , Adulto , Humanos , Glomerulonefritis Membranosa/tratamiento farmacológico , Rituximab/uso terapéutico , Estudios Retrospectivos , Receptores de Fosfolipasa A2 , Autoanticuerpos , Neoplasias/complicaciones
15.
Environ Pollut ; 343: 123219, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38154772

RESUMEN

Additives may be present in amounts higher than 50% within plastic objects. Additives in plastics can be gradually released from microplastics (MPs) into the aquatic environment during their aging and fragmentation because most of them do not chemically react with the polymers. Some are known to be hazardous substances, which can cause toxicity effects on organisms and pose ecological risks. In this paper, the application of functional additives in MPs and their leaching in the environment are first summarized followed by their release mechanisms including photooxidation, chemical oxidation, biochemical degradation, and physical abrasion. Important factors affecting the additive release from MPs are also reviewed. Generally, smaller particle size, light irradiation, high temperature, dissolved organic matter (DOM) existence and alkaline conditions can promote the release of chemicals from MPs. In addition, the release of additives is also influenced by the polymer's structure, electrolyte types, as well as salinity. These additives may transfer into the organisms after ingestion and disrupt various biological processes, leading to developmental malformations and toxicity in offspring. Nonetheless, challenges on the toxicity of chemicals in MPs remain hindering the risk assessment on human health from MPs in the environment. Future research is suggested to strengthen research on the leaching experiment in the actual environment, develop more techniques and analysis methods to identify leaching products, and evaluate the toxicity effects of additives from MPs based on more model organisms. The work gives a comprehensive overview of current process for MP additive release in natural waters, summarizes their toxicity effects on organisms, and provides recommendations for future research.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Humanos , Microplásticos/química , Plásticos/toxicidad , Contaminantes Químicos del Agua/análisis , Polímeros , Sustancias Peligrosas/análisis
16.
Water Res ; 242: 120241, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37392509

RESUMEN

An accurate depiction of mercury (Hg) reduction is important to predict Hg biogeochemistry in both aquatic and soil systems. Although the photoreduction of Hg is well documented, reduction in the dark is poorly known and is thus the focus of this work. Black carbon (BC), an important constituent of organic matter in environments, can reduce Hg2+ in dark and oxygen-deficient conditions. Fast removal of Hg2+ in BC/Hg2+ solution was observed, with 4.99-86.88 L mg-1h-1 of the reaction rate constant, which could be ascribed to the combined actions of adsorption and reduction. Meanwhile, slow Hg reduction was obtained, compared to Hg removal, with 0.06-2.16 L mg-1h-1 of the reaction rate constant. Thus, in the initial stage, Hg2+ removal was mainly triggered by adsorption, rather than reduction. Afterward, the adsorbed Hg2+ on black carbon was converted into Hg0. Dissolved black carbon and aromatic CH on particulate black carbon were dominant triggers of Hg reduction for black carbon. During Hg reduction, the intastable intermediate, formed in the complex between aromatic CH and Hg2+, behaved as persistent free radicals, which could be detected by in situ electron paramagnetic resonance. Subsequently, the intastable intermediate was mainly converted into CO on black carbon and Hg0. Corresponding results of the present study highlight the important role of black carbon in the Hg biogeochemical cycle.

17.
Sci Rep ; 13(1): 6740, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37185370

RESUMEN

To evaluate the efficacy and safety of rituximab (RTX) in the treatment of primary focal segmental glomerulosclerosis (FSGS) in adults. The clinical data of patients with primary FSGS who received RTX treatment in the First Affiliated Hospital of Zhengzhou University were analyzed retrospectively. The selected patients received RTX twice or four times, with a single dose of 375 mg/m2, and the interval between two times of administration of RTX was 2-4 weeks. The treatment target is to achieve the clearance of B cells (peripheral blood B cell count < 5/µl). The primary outcome measures were remission and recurrence of renal disease, and the secondary outcome measures were adverse events and renal outcomes. A total of 14 FSGS patients were included, including 12 males, 9 with glucocorticoid-dependent or frequently relapsing nephrotic syndrome, and 3 with newly diagnosed nephrotic syndrome. After RTX treatment, 7 patients with glucocorticoid-dependent/recurrent nephrotic syndrome were completely relieved. At 6 months of follow-up, glucocorticoids were discontinued in all patients except 1 patient. The other 5 patients achieved partial remission (PR), of which 1 patient relapsed after PR, and 1 initial patient achieved complete remission. One patient progressed to end-stage renal disease (ESRD) after 4 months of follow-up. RTX in the treatment of adult glucocorticoid-dependent/relapsing FSGS can reduce the risk of recurrence and help to decline or discontinue the use of glucocorticoid and immunosuppressants.


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria , Síndrome Nefrótico , Masculino , Humanos , Adulto , Rituximab/efectos adversos , Glomeruloesclerosis Focal y Segmentaria/complicaciones , Síndrome Nefrótico/tratamiento farmacológico , Síndrome Nefrótico/complicaciones , Glucocorticoides/uso terapéutico , Estudios Retrospectivos , Recurrencia , Resultado del Tratamiento
18.
Biomimetics (Basel) ; 8(1)2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36648826

RESUMEN

The agile locomotion of adhesive animals is mainly attributed to their sophisticated hierarchical feet and reversible adhesion motility. Their structure-function relationship is an urgent issue to be solved to understand biologic adhesive systems and the design of bionic applications. In this study, the reversible adhesion/release behavior and structural properties of gecko toes were investigated, and a hierarchical adhesive bionic toe (bio-toe) consisting of an upper elastic actuator as the supporting/driving layer and lower bionic lamellae (bio-lamellae) as the adhesive layer was designed, which can adhere to and release from targets reversibly when driven by bi-directional pressure. A mathematical model of the nonlinear deformation and a finite element model of the adhesive contact of the bio-toe were developed. Meanwhile, combined with experimental tests, the effects of the structure and actuation on the adhesive behavior and mechanical properties of the bio-toe were investigated. The research found that (1) the bending curvature of the bio-toe, which is approximately linear with pressure, enables the bio-toe to adapt to a wide range of objects controllably; (2) the tabular bio-lamella could achieve a contact rate of 60% with a low squeeze contact of less than 0.5 N despite a ±10° tilt in contact posture; (3) the upward bending of the bio-toe under negative pressure provided sufficient rebounding force for a 100% success rate of release; (4) the ratio of shear adhesion force to preload of the bio-toe with tabular bio-lamellae reaches approximately 12, which is higher than that of most existing adhesion units and frictional gripping units. The bio-toe shows good adaptability, load capacity, and reversibility of adhesion when applied as the basic adhesive unit in a robot gripper and wall-climbing robot. Finally, the proposed reversible adhesive bio-toe with a hierarchical structure has great potential for application in space, defense, industry, and daily life.

19.
Front Pharmacol ; 14: 1323334, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38186651

RESUMEN

Objectives: Advancing age is a risk factor for treatment-related side effects and mortality in membranous nephropathy (MN) patients treated with traditional immunosuppressive regimens. This study aimed to determine the efficacy and safety of rituximab (RTX) in the treatment of elderly patients with MN. Methods: We performed a single center retrospective review of 37 consecutive MN patients aged 70 and older at the time of RTX infusion. We also enrolled 76 young patients (<70 years old) with MN as the control group. We assessed clinical and laboratory indices, remission rates, and adverse events at RTX infusion, 3 months, and last visit. Results: A total of 37 elderly patients with MN were included, with a median follow-up period of 15.50 (10.00, 24.40) months. Of the 37 patients, 75.68% were male, and mean age was 71.89 ± 2.47 years. At last visit, 7 (18.92%) patients achieved complete remission, and 26 (70.27%) patients achieved complete or partial remission. There were no differences in the complete remission rate and complete or partial remission rate at last visit compared to young patients (26.32% vs. 18.92%, p = 0.387; 85.53% vs. 70.27%, p = 0.055). After RTX treatment, three of 6 elderly patients with pneumonia died due to ineffective treatment of the infection in RTX therapy courses. The results of multivariant regression analysis showed that elderly patients have an increased risk of serious infection, compared with patients younger than 70 years (OR = 32.874, 95% CI 1.300-831.490, p = 0.034). For each increase of 1 g/L in serum albumin, the risk of serious infection would decrease by 43.2% (OR = 0.568, 95% CI 0.334-0.969, p = 0.038). Conclusion: This study demonstrates that RTX is effective in the treatment of elderly patients with MN. However, we also observed a high incidence of infectious complications. Our experience was limited by its retrospective design and relatively small sample size, and further randomized controlled studies with large sample size are needed to confirm our preliminary findings.

20.
Environ Pollut ; 318: 120878, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36526057

RESUMEN

Thiocyanate-containing wastewater harms ecosystems and can cause serious damage to animals and plants, so it is urgent to treat it effectively. In this study, a new efficient thiocyanate-degrading consortium was developed and its degradation characteristics were studied. It was found that up to 154.64 mM thiocyanate could be completely degraded by this consortium over 6 days of incubation, with a maximum degradation rate of 1.53 mM h-1. High-throughput sequencing analysis showed that Thiobacillus (77.78%) was the predominant thiocyanate-degrading bacterial genus. Plant toxicology tests showed that the germination index of mung bean and rice seeds cultured with media obtained after thiocyanate degradation by the consortium increased by 94% and 84.83%, respectively, compared with the control group without thiocyanate degradation. Cytotoxicity tests showed that thiocyanate without degradation significantly decreased the Neuro-2a cell activity and mitochondrial membrane potential; induced reactive oxygen species generation and apoptosis; increased the cellular Ca2+ concentration; and damaged the cell nucleus and DNA. Furthermore, the thiocyanate degradation products produced the consortium were almost totally non-toxic, revealing the same characteristics as those of the control using distilled water. This study shows that the consortium has a high degradation efficiency and detoxification characteristics, as well as great application potential in bioremediation of industrial thiocyanate-containing wastewater.


Asunto(s)
Tiocianatos , Aguas Residuales , Aguas Residuales/toxicidad , Tiocianatos/toxicidad , Tiocianatos/metabolismo , Ecosistema , Bacterias/metabolismo , Biodegradación Ambiental
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA