RESUMEN
The Luttinger liquid (LL) model of one-dimensional (1D) electronic systems provides a powerful tool for understanding strongly correlated physics, including phenomena such as spin-charge separation1. Substantial theoretical efforts have attempted to extend the LL phenomenology to two dimensions, especially in models of closely packed arrays of 1D quantum wires2-13, each being described as a LL. Such coupled-wire models have been successfully used to construct two-dimensional (2D) anisotropic non-Fermi liquids2-6, quantum Hall states7-9, topological phases10,11 and quantum spin liquids12,13. However, an experimental demonstration of high-quality arrays of 1D LLs suitable for realizing these models remains absent. Here we report the experimental realization of 2D arrays of 1D LLs with crystalline quality in a moiré superlattice made of twisted bilayer tungsten ditelluride (tWTe2). Originating from the anisotropic lattice of the monolayer, the moiré pattern of tWTe2 hosts identical, parallel 1D electronic channels, separated by a fixed nanoscale distance, which is tuneable by the interlayer twist angle. At a twist angle of approximately 5 degrees, we find that hole-doped tWTe2 exhibits exceptionally large transport anisotropy with a resistance ratio of around 1,000 between two orthogonal in-plane directions. The across-wire conductance exhibits power-law scaling behaviours, consistent with the formation of a 2D anisotropic phase that resembles an array of LLs. Our results open the door for realizing a variety of correlated and topological quantum phases based on coupled-wire models and LL physics.
RESUMEN
In strongly correlated materials, quasiparticle excitations can carry fractional quantum numbers. An intriguing possibility is the formation of fractionalized, charge-neutral fermions-for example, spinons1 and fermionic excitons2,3-that result in neutral Fermi surfaces and Landau quantization4,5 in an insulator. Although previous experiments in quantum spin liquids1, topological Kondo insulators6-8 and quantum Hall systems3,9 have hinted at charge-neutral Fermi surfaces, evidence for their existence remains inconclusive. Here we report experimental observation of Landau quantization in a two-dimensional insulator, monolayer tungsten ditelluride (WTe2), a large-gap topological insulator10-13. Using a detection scheme that avoids edge contributions, we find large quantum oscillations in the material's magnetoresistance, with an onset field as small as about 0.5 tesla. Despite the huge resistance, the oscillation profile, which exhibits many periods, mimics the Shubnikov-de Haas oscillations in metals. At ultralow temperatures, the observed oscillations evolve into discrete peaks near 1.6 tesla, above which the Landau quantized regime is fully developed. Such a low onset field of quantization is comparable to the behaviour of high-mobility conventional two-dimensional electron gases. Our experiments call for further investigation of the unusual ground state of the WTe2 monolayer, including the influence of device components and the possible existence of mobile fermions and charge-neutral Fermi surfaces inside its insulating gap.
RESUMEN
Sulfur-containing lubricant additives can chemically react with metal surfaces under extreme conditions, such as high temperature and high pressure, forming protective films on the surfaces. However, the formation mechanisms and the friction-reducing and antiwear properties of these films remain unclear. In this study, we investigated the friction process of sulfur-containing additives confined between two iron surfaces using reactive molecular dynamics simulations. Our research revealed that in systems with a higher S/C ratio, an iron sulfide layer formed on the iron surfaces with Fe-S-Fe bridging bonds at the interface, resulting in relatively smaller friction and wear even under higher loads. However, in systems with lower S/C ratios, the presence of numerous interfacial Fe-Cn-Fe bridging bonds, caused by the hydrocarbon radicals released from the additives, led to the formation of thick amorphous shearing bands at the interface between the two substrates. In this case, the distributed sulfur atoms also exhibited some effect in reducing the shear resistance of the amorphous shearing bands due to the weak strength of S-Fe bonds compared to the strength of C-Fe bonds. These atomic-level insights help understand the antiwear characteristics of sulfur-containing lubricant additives confined between iron substrates.
RESUMEN
Thermal effect remains a thorny issue for femtosecond-laser surface engineering and nanostructuring on metallic targets with high pulse energies or high repetition rates, which needs to be paid adequate attentions. Herein, we have experimentally investigated the heat diffusion and accumulations during single-shot and multi-shot femtosecond laser ablation on metallic surfaces. We have for the first time observed a novel phenomenon that the thermal effect was intensified abruptly when the laser-pulse number goes over a threshold (approximately between 10 and 20 for aluminum alloy with laser fluence of 6 J cm-2), accompanied with a dramatic reduction of ablated depth and complicated plasma dynamics. Based on both optical and thermodynamic analysis, we introduced a defocusing-dominated plasma-assistant model for this abnormal thermal effect. This work explored the critical experimental parameters for femtosecond-laser surface modification and processing in micro-scale engineering applications.
RESUMEN
Microencapsulated enzymes have been found to effectively accelerate cheese ripening. However, microencapsulated enzyme release is difficult to control, often resulting in enzyme release during cheese processing and causing texture and flavor defects. This study aims to address this issue by developing aminopeptidase-loaded pH-responsive chitosan microspheres (A-CM) for precise enzyme release during cheese ripening. An aminopeptidase with an isoelectric point (pH 5.4) close to the pH value of cheese ripening was loaded on chitosan microspheres through electrostatic interaction. Turbidity titration measurements revealed that pH 6.5 was optimal for binding aminopeptidase and microspheres, affording the highest loading efficiency of 58.16%. Various characterization techniques, including scanning electron microscopy, energy-dispersive X-ray spectroscopy, and Fourier-transform infrared spectroscopy confirmed the successful loading of aminopeptidase molecules on the chitosan microspheres. In vitro release experiments conducted during simulated cheese production demonstrated that aminopeptidase release from A-CM was pH responsive. The microspheres retained the enzyme during the coagulation and cheddaring processes (pH 5.5-6.5) and only released it after entering the cheese-ripening stage (pH 5.0-5.5). By loading aminopeptidase on chitosan microspheres, the loss rate of the enzyme in cheese whey was reduced by approximately 79%. Furthermore, compared with cheese without aminopeptidase and cheese with aminopeptidase added directly, the cheeses made with A-CM exhibited the highest proteolysis level and received superior sensory ratings for taste and smell. The content of key aroma substances, such as 2/3-methylbutanal and ethyl butyrate, in cheese with A-CM was more than 15 times higher than the others. This study provides an approach for accelerating cheese ripening through the use of microencapsulated enzymes.
Asunto(s)
Aminopeptidasas , Queso , Quitosano , Microesferas , Quitosano/química , Concentración de Iones de Hidrógeno , Aminopeptidasas/metabolismo , Animales , Manipulación de AlimentosRESUMEN
Ultra-instantaneous UHT (UI-UHT, >155°C, <0.1 s) treated milk exhibits higher retention of active protein than regular UHT milk. However, UI-UHT products demonstrate increased susceptibility to destabilization during storage. This study aimed at monitoring the destabilizing process of UI-UHT milk across different storage temperatures and uncovering its potential mechanisms. Compared with regular UHT treatment, ultra-instantaneous treatment markedly accelerated the milk's destabilization process. Aged gel formation occurred after 45 d of storage at 25°C, whereas creaming and sedimentation were observed after 15 d at 37°C. To elucidate the instability mechanism, measurements of plasmin activity, protein hydrolysis levels, and proteomics of the aged gel were conducted. In UI-UHT milk, plasmin activity, and protein hydrolysis levels significantly increased during storage. Excessive protein hydrolysis at 37°C resulted in sedimentation, whereas moderate hydrolysis and an increase in protein particle size at 25°C resulted in aged gel formation. Proteomics analysis results indicated that the aged gel from UI-UHT milk contained intact caseins, major whey proteins, and their derived peptides. Furthermore, specific whey proteins including albumin, lactotransferrin, enterotoxin-binding glycoprotein PP20K, and MFGM proteins were identified in the gel. Additionally, MFGM proteins in UI-UHT milk experienced considerable hydrolysis during storage, contributing to fat instability. This study lays a theoretical foundation for optimizing UI-UHT milk storage conditions to enhance the quality of liquid milk products.
Asunto(s)
Leche , Animales , Leche/química , Temperatura , Proteínas de la Leche/análisis , Almacenamiento de Alimentos , Proteína de Suero de LecheRESUMEN
Milk thermal treatment, such as pasteurization, high-temperature short-time processing, and the emerging ultra-short-time processing (<0.5 s), are crucial for ensuring milk safety and extending its shelf life. Milk is a nutritive food matrix with various macro/micro-nutrients and other constituents that are possibly affected by thermal treatment for reasons associated with processing strength. Therefore, understanding the relationship between heating strength and milk quality is vital for the dairy industry. This review summarizes the impact of thermal treatment strength on milk's nutritional and sensory properties, the synthesizing of the structural integrity and bioavailability of milk proteins, the profile and stability of fatty acids, the retention of macro/micro-nutrients, as well as the overall flavor profile. Additionally, it examines the formation of heat-induced markers, such as Maillard reaction products, lactulose, furosine, and alkaline phosphatase activity, which serve as indicators of heating intensity. Flavor and heating markers are commonly used to assess the quality of pasteurized milk. By examining former studies, we conclude that ultra-short-time-processing-treated milk is comparable to pasteurized milk in terms of specific parameters (such as whey protein behavior, furosine, and ALP contents). This review aims to better summarize how thermal treatments influence the milk matrix, guiding the dairy industry's development and balancing milk products' safety and nutritional value.
Asunto(s)
Ácidos Grasos , Leche , Animales , Leche/química , Ácidos Grasos/análisis , Calor , Proteínas de la Leche/análisis , Proteínas de la Leche/química , Pasteurización/métodos , Manipulación de Alimentos/métodos , Gusto , Humanos , Nutrientes/análisis , BiomarcadoresRESUMEN
BACKGROUND: The use of synbiotics is emerging as a promising intervention strategy for regulating the gut microbiota and for preventing or reducing obesity, in comparison with the use of probiotics or prebiotics alone. A previous in vivo study revealed that Lacticaseibacillus paracasei K56 (L. paracasei K56) could alleviate obesity induced in high-fat-diet mice; however, the effect of the synbiotic combination of L. paracasei K56 and prebiotics in obese individuals has not been explored fully. RESULTS: The effect of prebiotics on the proliferation of L. paracasei K56 was determined by spectrophotometry. The results showed that polydextrose (PG), xylooligosaccharide (XOS), and galactooligosaccharide (GOS) had a greater potential to be used as substrates for L. paracasei K56 than three other prebiotics (melitose, stachyose, and mannan-oligosaccharide). An in vitro fermentation model based on the feces of ten obese female volunteers was then established. The results revealed that K56_GOS showed a significant increase in GOS degradation rate and short-chain fatty acid (SCFA) content, and a decrease in gas levels, compared with PG, XOS, GOS, K56_PG, and K56_XOS. Changes in these microbial biomarkers, including a significant increase in Bacteroidota, Bifidobacterium, Lactobacillus, Faecalibacterium, and Blautia and a decrease in the Firmicutes/Bacteroidota ratio and Escherichia-Shigella in the K56_GOS group, were associated with increased SCFA content and decreased gas levels. CONCLUSION: This study demonstrates the effect of the synbiotic combination of L. paracasei K56 and GOS on obese individuals and indicates its potential therapeutic role in obesity treatment. © 2024 Society of Chemical Industry.
Asunto(s)
Fermentación , Microbioma Gastrointestinal , Lacticaseibacillus paracasei , Obesidad , Oligosacáridos , Simbióticos , Humanos , Obesidad/metabolismo , Obesidad/microbiología , Obesidad/dietoterapia , Simbióticos/administración & dosificación , Oligosacáridos/metabolismo , Oligosacáridos/administración & dosificación , Femenino , Adulto , Lacticaseibacillus paracasei/metabolismo , Heces/microbiología , Heces/química , Prebióticos/análisis , Probióticos/administración & dosificación , Adulto Joven , Persona de Mediana EdadRESUMEN
The reduction of aromatic compounds constitutes a fundamental and ongoing area of investigation. The selective reduction of polycyclic aromatic compounds to give either fully or partially reduced products remains a challenge, especially in applications to complex molecules at scale. Herein, we present a selective electrochemical hydrogenation of polycyclic arenes conducted under mild conditions. A noteworthy achievement of this approach is the ability to finely control both the complete and partial reduction of specific aromatic rings within polycyclic arenes by judiciously varying the reaction solvents. Mechanistic investigations elucidate the pivotal role played by in situ proton generation and interface regulation in governing reaction selectivity. The reductive electrochemical conditions show a very high level of functional-group tolerance. Furthermore, this methodology represents an easily scalable reduction (demonstrated by the reduction of 1â kg scale starting material) using electrochemical flow chemistry to give key intermediates for the synthesis of specific drugs.
RESUMEN
Non-natural building blocks (BBs) present a vast reservoir of chemical diversity for molecular recognition and drug discovery. However, leveraging evolutionary principles to efficiently generate bioactive molecules with a larger number of diverse BBs poses challenges within current laboratory evolution systems. Here, we introduce programmable chemical evolution (PCEvo) by integrating chemoinformatic classification and high-throughput array synthesis/screening. PCEvo initiates evolution by constructing a diversely combinatorial library to create ancestral molecules, streamlines the molecular evolution process and identifies high-affinity binders within 2-4 cycles. By employing PCEvo with 108 BBs and exploring >10^17 chemical space, we identify bicyclic peptidomimetic binders against targets SAR-CoV-2 RBD and Claudin18.2, achieving nanomolar affinity. Remarkably, Claudin18.2 binders selectively stain gastric adenocarcinoma cell lines and patient samples. PCEvo achieves expedited evolution in a few rounds, marking a significant advance in utilizing non-natural building blocks for rapid chemical evolution applicable to targets with or without prior structural information and ligand preference.
RESUMEN
Heterosis is extensively used to improve crop productivity, yet its allelic and chromatin regulation remains unclear. Based on our resolved genomes of the maternal TGY and paternal HD, we analyzed the contribution of allele-specific expression (ASE) and chromatin accessibility of JGY and HGY, the artificial hybrids of oolong tea with the largest cultivated area in China. The ASE genes (ASEGs) of tea hybrids with maternal-biased were mainly related to the energy and terpenoid metabolism pathways, whereas the ASEGs with paternal-biased tend to be enriched in glutathione metabolism, and these parental bias of hybrids may coordinate and lead to the acquisition of heterosis in more biological pathways. ATAC-seq results showed that hybrids have significantly higher accessible chromatin regions (ACRs) compared with their parents, which may confer broader and stronger transcriptional activity of genes in hybrids. The number of ACRs with significantly increased accessibility in hybrids was much greater than decreased, and the associated alleles were also affected by differential ACRs across different parents, suggesting enhanced positive chromatin regulation and potential genetic effects in hybrids. Core ASEGs of terpene and purine alkaloid metabolism pathways with significant positive heterosis have greater chromatin accessibility in hybrids, and were potentially regulated by several members of the MYB, DOF and TRB families. The binding motif of CsMYB85 in the promoter ACR of the rate-limiting enzyme CsDXS was verified by DAP-seq. These results suggest that higher numbers and more accessible ACRs in hybrids contribute to the regulation of ASEGs, thereby affecting the formation of heterotic metabolites.
Asunto(s)
Camellia sinensis , Vigor Híbrido , Vigor Híbrido/genética , Alelos , Camellia sinensis/genética , Camellia sinensis/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Cromatina/genética , Cromatina/metabolismo , Perfilación de la Expresión Génica , Té/metabolismoRESUMEN
Oxidation-induced strategy for inert chemical bond activation through highly active radical cation intermediate has exhibited unique reactivity. Understanding the structure and reactivity patterns of radical cation intermediates is crucial in the mechanistic study and will be beneficial for developing new reactions. In this work, the structure and properties of indole radical cations have been revealed using time-resolved transient absorption spectroscopy, in situ electrochemical UV-vis, and in situ electrochemical electron paramagnetic resonance (EPR) technique. Density functional theory (DFT) calculations were used to explain and predict the regioselectivity of several electrochemical oxidative indole annulations. Based on the understanding of the inherent properties of several indole radical cations, two different regioselective annulations of indoles have been successfully developed under electrochemical oxidation conditions. Varieties of furo[2,3-b]indolines and furo[3,2-b]indolines were synthesized in good yields with high regioselectivities. Our mechanistic insights into indole radical cations will promote the further development of oxidation-induced indole functionalizations.
RESUMEN
Interactions between ultrafast lasers and metal targets are crucial in various laser micro/nano-machinings. However, the underlying incubation and absorption-enhancement mechanisms remain elusive, which hinders the quality control of laser processing. Herein, we studied the incubation effect and absorption enhancement during multi-shot femtosecond-laser ablations via combining experiments and hydrodynamic simulations, taking aluminum alloy and stainless steels as paradigm materials. Accumulation effects of heat and damage-induced deformation were revealed by the evolutions of microstructures induced by low-energy femtosecond lasers. The calculated ablation thresholds were reduced with shot number, demonstrating the incubation effect. Calculation of threshold fluence via crater diameter is better than ablation depth, because that the latter is determined by different parameters at low- and high-energy conditions. Experimental observations and hydrodynamic simulations indicated that the enhanced absorption could be attributed to several factors, including laser-induced surface micro/sub-micro structures, photoionization, and plasma evolutions.
RESUMEN
The composition, structure, and functionalities of prolamins from highland barley were investigated. These parameters were compared with those of the commonly applied prolamins (zein). There are more charged and hydrophilic amino acids in highland barely prolamins than zein. The molecular weight of highland barely prolamins was between 30 and 63 kDa, which was larger than that of zein (20 and 24 kDa). The main secondary structure of highland barely prolamins was ß-turn helices, while α-helical structures were the main secondary structure in zein. The water holding capacity, thermal stability, emulsifying capacity, and stability of prolamins from highland barley were significantly higher than in zein, while the opposite results were observed for oil absorption capacity between the two. The diameter of fibers prepared using highland barely prolamins was almost six times that of zein, while highland barely prolamins formed ribbon structures instead of fibers. Therefore, the results provide guidance for applications of prolamins from highland barley.
Asunto(s)
Hordeum , Zeína , Prolaminas/química , Prolaminas/metabolismo , Zeína/química , Hordeum/metabolismo , Estructura Secundaria de Proteína , AminoácidosRESUMEN
As consumers' interest in nature-sourced additives has increased, zein has been treated hydrothermally under alkaline conditions to prepare a nature-sourced emulsifier. The effects of mild hydrothermal-alkaline treatment with different temperatures or alkaline concentrations on the emulsifying properties of zein were investigated. The emulsification activity and stability index of zein hydrolysates increased by 39% and 164%, respectively. The optimal simple stabilized emulsion was uniform and stable against heat treatment up to 90 °C, sodium chloride up to 200 mmol/L, and pH values ranging from 6 to 9. Moreover, it presented excellent storage stability compared to commonly used food emulsifiers. The surface hydrophobicity caused the depolymerization of the tertiary structure of zein and the dissociation of subunits along with exposure of hydrophilic groups. The amino acid composition and circular dichroism results reveal that the treatment dissociated protein subunits and transformed α-helices into anti-parallel ß-sheets and random coil. In conclusion, mild hydrothermal-alkaline treatment may well contribute to the extended functional properties of zein as a nature-sourced emulsifier.
Asunto(s)
Zea mays , Zeína , Zea mays/química , Zeína/química , Emulsionantes/química , Emulsiones , Interacciones Hidrofóbicas e HidrofílicasRESUMEN
Precisely introducing two similar functional groups into bulk chemical alkenes represents a formidable route to complex molecules. Especially, the selective activation of two electrophiles is in crucial demand, yet challenging for cross-electrophile-coupling. Herein, we demonstrate a redox-mediated electrolysis, in which aryl nitriles are both aryl radical precursors and redox-mediators, enables an intermolecular alkene 1,2-diarylation with a remarkable regioselectivity, thereby avoiding the involvement of transition-metal catalysts. This transformation utilizes cyanoarene radical anions for activating various aryl halides (including iodides, bromides, and even chlorides) and affords 1,2-diarylation adducts in up to 83 % yield and >20 : 1 regioselectivity with more than 80 examples, providing a feasible approach to complex bibenzyl derivatives.
RESUMEN
MYB transcription factors play essential roles in many biological processes and environmental stimuli. However, the functions of the MYB transcription factor family in tea plants have not been elucidated. Here, a total of 122 CsR2R3-MYB genes were identified from the chromosome level genome of tea plant (Camellia sinensis). The CsR2R3-MYB genes were phylogenetically classified into 25 groups. Results from the structure analysis of the gene, conserved motifs, and chromosomal distribution supported the relative conservation of the R2R3-MYB genes family in the tea plant. Synteny analysis indicated that 122, 34, and 112 CsR2R3-MYB genes were orthologous to Arabidopsis thaliana, Oryza sativa and C. sinensis var. 'huangdan' (HD), respectively. Tissue-specific expression showed that all CsR2R3-MYB genes had different expression patterns in the tea plant tissues, indicating that these genes may perform diverse functions. The expression patterns of representative R2R3-MYB genes and the regulatory network of the main anthocyanin components were analyzed, which suggested that CsMYB17 may played a key role in the regulation of cya-3-O-gal, del-3-O-gal, cya-3-O-glu and pel-3-O-glu. Results from the qRT-PCR validation of selected genes suggested that CsR2R3-MYB genes were induced in response to drought, cold, GA, and ABA treatments. Overall, this study provides comprehensive and systematic information for research on the function of R2R3-MYB genes in tea plants.
Asunto(s)
Camellia sinensis , Factores de Transcripción , Secuencia de Aminoácidos , Camellia sinensis/genética , Camellia sinensis/metabolismo , Cromosomas , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Filogenia , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismoRESUMEN
BACKGROUND: Lipids are one of the most important bioactive compounds, affecting the character and quality of tea. However, the contribution of lipids to tea productions is still elusive. Here, we systematically identified the lipid profiles of green, oolong, and black teas in purple-leaf tea (Jinmingzao, JMZ) and green-leaf tea (Huangdan, HD), respectively. RESULTS: The lipids analysis showed regular accumulation in tea products with different manufacturing processes, among which the fatty acids, glycerolipids, glycerophospholipids, and sphingolipids contribute to the quality characteristics of tea products, including typical fatty acyl (FA), monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerols (DGDG), and phosphatidylcholine (PC). Compared tea materials with products, levels of fatty acids were up-regulated, while glycerolipids and glycerophospholipids were down-regulated in tea products. FA 18:3, FA 16:0, MGDG 36:6, DGDG 36:6, PC 34:3, and PC 36:6 were the negative contributors to green tea flavor formation of purple-leaf tea. The pathway analysis of significant lipids in materials and products of purple-leaf tea were enriched linolenic acid metabolism pathway and glycerolipid metabolism. CONCLUSION: This study provides insights into the lipid metabolism profiles of different tea leaf colors, and found that fatty acids are essential precursors of black tea flavor formation. © 2021 Society of Chemical Industry.
Asunto(s)
Lipidómica , Hojas de la Planta , Ácidos Grasos/análisis , Glicerofosfolípidos/metabolismo , Hojas de la Planta/química , Té/químicaRESUMEN
Cyclopentenes are common cores in many natural products, and in bioactive and functional molecules. However, their synthesis remains challenging in terms of harsh conditions, poor selectivity, prefunctionalization of the substrates, over-reliance on volatile activating reagents and the use of noble metals. Herein, we develop an electrochemical mediator-induced intermolecular selective (3+2) annulation of readily available alkenes and alkynes/alkenes, which provides a simple and efficient method for the synthesis of a library of decorated cyclopentenes and cyclopentanes. This protocol features high efficiency, mild reaction conditions, broad substrate scope, good functional group tolerance, and high regioselectivity. Potential applications are demonstrated by gram-scale synthesis as well as the construction of structural diversity and complexity. A preliminary mechanistic investigation was performed, which indicated that an iodine radical and carbon radicals are involved in this transformation.