Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Gut ; 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38378250

RESUMEN

OBJECTIVES: To evaluate the association between healthy lifestyle behaviours and the incidence of irritable bowel syndrome (IBS). DESIGN: Population-based prospective cohort study. SETTING: The UK Biobank. PARTICIPANTS: 64 268 adults aged 37 to 73 years who had no IBS diagnosis at baseline were enrolled between 2006 and 2010 and followed up to 2022. MAIN EXPOSURE: The five healthy lifestyle behaviours studied were never smoking, optimal sleep, high level of vigorous physical activity, high dietary quality and moderate alcohol intake. MAIN OUTCOME MEASURE: The incidence of IBS. RESULTS: During a mean follow-up of 12.6 years, 961 (1.5%) incident IBS cases were recorded. Among the 64 268 participants (mean age 55.9 years, 35 342 (55.0%) female, 7604 (11.8%) reported none of the five healthy lifestyle behaviours, 20 662 (32.1%) reported 1 behaviour, 21 901 (34.1%) reported 2 behaviours and 14 101 (21.9%) reported 3 to 5 behaviours at baseline. The multivariable adjusted hazard ratios associated with having 1, 2 and 3 to 5 behaviours for IBS incidence were 0.79 (95% confidence intervals 0.65 to 0.96), 0.64 (0.53 to 0.78) and 0.58 (0.46 to 0.72), respectively (P for trend <0.001). Never smoking (0.86, 0.76 to 0.98, P=0.02), high level of vigorous physical activity (0.83, 0.73 to 0.95, P=0.006) and optimal sleep (0.73, 0.60 to 0.88, P=0.001) demonstrated significant independent inverse associations with IBS incidence. No significant interactions were observed between these associations and age, sex, employment status, geographic location, gastrointestinal infection, endometriosis, family history of IBS or lifestyle behaviours. CONCLUSIONS: Adhering to a higher number of healthy lifestyle behaviours is significantly associated with a lower incidence of IBS in the general population. Our findings suggest the potential of lifestyle modifications as a primary prevention strategy for IBS.

2.
Brief Bioinform ; 22(5)2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-33783485

RESUMEN

Tumor suppressor genes (TSGs) exhibit distinct evolutionary features. We speculated that TSG promoters could have evolved specific features that facilitate their tumor-suppressing functions. We found that the promoter CpG dinucleotide frequencies of TSGs are significantly higher than that of non-cancer genes across vertebrate genomes, and positively correlated with gene expression across tissue types. The promoter CpG dinucleotide frequencies of all genes gradually increase with gene age, for which young TSGs have been subject to a stronger evolutionary pressure. Transcription-related features, namely chromatin accessibility, methylation and ZNF263-, SP1-, E2F4- and SP2-binding elements, are associated with gene expression. Moreover, higher promoter CpG dinucleotide frequencies and chromatin accessibility are positively associated with the ability of TSGs to resist downregulation during tumorigenesis. These results were successfully validated with independent datasets. In conclusion, TSGs evolved specific promoter features that optimized cancer resistance through achieving high expression in normal tissues and resistance to downregulation during tumorigenesis.


Asunto(s)
Cromatina/metabolismo , Biología Computacional/métodos , Resistencia a Antineoplásicos/genética , Evolución Molecular , Genes Supresores de Tumor , Neoplasias/genética , Regiones Promotoras Genéticas , Antineoplásicos/uso terapéutico , Carcinogénesis/genética , Carcinogénesis/metabolismo , Carcinogénesis/patología , Línea Celular Tumoral , Cromatina/ultraestructura , Islas de CpG , Metilación de ADN , Conjuntos de Datos como Asunto , Regulación Neoplásica de la Expresión Génica , Ontología de Genes , Humanos , Anotación de Secuencia Molecular , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Dominios y Motivos de Interacción de Proteínas , Transcripción Genética
3.
PLoS Comput Biol ; 18(6): e1010281, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35759509

RESUMEN

In the context of infectious disease transmission, high heterogeneity in individual infectiousness indicates that a few index cases can generate large numbers of secondary cases, a phenomenon commonly known as superspreading. The potential of disease superspreading can be characterized by describing the distribution of secondary cases (of each seed case) as a negative binomial (NB) distribution with the dispersion parameter, k. Based on the feature of NB distribution, there must be a proportion of individuals with individual reproduction number of almost 0, which appears restricted and unrealistic. To overcome this limitation, we generalized the compound structure of a Poisson rate and included an additional parameter, and divided the reproduction number into independent and additive fixed and variable components. Then, the secondary cases followed a Delaporte distribution. We demonstrated that the Delaporte distribution was important for understanding the characteristics of disease transmission, which generated new insights distinct from the NB model. By using real-world dataset, the Delaporte distribution provides improvements in describing the distributions of COVID-19 and SARS cases compared to the NB distribution. The model selection yielded increasing statistical power with larger sample sizes as well as conservative type I error in detecting the improvement in fitting with the likelihood ratio (LR) test. Numerical simulation revealed that the control strategy-making process may benefit from monitoring the transmission characteristics under the Delaporte framework. Our findings highlighted that for the COVID-19 pandemic, population-wide interventions may control disease transmission on a general scale before recommending the high-risk-specific control strategies.


Asunto(s)
COVID-19 , Enfermedades Transmisibles , COVID-19/epidemiología , Enfermedades Transmisibles/epidemiología , Humanos , Funciones de Verosimilitud , Modelos Estadísticos , Pandemias/prevención & control
4.
Allergy ; 77(10): 2949-2960, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35531632

RESUMEN

BACKGROUND: Asthma is one of the most common chronic diseases in childhood, and the prevalence has been increasing over the past few decades. One of the most consistent epidemiological findings is that children living in a farming or rural environment are protected from development of asthma and allergies, but the protective factors in rural China are not clear. METHODS: A community-based, cross-sectional epidemiological study was performed in a total of 17,587 children aged 5-8 years, 3435 from Hong Kong (urban) and 14,152 from Conghua (rural county in southern China). Asthma and allergic symptoms as well as environmental exposures were ascertained by using a standardized and validated questionnaire. RESULTS: The prevalence of current wheeze was significantly lower in rural Conghua than that of urban Hong Kong (1.7% vs. 7.7%, p < 0.001). A lower rate of asthma ever was also reported in rural children compared with their urban counterparts (2.5% vs. 5.3%, p < 0.001). After adjusting for confounding factors, exposure to agricultural farming (adjusted odds ratio 0.74, 95% confidence interval: 0.56-0.97) and poultry (0.75, 0.59-0.96) were the most important factors associated with the asthma-protective effect in the rural area. Further propensity score-adjusted analysis indicated that such protection conferred by living in the rural environment was mainly attributable to poultry exposure. CONCLUSIONS: We confirmed that the prevalence of asthma and atopic disorders was significantly lower in rural children when compared with their urban peers. Exposure to poultry and agricultural farming are the most important factors associated with asthma protection in the rural area.


Asunto(s)
Asma , Aves de Corral , Animales , Asma/epidemiología , Asma/etiología , Asma/prevención & control , Niño , Conservación de los Recursos Naturales , Estudios Transversales , Exposición a Riesgos Ambientales/efectos adversos , Humanos , Prevalencia , Factores de Riesgo , Población Rural , Encuestas y Cuestionarios
5.
J Theor Biol ; 542: 111105, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35331730

RESUMEN

As the COVID-19 pandemic continues, genetic mutations in SARS-CoV-2 emerge, and some of them are found more contagious than the previously identified strains, acting as the major mechanism for many large-scale epidemics. The transmission advantage of mutated variants is widely believed as an innate biological feature that is difficult to be altered by artificial factors. In this study, we explore how non-pharmaceutical interventions (NPI) may affect transmission advantage. A two-strain compartmental epidemic model is proposed and simulated to investigate the biological mechanism of the relationships among different NPIs, the changes in transmissibility of each strain and transmission advantage. Although the NPIs are effective in flattening the epidemic curve, we demonstrate that NPIs probably lead to a decline in transmission advantage, which is likely to occur if the NPIs become intensive. Our findings uncover the mechanistic relationship between NPIs and transmission advantage dynamically, and highlight the important role of NPIs not only in controlling the intensity of epidemics but also in slowing or even containing the growth of the proportion of variants.


Asunto(s)
COVID-19 , Epidemias , COVID-19/epidemiología , Humanos , Modelos Teóricos , Pandemias , SARS-CoV-2/genética
6.
J Theor Biol ; 529: 110861, 2021 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-34390731

RESUMEN

One of the key epidemiological characteristics that shape the transmission of coronavirus disease 2019 (COVID-19) is the serial interval (SI). Although SI is commonly considered following a probability distribution at a population scale, recent studies reported a slight shrinkage (or contraction) of the mean of effective SI across transmission generations or over time. Here, we develop a likelihood-based statistical inference framework with truncation to explore the change in SI across transmission generations after adjusting the impacts of case isolation. The COVID-19 contact tracing surveillance data in Hong Kong are used for exemplification. We find that for COVID-19, the mean of individual SI is likely to shrink with a factor at 0.72 per generation (95%CI: 0.54, 0.96) as the transmission generation increases, where a threshold may exist as the lower boundary of this shrinking process. We speculate that one of the probable explanations for the shrinkage in SI might be an outcome due to the competition among multiple candidate infectors within the same case cluster. Thus, the nonpharmaceutical interventive strategies are crucially important to block the transmission chains, and mitigate the COVID-19 epidemic.


Asunto(s)
COVID-19 , Trazado de Contacto , Hong Kong , Humanos , Funciones de Verosimilitud , SARS-CoV-2
7.
Theor Biol Med Model ; 18(1): 10, 2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33750399

RESUMEN

BACKGROUND: The COVID-19 pandemic poses a serious threat to global health, and pathogenic mutations are a major challenge to disease control. We developed a statistical framework to explore the association between molecular-level mutation activity of SARS-CoV-2 and population-level disease transmissibility of COVID-19. METHODS: We estimated the instantaneous transmissibility of COVID-19 by using the time-varying reproduction number (Rt). The mutation activity in SARS-CoV-2 is quantified empirically depending on (i) the prevalence of emerged amino acid substitutions and (ii) the frequency of these substitutions in the whole sequence. Using the likelihood-based approach, a statistical framework is developed to examine the association between mutation activity and Rt. We adopted the COVID-19 surveillance data in California as an example for demonstration. RESULTS: We found a significant positive association between population-level COVID-19 transmissibility and the D614G substitution on the SARS-CoV-2 spike protein. We estimate that a per 0.01 increase in the prevalence of glycine (G) on codon 614 is positively associated with a 0.49% (95% CI: 0.39 to 0.59) increase in Rt, which explains 61% of the Rt variation after accounting for the control measures. We remark that the modeling framework can be extended to study other infectious pathogens. CONCLUSIONS: Our findings show a link between the molecular-level mutation activity of SARS-CoV-2 and population-level transmission of COVID-19 to provide further evidence for a positive association between the D614G substitution and Rt. Future studies exploring the mechanism between SARS-CoV-2 mutations and COVID-19 infectivity are warranted.


Asunto(s)
Sustitución de Aminoácidos , COVID-19/transmisión , Glicoproteína de la Espiga del Coronavirus/genética , California/epidemiología , Humanos , Funciones de Verosimilitud , Pandemias
8.
BMC Med Res Methodol ; 21(1): 30, 2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33568100

RESUMEN

BACKGROUND: In infectious disease transmission dynamics, the high heterogeneity in individual infectiousness indicates that few index cases generate large numbers of secondary cases, which is commonly known as superspreading events. The heterogeneity in transmission can be measured by describing the distribution of the number of secondary cases as a negative binomial (NB) distribution with dispersion parameter, k. However, such inference framework usually neglects the under-ascertainment of sporadic cases, which are those without known epidemiological link and considered as independent clusters of size one, and this may potentially bias the estimates. METHODS: In this study, we adopt a zero-truncated likelihood-based framework to estimate k. We evaluate the estimation performance by using stochastic simulations, and compare it with the baseline non-truncated version. We exemplify the analytical framework with three contact tracing datasets of COVID-19. RESULTS: We demonstrate that the estimation bias exists when the under-ascertainment of index cases with 0 secondary case occurs, and the zero-truncated inference overcomes this problem and yields a less biased estimator of k. We find that the k of COVID-19 is inferred at 0.32 (95%CI: 0.15, 0.64), which appears slightly smaller than many previous estimates. We provide the simulation codes applying the inference framework in this study. CONCLUSIONS: The zero-truncated framework is recommended for less biased transmission heterogeneity estimates. These findings highlight the importance of individual-specific case management strategies to mitigate COVID-19 pandemic by lowering the transmission risks of potential super-spreaders with priority.


Asunto(s)
Distribución Binomial , COVID-19/transmisión , Simulación por Computador , Transmisión de Enfermedad Infecciosa/estadística & datos numéricos , Humanos , Infectología/estadística & datos numéricos , Funciones de Verosimilitud , Pandemias , Vigilancia de la Población , SARS-CoV-2 , Sesgo de Selección
9.
Epidemiol Infect ; 149: e107, 2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33928887

RESUMEN

Student's t test is valid for statistical inference under the normality assumption or asymptotically. By contrast, although the bootstrap t test was proposed in 1993, it is seldom adopted in medical research. We aim to demonstrate that the bootstrap t test outperforms Student's t test under normality in data. Using random data samples from normal distributions, we evaluated the testing performance, in terms of true-positive rate (TPR) and false-positive rate and diagnostic abilities, in terms of the area under the curve (AUC), of the bootstrap t test and Student's t test. We explore the AUC of both tests with varying sample size and coefficient of variation. We compare the testing outcomes using the COVID-19 serial interval (SI) data in Shenzhen and Hong Kong, China, for demonstration. With fixed TPR, the bootstrap t test maintained the equivalent accuracy in TPR, but significantly improved the true-negative rate from the Student's t test. With varying TPR, the diagnostic ability of bootstrap t test outperformed or equivalently performed as Student's t test in terms of the AUC. The equivalent performances are possible but rarely occur in practice. We find that the bootstrap t test outperforms by successfully detecting the difference in COVID-19 SI, which is defined as the time interval between consecutive transmission generations, due to sex and non-pharmaceutical interventions against the Student's t test. We demonstrated that the bootstrap t test outperforms Student's t test, and it is recommended to replace Student's t test in medical data analysis regardless of sample size.


Asunto(s)
COVID-19/epidemiología , Modelos Estadísticos , Análisis de Varianza , Área Bajo la Curva , COVID-19/transmisión , China/epidemiología , Femenino , Humanos , Masculino , Curva ROC , SARS-CoV-2 , Tamaño de la Muestra
10.
BMC Infect Dis ; 21(1): 1039, 2021 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-34620109

RESUMEN

BACKGROUND: The COVID-19 pandemic poses serious threats to global health, and the emerging mutation in SARS-CoV-2 genomes, e.g., the D614G substitution, is one of the major challenges of disease control. Characterizing the role of the mutation activities is of importance to understand how the evolution of pathogen shapes the epidemiological outcomes at population scale. METHODS: We developed a statistical framework to reconstruct variant-specific reproduction numbers and estimate transmission advantage associated with the mutation activities marked by single substitution empirically. Using likelihood-based approach, the model is exemplified with the COVID-19 surveillance data from January 1 to June 30, 2020 in California, USA. We explore the potential of this framework to generate early warning signals for detecting transmission advantage on a real-time basis. RESULTS: The modelling framework in this study links together the mutation activity at molecular scale and COVID-19 transmissibility at population scale. We find a significant transmission advantage of COVID-19 associated with the D614G substitution, which increases the infectivity by 54% (95%CI: 36, 72). For the early alarming potentials, the analytical framework is demonstrated to detect this transmission advantage, before the mutation reaches dominance, on a real-time basis. CONCLUSIONS: We reported an evidence of transmission advantage associated with D614G substitution, and highlighted the real-time estimating potentials of modelling framework.


Asunto(s)
COVID-19 , Genoma Viral , SARS-CoV-2 , COVID-19/virología , Humanos , Funciones de Verosimilitud , Mutación , Pandemias , SARS-CoV-2/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA