RESUMEN
C-H bond activation reactions with transition metals typically proceed via the formation of alkane σ-complexes, where an alkane C-H σ-bond binds to the metal. Due to the weak nature of metal-alkane bonds, σ-complexes are challenging to characterize experimentally. Here, we establish the complete pathways of photochemical formation of the model σ-complex Cr(CO)5-alkane from Cr(CO)6 in octane solution and characterize the nature of its metal-ligand bonding interactions. Using femtosecond optical absorption spectroscopy, we find photoinduced CO dissociation from Cr(CO)6 to occur within the 100 fs time resolution of the experiment. Rapid geminate recombination by a fraction of molecules is found to occur with a time constant of 150 fs. The formation of bare Cr(CO)5 in its singlet ground state is followed by complexation of an octane molecule from solution with a time constant of 8.2 ps. Picosecond X-ray absorption spectroscopy at the Cr L-edge and O K-edge provides unique information on the electronic structure of the Cr(CO)5-alkane σ-complex from both the metal and ligand perspectives. Based on clear experimental observables, we find substantial destabilization of the lowest unoccupied molecular orbital upon coordination of the C-H bond to the undercoordinated Cr center in the Cr(CO)5-alkane σ-complex, and we define this as a general, orbital-based descriptor of the metal-alkane bond. Our study demonstrates the value of combining optical and X-ray spectroscopic methods as complementary tools to study the stability and reactivity of alkane σ-complexes in their role as the decisive intermediates in C-H bond activation reactions.
RESUMEN
Wide-band-gap insulators such as NiO offer the exciting prospect of coherently manipulating electronic correlations with strong optical fields. Contrary to metals where rapid dephasing of optical excitation via electronic processes occurs, the sub-gap excitation in charge-transfer insulators has been shown to couple to low-energy bosonic excitations. However, it is currently unknown if the bosonic dressing field is composed of phonons or magnons. Here we use the prototypical charge-transfer insulator NiO to demonstrate that 1.5 eV sub-gap optical excitation leads to a renormalised NiO band-gap in combination with a significant reduction of the antiferromagnetic order. We employ element-specific X-ray reflectivity at the FLASH free-electron laser to demonstrate the reduction of the upper band-edge at the O 1s-2p core-valence resonance (K-edge) whereas the antiferromagnetic order is probed via X-ray magnetic linear dichroism (XMLD) at the Ni 2p-3d resonance (L2-edge). Comparing the transient XMLD spectral line shape to ground-state measurements allows us to extract a spin temperature rise of 65 ± 5 K for time delays longer than 400 fs while at earlier times a non-equilibrium spin state is formed. We identify transient mid-gap states being formed during the first 200 fs accompanied by a band-gap reduction lasting at least up to the maximum measured time delay of 2.4 ps. Electronic structure calculations indicate that magnon excitations significantly contribute to the reduction of the NiO band gap.
RESUMEN
Angle-dependent 2p3d resonant inelastic X-ray scattering spectra of a LaCoO3 single crystal and a 55â nm LaCoO3 film on a SrTiO3 substrate are presented. Theoretical calculation shows that, with â¼20â meV resolved Co 2p3d resonant inelastic X-ray scattering (RIXS), the excited states of the isotropic 1A1g(Oh) ground state are split by 3d spin-orbit coupling, which can be distinguished via their angular dependence. However, strong self-absorption and saturation effects distort the spectra of the LaCoO3 single crystal and limit the observation of small angular dependence. In contrast, the RIXS on 55â nm LaCoO3 shows less self-absorption effects and preserves the angular dependence of the excited states.
RESUMEN
Understanding many-body physics of elementary excitations has advanced our control over material properties. Here, we study spin-flip excitations in NiO using Ni L_{3}-edge resonant inelastic x-ray scattering (RIXS) and present a strikingly different resonant energy behavior between single and double spin-flip excitations. Comparing our results with single-site full-multiplet ligand field theory calculations we find that the spectral weight of the double-magnon excitations originates primarily from the double spin-flip transition of the quadrupolar RIXS process within a single magnetic site. Quadrupolar spin-flip processes are among the least studied excitations, despite being important for multiferroic or spin-nematic materials due to their difficult detection. We identify intermediate state multiplets and intra-atomic core-valence exchange interactions as the key many-body factors determining the fate of such excitations. RIXS resonant energy dependence can act as a convincing proof of existence of nondipolar higher-ranked magnetic orders in systems for which, only theoretical predictions are available.
RESUMEN
To gain insight into the underlying mechanisms of catalyst durability for the selective catalytic reduction (SCR) of NOx with an ammonia reductant, we employed scanning transmission X-ray microscopy (STXM) to study Cu-exchanged zeolites with the CHA and MFI framework structures before and after simulated 135 000-mile aging. X-ray absorption near-edge structure (XANES) measurements were performed at the Alâ K- and Cuâ L-edges. The local environment of framework Al, the oxidation state of Cu, and geometric changes were analyzed, showing a multi-factor-induced catalytic deactivation. In Cu-exchanged MFI, a transformation of CuII to CuI and Cux Oy was observed. We also found a spatial correlation between extra-framework Al and deactivated Cu species near the surface of the zeolite as well as a weak positive correlation between the amount of CuI and tri-coordinated Al. By inspecting both Al and Cu in fresh and aged Cu-exchanged zeolites, we conclude that the importance of the preservation of isolated CuII sites trumps that of Brønsted acid sites for NH3 -SCR activity.
RESUMEN
Two isostructural cobalt containing polyoxometalate water oxidation catalysts, [Co4(H2O)2(α-PW9O34)2]10- (Co4P2) and [Co4(H2O)2(α-VW9O34)2]10- (Co4V2), exhibit large differences in their catalytic performance. The substitution of phosphorus centers in Co4P2 with redox-active vanadium centers in Co4V2 leads to electronic structure modifications. Evidence for the significance of the vanadium centers to catalysis, predicted by theory, was found from soft X-ray absorption (XAS) and resonant inelastic X-ray scattering (RIXS). The XAS and RIXS spectra determine the electronic structure of the cobalt and vanadium sites in the pre-reaction state of both Co4V2 and Co4P2. High-energy resolution RIXS results reveal that Co4V2 possesses a smaller ligand field within the tetra-cobalt core and a cobalt-to-vanadium charge transfer band. The differences in electronic structures offer insights into the enhanced catalysis of Co4V2.
RESUMEN
The Co 2p3/2 X-ray absorption spectroscopy and high-energy-resolution (â¼0.09 eV fwhm) 2p3d resonant inelastic X-ray scattering (RIXS) spectra of the single-cobalt-centered polyoxometalate K5H[CoW12O40]·xH2O were measured. The low-energy dd transition features at 0.55 eV, unmeasurable with ultraviolet-visible (UV/vis) spectroscopy, were experimentally revealed in 2p3d RIXS spectra. RIXS simulations based on ligand-field multiplet theory were performed to assess the potential cobalt tetragonal symmetry distortion, which is described with the ligand-field parameters 10Dq (-0.54 eV), Ds (-0.08 eV), and Dt (0.005 eV). Because 2p3d RIXS probes not only the optical spin-allowed transitions but also the spin-forbidden transitions, we show that the current 2p3d RIXS simulation enables a series of dd feature assignments with higher accuracy than those from previous optical data. Furthermore, by wave-function decomposition analyses, we demonstrate the more realistic and detailed origins of a few lowest dd transitions using both one-electron-orbital and term-symbol descriptions.
RESUMEN
X-ray circular dichroism, arising from the contrast in X-ray absorption between opposite photon helicities, serves as a spectroscopic tool to measure the magnetization of ferromagnetic materials and identify the handedness of chiral crystals. Antiferromagnets with crystallographic chirality typically lack X-ray magnetic circular dichroism because of time-reversal symmetry, yet exhibit weak X-ray natural circular dichroism. Here, the observation of giant natural circular dichroism in the Ni L3-edge X-ray absorption of Ni3TeO6 is reported, a polar and chiral antiferromagnet with effective time-reversal symmetry. To unravel this intriguing phenomenon, a phenomenological model is proposed that classifies the movement of photons in a chiral crystal within the same symmetry class as that of a magnetic field. The coupling of X-ray polarization with the induced magnetization yields giant X-ray natural circular dichroism, revealing typical ferromagnetic behaviors allowed by the symmetry in an antiferromagnet, i.e., the altermagnetism of Ni3TeO6. The findings provide evidence for the interplay between magnetism and crystal chirality in natural optical activity. Additionally, the first example of a new class of magnetic materials exhibiting circular dichroism is established with time-reversal symmetry.
RESUMEN
Photochemically prepared transition-metal complexes are known to be effective at cleaving the strong C-H bonds of organic molecules in room temperature solutions. There is also ample theoretical evidence that the two-way, metal to ligand (MLCT) and ligand to metal (LMCT), charge-transfer between an incoming alkane C-H group and the transition metal is the decisive interaction in the C-H activation reaction. What is missing, however, are experimental methods to directly probe these interactions in order to reveal what determines reactivity of intermediates and the rate of the reaction. Here, using quantum chemical simulations we predict and propose future time-resolved valence-to-core resonant inelastic X-ray scattering (VtC-RIXS) experiments at the transition metal L-edge as a method to provide a full account of the evolution of metal-alkane interactions during transition-metal mediated C-H activation reactions. For the model system cyclopentadienyl rhodium dicarbonyl (CpRh(CO)2), we demonstrate, by simulating the VtC-RIXS signatures of key intermediates in the C-H activation pathway, how the Rh-centered valence-excited states accessible through VtC-RIXS directly reflect changes in donation and back-donation between the alkane C-H group and the transition metal as the reaction proceeds via those intermediates. We benchmark and validate our quantum chemical simulations against experimental steady-state measurements of CpRh(CO)2 and Rh(acac)(CO)2 (where acac is acetylacetonate). Our study constitutes the first step towards establishing VtC-RIXS as a new experimental observable for probing reactivity of C-H activation reactions. More generally, the study further motivates the use of time-resolved VtC-RIXS to follow the valence electronic structure evolution along photochemical, photoinitiated and photocatalytic reactions with transition metal complexes.
RESUMEN
A change of orbital state alters the coupling between ions and their surroundings drastically. Orbital excitations are hence key to understand and control interaction of ions. Rare-earth elements with strong magneto-crystalline anisotropy (MCA) are important ingredients for magnetic devices. Thus, control of their localized 4f magnetic moments and anisotropy is one major challenge in ultrafast spin physics. With time-resolved x-ray absorption and resonant inelastic scattering experiments, we show for Tb metal that 4f-electronic excitations out of the ground-state multiplet occur after optical pumping. These excitations are driven by inelastic 5d-4f-electron scattering, altering the 4f-orbital state and consequently the MCA with important implications for magnetization dynamics in 4f-metals and more general for the excitation of localized electronic states in correlated materials.
RESUMEN
We report the measurement of impulsive stimulated x-ray Raman scattering in neutral liquid water. An attosecond pulse drives the excitations of an electronic wavepacket in water molecules. The process comprises two steps: a transition to core-excited states near the oxygen atoms accompanied by transition to valence-excited states. Thus, the wavepacket is impulsively created at a specific atomic site within a few hundred attoseconds through a nonlinear interaction between the water and the x-ray pulse. We observe this nonlinear signature in an intensity-dependent Stokes Raman sideband at 526 eV. Our measurements are supported by our state-of-the-art calculations based on the polarization response of water dimers in bulk solvation and propagation of attosecond x-ray pulses at liquid density.
RESUMEN
A photon carrying one unit of angular momentum can change the spin angular momentum of a magnetic system with one unit (ΔMs = ±1) at most. This implies that a two-photon scattering process can manipulate the spin angular momentum of the magnetic system with a maximum of two units. Herein we describe a triple-magnon excitation in α-Fe2O3, which contradicts this conventional wisdom that only 1- and 2-magnon excitations are possible in a resonant inelastic X-ray scattering experiment. We observe an excitation at exactly three times the magnon energy, along with additional excitations at four and five times the magnon energy, suggesting quadruple and quintuple-magnons as well. Guided by theoretical calculations, we reveal how a two-photon scattering process can create exotic higher-rank magnons and the relevance of these quasiparticles for magnon-based applications.
RESUMEN
Transition metal reactivity toward carbon-hydrogen (C-H) bonds hinges on the interplay of electron donation and withdrawal at the metal center. Manipulating this reactivity in a controlled way is difficult because the hypothesized metal-alkane charge-transfer interactions are challenging to access experimentally. Using time-resolved x-ray spectroscopy, we track the charge-transfer interactions during C-H activation of octane by a cyclopentadienyl rhodium carbonyl complex. Changes in oxidation state as well as valence-orbital energies and character emerge in the data on a femtosecond to nanosecond timescale. The x-ray spectroscopic signatures reflect how alkane-to-metal donation determines metal-alkane complex stability and how metal-to-alkane back-donation facilitates C-H bond cleavage by oxidative addition. The ability to dissect charge-transfer interactions on an orbital level provides opportunities for manipulating C-H reactivity at transition metals.
RESUMEN
We present the cobalt 2p3d resonant inelastic X-ray scattering (RIXS) spectra of Co3O4. Guided by multiplet simulation, the excited states at 0.5 and 1.3 eV can be identified as the 4 T 2 excited state of the tetrahedral Co2+ and the 3 T 2g excited state of the octahedral Co3+, respectively. The ground states of Co2+ and Co3+ sites are determined to be high-spin 4 A 2(T d ) and low-spin 1 A 1g (Oh ), respectively. It indicates that the high-spin Co2+ is the magnetically active site in Co3O4. Additionally, the ligand-to-metal charge transfer analysis shows strong orbital hybridization between the cobalt and oxygen ions at the Co3+ site, while the hybridization is weak at the Co2+ site.
RESUMEN
Carrier dynamics affects photocatalytic systems, but direct and real-time observations in an element-specific and energy-level-specific manner are challenging. In this study, we demonstrate that the dynamics of photo-generated holes in metal oxides can be directly probed by using femtosecond X-ray absorption spectroscopy at an X-ray free-electron laser. We identify the energy level and life time of holes with a long life time (230 pico-seconds) in nano-crystal materials. We also observe that trapped holes show an energy distribution in the bandgap region with a formation time of 0.3 pico-seconds and a decay time of 8.0 pico-seconds at room temperature. We corroborate the dynamics of the electrons by using X-ray absorption spectroscopy at the metal L-edges in a consistent explanation with that of the holes.
RESUMEN
The determination of the local orientation and magnitude of the magnetization in spin textures plays a pivotal role in understanding and harnessing magnetic properties for technological applications. Here, we show that by employing the polarization dependence of resonant inelastic X-ray scattering (RIXS), we can directly probe the spin ordering with chemical and site selectivity. Applied on the prototypical ferrimagnetic mixed-valence system, magnetite ([Fe3+]A[Fe3+,Fe2+]BO4), we can distinguish spin-flip excitations at the A and B antiferromagnetically coupled Fe3+ sublattices and quantify the exchange field. Furthermore, it is possible to determine the orbital contribution to the magnetic moment from detailed angular dependence measurements. RIXS dichroism measurements performed at spin-flip excitations with nanometer spatial resolution will offer a powerful mapping contrast suitable for the characterization of magnetic ordering at interfaces and engineered spin textures.
RESUMEN
We show that with 2p3d resonant inelastic X-ray scattering (RIXS) we can accurately determine the charge-transfer parameters of CoF2, CoCl2, CoBr2, and CoS. The 160 meV resolution RIXS results are compared with charge-transfer multiplet calculations. The improved resolution and the direct observation of the crystal field and charge-transfer excitations allow the determination of more accurate parameters than could be derived from X-ray absorption and X-ray photoemission, both limited in resolution by their lifetime broadening. We derive the crystal field and charge-transfer parameters of the Co2+ ions, which provides the nature of the ground state of the Co2+ ions with respect to symmetry and hybridization. In addition, the increased spectral resolution allows the more accurate determination of the atomic Slater integrals. The results show that the crystal field energy decreases with increasing ligand covalency. The L2 edge RIXS spectra show that the intensity of the (Coster-Kronig induced) nonresonant X-ray emission is a measure of ligand covalency.