Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 50(1): 137-151.e6, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30650373

RESUMEN

Fever is an evolutionarily conserved response that confers survival benefits during infection. However, the underlying mechanism remains obscure. Here, we report that fever promoted T lymphocyte trafficking through heat shock protein 90 (Hsp90)-induced α4 integrin activation and signaling in T cells. By inducing selective binding of Hsp90 to α4 integrins, but not ß2 integrins, fever increased α4-integrin-mediated T cell adhesion and transmigration. Mechanistically, Hsp90 bound to the α4 tail and activated α4 integrins via inside-out signaling. Moreover, the N and C termini of one Hsp90 molecule simultaneously bound to two α4 tails, leading to dimerization and clustering of α4 integrins on the cell membrane and subsequent activation of the FAK-RhoA pathway. Abolishment of Hsp90-α4 interaction inhibited fever-induced T cell trafficking to draining lymph nodes and impaired the clearance of bacterial infection. Our findings identify the Hsp90-α4-integrin axis as a thermal sensory pathway that promotes T lymphocyte trafficking and enhances immune surveillance during infection.


Asunto(s)
Fiebre/inmunología , Proteínas HSP90 de Choque Térmico/metabolismo , Integrina alfa4/metabolismo , Infecciones por Salmonella/inmunología , Salmonella typhimurium/inmunología , Linfocitos T/inmunología , Animales , Carga Bacteriana , Adhesión Celular , Movimiento Celular , Dimerización , Quinasa 1 de Adhesión Focal/metabolismo , Vigilancia Inmunológica , Integrina alfa4/genética , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Unión Proteica , Transducción de Señal , Proteína de Unión al GTP rhoA/metabolismo
2.
Blood ; 143(11): 1018-1031, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38127913

RESUMEN

ABSTRACT: Disordered erythropoiesis is a feature of many hematologic diseases, including sickle cell disease (SCD). However, very little is known about erythropoiesis in SCD. Here, we show that although bone marrow (BM) erythroid progenitors and erythroblasts in Hbbth3/+ thalassemia mice were increased more than twofold, they were expanded by only ∼40% in Townes sickle mice (SS). We further show that the colony-forming ability of SS erythroid progenitors was decreased and erythropoietin (EPO)/EPO receptor (EPOR) signaling was impaired in SS erythroid cells. Furthermore, SS mice exhibited reduced responses to EPO. Injection of mice with red cell lysates or hemin, mimicking hemolysis in SCD, led to suppression of erythropoiesis and reduced EPO/EPOR signaling, indicating hemolysis, a hallmark of SCD, and could contribute to the impaired erythropoiesis in SCD. In vitro hemin treatment did not affect Stat5 phosphorylation, suggesting that hemin-induced erythropoiesis suppression in vivo is via an indirect mechanism. Treatment with interferon α (IFNα), which is upregulated by hemolysis and elevated in SCD, led to suppression of mouse BM erythropoiesis in vivo and human erythropoiesis in vitro, along with inhibition of Stat5 phosphorylation. Notably, in sickle erythroid cells, IFN-1 signaling was activated and the expression of cytokine inducible SH2-containing protein (CISH), a negative regulator of EPO/EPOR signaling, was increased. CISH deletion in human erythroblasts partially rescued IFNα-mediated impairment of cell growth and EPOR signaling. Knocking out Ifnar1 in SS mice rescued the defective BM erythropoiesis and improved EPO/EPOR signaling. Our findings identify an unexpected role of hemolysis on the impaired erythropoiesis in SCD through inhibition of EPO/EPOR signaling via a heme-IFNα-CISH axis.


Asunto(s)
Anemia de Células Falciformes , Eritropoyesis , Ratones , Animales , Humanos , Eritropoyesis/fisiología , Factor de Transcripción STAT5/metabolismo , Hemólisis , Hemina/metabolismo , Receptores de Eritropoyetina/genética , Receptores de Eritropoyetina/metabolismo , Anemia de Células Falciformes/complicaciones
3.
Crit Rev Food Sci Nutr ; : 1-22, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38494899

RESUMEN

Species adulteration or mislabeling with meat and seafood products could negatively affect the fair trade, wildlife conservation, food safety, religion aspect, and even the public health. While PCR-based methods remain the gold standard for assessment of the species authenticity, there is an urgent need for alternative testing platforms that are rapid, accurate, simple, and portable. Owing to its ease of use, low cost, and rapidity, LAMP is becoming increasingly used method in food analysis for detecting species adulteration or mislabeling. In this review, we outline how the features of LAMP have been leveraged for species authentication test with meat and seafood products. Meanwhile, as the trend of LAMP detection is simple, rapid and instrument-free, it is of great necessity to carry out end-point visual detection, and the principles of various end-point colorimetry methods are also reviewed. Moreover, with the aim to enhance the LAMP reaction, different strategies are summarized to either suppress the nonspecific amplification, or to avoid the results of nonspecific amplification. Finally, microfluidic chip is a promising point-of-care method, which has been the subject of a great deal of research directed toward the development of microfluidic platforms-based LAMP systems for the species authenticity with meat and seafood products.

4.
Inorg Chem ; 63(6): 3063-3074, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38285631

RESUMEN

Phenanthroline diamide ligands have been widely used in the separation of trivalent actinides and lanthanides, but little research has focused on extractants with asymmetrical substitutes. Two novel asymmetrical phenanthroline-based ligands N2,N2,N9-triethyl-N9-tolyl-1,10-phenanthroline-2,9-dicarboxamide (DE-ET-DAPhen) and N2-ethyl-N9,N9-dioctyl-N2-tolyl-1,10-phenanthroline-2,9-dicarboxamide (DO-ET-DAPhen) were first synthesized in this work, whose extraction ability and complexation mechanism to trivalent actinides [An(III)] and lanthanides [Ln(III)] were systematically investigated. The ligands dissolved in n-octanol exhibit good extraction ability and high selectivity toward Am(III) in acidic solutions. The complexation mechanism of the ligands with Ln(III) in solution and solid state was analyzed using slope analysis, 1H NMR spectrometric titration, ESI-MS, and calorimetric titration. It is revealed that the ligands complex with Am(III)/Eu(III) with 1:1 stoichiometry. The stability constant (log ß) of the complexation reaction of Eu(III) with DE-ET-DAPhen determined by UV-vis spectrophotometric and calorimetric titration is higher than that of DO-ET-DAPhen, indicating the stronger complexation ability of DE-ET-DAPhen. Meanwhile, the calorimetric titration results show that the complexation process is exothermic with a decreased entropy. The structures of 1:1 complexes of Eu(III) and Nd(III) with DE-ET-DAPhen were analyzed through single-crystal X-ray diffraction. This work proves that ligands containing asymmetrical functional groups are promising for An(III)/Ln(III) separation, which shows great significance in efficient extractants designed for the spent nuclear fuel reprocessing process.

5.
Cell Mol Biol (Noisy-le-grand) ; 70(1): 200-206, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38372094

RESUMEN

As a common neurodegenerative disorder, Alzheimer's disease (AD) seriously threatens human life. Long non-coding RNAs (lncRNAs) exhibit essential functions in AD development. Nevertheless, the detailed effects and possible mechanisms of lncRNA Wilms tumor 1 Antisense RNA (WT1-AS) in AD are largely unknown. In our studies, a total of 30 serum samples from AD patients were collected, and WT1-AS expressions were detected through qRT-PCR analysis. Additionally, an in vitro AD model was constructed by treating Aß1-42 in human neuroblastoma cells. Functional assays were implemented to assess the impacts of WT1-AS on Aß1-42-stimulated human neuroblastoma cell proliferation together with apoptosis. Moreover, relationship of WT1-AS, microRNA (miR)-186-5p as well as cyclin D2 (CCND2) could be predicted through bioinformatics tools as well as proved via dual-luciferase reporter experiments. Our results showed that WT1-AS together with CCND2 were low-expressed, while miR-186-5p presented high expression in AD serum samples together with Aß1-42-stimulated human neuroblastoma cells. WT1-AS over-expression or miR-186-5p depletion notably promoted the proliferation, reduced the apoptosis, and decreased the p-Tau protein expressions of human neuroblastoma cells induced with Aß1-42. Moreover, miR-186-5p combined with WT1-AS, and CCND2 was modulated by miR-186-5p. Furthermore, CCND2 elevation partially offsets the impacts of miR-186-5p elevation on Aß1-42-stimulated cell proliferation as well as apoptosis mediated with WT1-AS up-regulation. Our results indicated that up-regulation of lncRNA WT1-AS ameliorated Aß-stimulated neuronal damage through modulating miR-186-5p/CCND2 axis, offering a novel direction for AD therapy.


Asunto(s)
Enfermedad de Alzheimer , Ciclina D2 , MicroARNs , Neuroblastoma , ARN Largo no Codificante , Humanos , Enfermedad de Alzheimer/genética , Apoptosis/genética , Ciclina D2/genética , Ciclina D2/metabolismo , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Regulación hacia Arriba/genética
6.
Nucleic Acids Res ; 50(2): 750-762, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-34935961

RESUMEN

P-TEFb modulates RNA polymerase II elongation through alternative interaction with negative and positive regulation factors. While inactive P-TEFbs are mainly sequestered in the 7SK snRNP complex in a chromatin-free state, most of its active forms are in complex with its recruitment factors, Brd4 and SEC, in a chromatin-associated state. Thus, switching from inactive 7SK snRNP to active P-TEFb (Brd4/P-TEFb or SEC/P-TEFb) is essential for global gene expression. Although it has been shown that cellular signaling stimulates the disruption of 7SK snRNP, releasing dephosphorylated and catalytically inactive P-TEFb, little is known about how the inactive released P-TEFb is reactivated. Here, we show that the Cdk9/CycT1 heterodimer released from 7SK snRNP is completely dissociated into monomers in response to stress. Brd4 or SEC then recruits monomerized Cdk9 and CycT1 to reassemble the core P-TEFb. Meanwhile, the binding of monomeric dephosphorylated Cdk9 to either Brd4 or SEC induces the autophosphorylation of T186 of Cdk9. Finally, the same mechanism is employed during nocodazole released entry into early G1 phase of cell cycle. Therefore, our studies demonstrate a novel mechanism by which Cdk9 and CycT1 monomers are reassembled on chromatin to form active P-TEFb by its interaction with Brd4 or SEC to regulate transcription.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Ciclina T/metabolismo , Quinasa 9 Dependiente de la Ciclina/metabolismo , Proteínas de Unión al ADN/metabolismo , Factor B de Elongación Transcripcional Positiva/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Factores de Transcripción/metabolismo , Factores de Elongación Transcripcional/metabolismo , Ciclo Celular , Línea Celular , Ciclina T/química , Quinasa 9 Dependiente de la Ciclina/química , Activación Enzimática , Humanos , Modelos Biológicos , Fosforilación , Unión Proteica , Multimerización de Proteína , Proteínas Recombinantes , Ribonucleoproteínas Nucleares Pequeñas/química , Estrés Fisiológico
7.
Ecotoxicol Environ Saf ; 273: 116127, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38394756

RESUMEN

Alkaline stress poses a significant challenge to the healthy growth of fish. Ginger polysaccharide (GP) is one of the main active substances in ginger and has pharmacological effects, such as anti-oxidation and immune regulation. However, the physiological regulatory mechanism of GP addition to diet on alkalinity stress in crucian carp remains unclear. This study aimed to investigate the potential protective effects of dietary GP on antioxidant capacity, gene expression levels, intestinal microbiome, and metabolomics of crucian carp exposed to carbonate (NaHCO3). The CK group (no GP supplementation) and COG group (NaHCO3 stress and no GP supplementation) were set up. The GPCS group (NaHCO3 stress and 0.4% GP supplementation) was stressed for seven days. Based on these data, GP significantly increased the activities of total antioxidant capacity (T-AOC), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-PX), acid phosphatase (ACP), and alkaline phosphatase (AKP) in carp under alkalinity stress (p < 0.05) and decreased the activity of malon dialdehyde (MDA) (p < 0.05). GP restored the activity of GSH-PX, ACP, and AKP to CK levels. The expression levels of tumor necrosis factor ß (TGF-ß), tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ), and interleukin 8 (IL-8) genes were decreased, and the expression levels of determination factor kappa-B (NF-κB) and interleukin 10 (IL-10) genes were increased (p < 0.05). Based on 16 S rRNA high-throughput sequencing, GP improved the changes in the intestinal microbial diversity and structural composition of crucian carp caused by NaHCO3 exposure. In particular, GP increased the relative abundance of Proteobacteria and Bacteroidetes and decreased the relative abundance of Actinobacteria. The metabolic response of GP to NaHCO3 exposed crucian carp guts was studied using LC/MS. Compared to the COG group, the GPCS group had 64 different metabolites and enriched 10 metabolic pathways, including lipid metabolism, nucleotide metabolism, and carbohydrate metabolism. The addition of GP to feed can promote galactose metabolism and provide an energy supply to crucian carp, thus alleviating the damage induced by alkalinity stress. In conclusion, GP can mitigate the effects of NaHCO3 alkalinity stress by regulating immune function, intestinal flora, and intestinal metabolism in crucian carp. These findings provide a novel idea for studying the mechanism of salt-alkali tolerance in crucian carp by adding GP to feed.


Asunto(s)
Carpas , Microbioma Gastrointestinal , Zingiber officinale , Animales , Carpa Dorada/metabolismo , Carpas/metabolismo , Antioxidantes/metabolismo , Dieta , Carbonatos , Alimentación Animal/análisis
8.
World J Microbiol Biotechnol ; 40(7): 213, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789629

RESUMEN

Co-fermentation performed by Saccharomyces cerevisiae and Escherichia coli or other microbes has been widely used in industrial fermentation. Meanwhile, the co-cultured microbes might regulate each other's metabolisms or cell behaviors including oxidative stress tolerance through secreting molecules. Here, results based on the co-culture system of S. cerevisiae and E. coli suggested the promoting effect of E. coli on the oxidative stress tolerance of S. cerevisiae cells. The co-cultured E. coli could enhance S. cerevisiae cell viability through improving its membrane stability and reducing the oxidized lipid level. Meanwhile, promoting effect of the co-cultured supernatant on the oxidative stress tolerance of S. cerevisiae illustrated by the supernatant substitution strategy suggested that secreted compounds contained in the co-cultured supernatant contributed to the higher oxidative stress tolerance of S. cerevisiae. The potential key regulatory metabolite (i.e., hexadecanoic acid) with high content difference between co-cultured supernatant and the pure-cultured S. cerevisiae supernatant was discovered by GC-MS-based metabolomics strategy. And exogenous addition of hexadecanoic acid did suggest its contribution to higher oxidative stress tolerance of S. cerevisiae. Results presented here would contribute to the understanding of the microbial interactions and provide the foundation for improving the efficiency of co-fermentation performed by S. cerevisiae and E. coli.


Asunto(s)
Técnicas de Cocultivo , Escherichia coli , Fermentación , Estrés Oxidativo , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Escherichia coli/metabolismo , Escherichia coli/crecimiento & desarrollo , Metabolómica , Viabilidad Microbiana , Cromatografía de Gases y Espectrometría de Masas
9.
Blood ; 138(20): 1986-1997, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34098576

RESUMEN

The erythropoietin receptor (EpoR) has traditionally been thought of as an erythroid-specific gene. Notably, accumulating evidence suggests that EpoR is expressed well beyond erythroid cells. However, the expression of EpoR in non-erythroid cells has been controversial. In this study, we generated EpoR-tdTomato-Cre mice and used them to examine the expression of EpoR in tissue macrophages and hematopoietic cells. We show that in marked contrast to the previously available EpoR-eGFPcre mice, in which a very weak eGFP signal was detected in erythroid cells, tdTomato was readily detectable in both fetal liver (FL) and bone marrow (BM) erythroid cells at all developmental stages and exhibited dynamic changes during erythropoiesis. Consistent with our recent finding that erythroblastic island (EBI) macrophages are characterized by the expression of EpoR, tdTomato was readily detected in both FL and BM EBI macrophages. Moreover, tdTomato was also detected in subsets of hematopoietic stem cells, progenitors, megakaryocytes, and B cells in BM as well as in spleen red pulp macrophages and liver Kupffer cells. The expression of EpoR was further shown by the EpoR-tdTomato-Cre-mediated excision of the floxed STOP sequence. Importantly, EPO injection selectively promoted proliferation of the EpoR-expressing cells and induced erythroid lineage bias during hematopoiesis. Our findings imply broad roles for EPO/EpoR in hematopoiesis that warrant further investigation. The EpoR-tdTomato-Cre mouse line provides a powerful tool to facilitate future studies on EpoR expression and regulation in various non-hematopoietic cells and to conditionally manipulate gene expression in EpoR-expressing cells for functional studies.


Asunto(s)
Expresión Génica , Células Madre Hematopoyéticas/metabolismo , Macrófagos/metabolismo , Receptores de Eritropoyetina/genética , Animales , Células Madre Hematopoyéticas/citología , Humanos , Integrasas/análisis , Integrasas/genética , Sustancias Luminiscentes/análisis , Sustancias Luminiscentes/metabolismo , Proteínas Luminiscentes/análisis , Proteínas Luminiscentes/genética , Macrófagos/citología , Ratones , Receptores de Eritropoyetina/análisis , Proteína Fluorescente Roja
10.
Bioorg Chem ; 130: 106211, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36343598

RESUMEN

Based on 2-(difluoromethyl)-1-[4,6-di(4-morpholinyl)-1,3,5-triazin-2-yl]-1H-benzimidazole (ZSTK474), three series of novel 1,3,5-triazine or pyrimidine derivatives containing semicarbazones have been designed and synthesized to obtain new potent and selective PI3Kα inhibitors. Their inhibitory activities in vitro were evaluated against PI3Kα and three tumor-derived cell lines (U87-MG, MCF-7, and PC-3). We also tested promising compounds (A4, A6, A10, and B1) for other PI3K class I subtype (PI3Kß, PI3Kδ, and PI3Kγ) activity. The representative compound A10 exhibited an IC50 value of 0.32 nM against PI3Kα, and demonstrated extraordinary subtype selectivity. Furthermore, compound A10 obviously inhibited proliferation of MCF-7 cell lines, induced a great decrease in mitochondrial membrane potential leading to apoptosis of cancer cells, and arrested G2 phase in a dose-dependent manner. Additionally, compound A10 induced significant tumor regressions in a xenograft mouse model of U87-MG cell line without an obvious sign of toxicity upon 20 mg/kg oral administration. Compound A10 may serve as a PI3Kα-selective inhibitor and provide the opportunity to spare patients the side effects associated with broader inhibition of the class I PI3K family.


Asunto(s)
Antineoplásicos , Humanos , Ratones , Animales , Inhibidores de las Quinasa Fosfoinosítidos-3 , Relación Estructura-Actividad , Proliferación Celular , Antineoplásicos/farmacología , Triazinas/farmacología , Línea Celular Tumoral , Bencimidazoles/farmacología , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales
11.
Int J Mol Sci ; 24(14)2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37511042

RESUMEN

To enhance the management and protection of crayfish genetic diversity and germplasm resources in Cambaroides dauricus (C. dauricus), a common species of Procambarus clarkii (P. clarkii) was used as a control group to compare the whole mitochondrial genome sequence using Illumina sequencing technology. This study found that the mitochondrial genome of C. dauricus is 15580 bp in length, with a base composition of A (31.84%), G (17.66%), C (9.42%), and T (41.08%) and a C + G content of 27.08%. The C + G in the D-loop is rich in 17.06%, indicating a significant preference. The mitochondrial genome of C. dauricus contains 13 protein-coding genes, 22 tRNA genes, and 2 rRNA genes, with most of the genes labeled in the negative direction, except for a few genes that are labeled in the positive direction. The start codons of the ten coding sequences are ATG, and the quintessential TAA and TAG are the stop codons. This study also found that the Ka/Ks ratios of most protein-coding genes in the mitochondria of both shrimps are lower than 1, indicating weak natural selection, except for nad 2, nad 5, and cox 1. The Ka/Ks ratio of cox 3 is the lowest (less than 0.1), indicating that this protein-coding gene bears strong natural selection pressure and functional constraint in the process of mitochondrial genetic evolution of both shrimps. Furthermore, we constructed phylogenetic analyses based on the entire sequence, which effectively distinguishes the high body from other shrimp species of the genus based on the mitochondrial genome. This study provides molecular genetic data for the diversity investigation and protection of fishery resources with Chinese characteristics and a scientific reference for the evolutionary study of Procambarus.


Asunto(s)
Genoma Mitocondrial , Animales , Genoma Mitocondrial/genética , Astacoidea/genética , Filogenia , NAD/genética , Análisis de Secuencia de ADN
12.
J Environ Manage ; 348: 119190, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37837768

RESUMEN

This study investigated the effect of the landscape pattern of permeable/impermeable patches on NO3--N and particulate organic nitrogen (PON) concentrations during stormwater runoff transport and their source contributions. Six landscape pattern indices, namely, mean proximity index (MPI), largest patch index (LPI), mean shape index (MSI), landscape shape index (LSI), connect index (CONNECT), and splitting index (SPLIT), were selected to reflect the fragmentation, complexity, and connectivity of permeable patches in urban catchments. The results show that lower fragmentation, higher complexity, and greater connectivity can reduce NO3--N concentrations in road runoff and drainage flow (i.e., the flow in the stormwater drainage network), as well as PON concentrations in road runoff. Further, the above landscape pattern is effective for mitigating the contributions of NO3--N and PON from road runoff. Low impact development (LID) can be incorporated with the landscape pattern of permeable/impermeable patches to mitigate nitrogen pollution in urban stormwater at the catchment scale by optimizing the spatial arrangement.


Asunto(s)
Nitratos , Contaminantes Químicos del Agua , Nitratos/análisis , Nitrógeno/análisis , Monitoreo del Ambiente/métodos , Movimientos del Agua , Contaminantes Químicos del Agua/análisis , Lluvia , Compuestos Orgánicos/análisis , Polvo
13.
Molecules ; 28(23)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38067625

RESUMEN

MOF (metal organic framework) materials have been used as functional materials in a number of fields due to their diverse spatial tunability, which produces rich porous structures with stable and continuous pores and a high specific surface area. A triboelectric nanogenerator can convert trace mechanical energy into electrical energy, and the application of MOF materials to triboelectric nanogenerators has been intensively studied. In this work, we report on two MOFs with similar spatial structures, and the modulation of the end microstructures was achieved using the difference in F content. The output performance of friction power generation increases with the increase in F content, and the obtained polyacidic ligand materials can be used to construct self-powered corrosion protection systems, which can effectively protect metallic materials from corrosion.

14.
J Cell Mol Med ; 26(8): 2404-2416, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35249258

RESUMEN

Red blood cells (RBCs) generated ex vivo have the potential to be used for transfusion. Human embryonic stem cells (ES) and induced pluripotent stem cells (iPS) possess unlimited self-renewal capacity and are the preferred cell sources to be used for ex vivo RBC generation. However, their applications are hindered by the facts that the expansion of ES/iPS-derived erythroid cells is limited and the enucleation of ES/iPS-derived erythroblasts is low compared to that derived from cord blood (CB) or peripheral blood (PB). To address this, we sought to investigate the underlying mechanisms by comparing the in vitro erythropoiesis profiles of CB CD34+ and ES CD34+ cells. We found that the limited expansion of ES CD34+ cell-derived erythroid cells was associated with defective cell cycle of erythroid progenitors. In exploring the cellular and molecular mechanisms for the impaired enucleation of ES CD34+ cell-derived orthochromatic erythroblasts (ES-ortho), we found the chromatin of ES-ortho was less condensed than that of CB CD34+ cell-derived orthochromatic erythroblasts (CB-ortho). At the molecular level, both RNA-seq and ATAC-seq analyses revealed that pathways involved in chromatin modification were down-regulated in ES-ortho. Additionally, the expression levels of molecules known to play important role in chromatin condensation or/and enucleation were significantly lower in ES-ortho compared to that in CB-ortho. Together, our findings have uncovered mechanisms for the limited expansion and impaired enucleation of ES CD34+ cell-derived erythroid cells and may help to improve ex vivo RBC production from stem cells.


Asunto(s)
Eritropoyesis , Sangre Fetal , Antígenos CD34/metabolismo , Diferenciación Celular , Cromatina/metabolismo , Células Madre Embrionarias/metabolismo , Células Eritroides , Humanos
15.
Br J Haematol ; 199(3): 427-442, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35974424

RESUMEN

Normal early erythropoiesis depends on the precise regulation of protein expression and phosphorylation modification. Dysregulation of protein levels or modification contributes to erythroid disorders. To date, the dynamics of protein phosphorylation profiling across human erythroid development is not fully understood. Here, we characterized quantitative proteomic and phosphoproteomic profiling by tandem mass-tagging technology. We systemically built phospho-expression profiling and expression clusters of 11 414 phosphopeptides for human early erythropoiesis. The standardization methods for multitier integrative analyses revealed multiple functional modules of phosphoproteins (e.g., regulation of the G2/M transition) and active phosphorylated signalling (e.g., cell cycle-related pathways). Our further analysis revealed that CDK family members were the main kinases that phosphorylate substrates in erythroid progenitors and identified that CDK9 played an important role in the proliferation of erythroid progenitors. Collectively, our phosphoproteomic profiling, integrative network analysis and functional studies define landscapes of the phosphoproteome and reveal signalling pathways that are involved in human early erythropoiesis. This study will serve as a valuable resource for further investigations of phosphatase and kinase functions in human erythropoiesis and erythroid-related diseases.


Asunto(s)
Eritropoyesis , Proteómica , Humanos , Eritropoyesis/genética , Fosfopéptidos , Fosfoproteínas/genética , Monoéster Fosfórico Hidrolasas
16.
Inorg Chem ; 61(6): 2824-2834, 2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35104133

RESUMEN

The counteranion has a strong influence on the complexation behavior of tridentate phenanthroline carboxamide ligands with actinides and lanthanides, but the thermodynamic and underlying interaction mechanism at the molecular level is still not clear. In this work, a tridentate ligand, N-ethyl-N-tolyl-2-amide-1,10-phenanthroline (Et-Tol-PTA), was synthesized, and the effects of different anions (Cl-, NO3-, and ClO4-) on the complexation behavior of Et-Tol-PTA with typical lanthanides were thoroughly studied by using 1H nuclear magnetic resonance (NMR) spectroscopy, ultraviolet-visible (UV-vis) spectrophotometry, and single-crystal X-ray diffraction. The NMR spectroscopic titration of Lu(III) showed that there were three species (1:1, 2:1, and 3:1 ligand-metal complexes) formed in Cl- solution systems while two species (2:1 and 1:1) were formed in NO3- and ClO4- solution systems. When Et-Tol-PTA was titrated with La(III), two species (2:1 and 1:1) were formed in NO3- systems and only one species (1:1) was formed in Cl- and ClO4- systems. In addition, the stability constant was determined via UV-vis spectroscopic titration, which showed that the complexation strength between Et-Tol-PTA and Eu(III) decreased in the following order: ClO4- > NO3- > Cl-. This indicated that Et-Tol-PTA had the strongest complexation ability with Eu(III) in the ClO4- system. The structures of Et-Tol-PTA complexed with EuCl3, Eu(NO3)3, and Eu(ClO4)3 were further elucidated by single-crystal X-ray diffraction and agreed well with the results of UV-vis titration experiments. The results of this work revealed that the mechanisms of complexation of lanthanides with the asymmetric ligand Et-Tol-PTA were strongly affected by different anionic environments in solution and in the solid state. These findings may lead to the improvement of the separation of trivalent actinides and lanthanides in nuclear waste.

17.
Inorg Chem ; 61(44): 17911-17923, 2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36283076

RESUMEN

Two novel asymmetric hard-soft combined ligands, diphenyl(6-(5,9,9-trimethyl-5,6,7,8-tetrahydro-5,8-methanobenzo-[1,2,4]triazin-3-yl)pyridin-2-yl)phosphine oxide (Ph2-MTP) and butylphenyl(6-(5,9,9-trimethyl-5,6,7,8-tetrahydro-5,8-methanobenzo-[1,2,4]triazin-3-yl)pyridin-2-yl)phosphine oxide (BuPh-MTP), were designed based on the combination of the nature of phosphoryl and triazinyl groups for the selective extraction of trivalent minor actinides from lanthanides. The synthesis of these two ligands and their solvent extraction and complexation behaviors with Am(III) and typical lanthanides were investigated using UV-vis and time-resolved fluorescence spectrophotometry, 1H/31P NMR spectrometry, single-crystal X-ray diffraction, and DFT calculation methods. Solvent extraction experiments showed that both the ligands had strong extraction ability and high selectivity toward Am(III) over Eu(III) from the highly acidic HNO3 solution. The separation factors (SFAm/Eu) of these two ligands ranged from 17 to 26, with the concentrations of HNO3 increasing from 1.0 to 4.0 M. Slope analysis showed that the 3:1 ligand/metal complex was the prevailing species formed during extraction. The formation of the 3:1 ratio of the species of these two ligands with lanthanides was also identified by UV-vis spectrophotometry and single crystallography methods. The stability constants for the formation of the 1:3 complexes of Ph2-MTP and BuPh-MTP with Nd(III) were determined as 7.06 ± 0.015 and 6.67 ± 0.007, respectively. The geometric structures of the 1:3 complexes were clearly illustrated using the single-crystal X-ray diffraction technique and DFT theoretical calculation. This work provides an effective strategy to design new asymmetric hard-soft mixed actinide extractants by combining two different functional groups in one ligand, and the interaction mechanism between the functional groups and metal ions needs to be further investigated.

18.
Bioorg Med Chem ; 58: 116651, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35176586

RESUMEN

Cognitive impairment (CI) can seriously affect people's mental and physical health. Yuanzhi San (YZS) is a classic prescription for treating CI, but the mechanisms need further exploration. The aim of this study is to explore the effect of YZS on promoting the learning and memory ability of CI rats induced by d-galactose combined with aluminum chloride. Behavioral experiments had been used to comprehensively evaluate the established CI model. Brain histological morphology and the expressions of calcium ion signaling pathway related factors in serum were used to evaluate the effect of YZS against CI. Lipids in rat serum were analyzed by ultra-performance liquid chromatography-mass spectrometry (UHPLC-MS) and chemical pattern recognition methods. Network pharmacology was used to find potential chemical compounds, targets, and related signaling pathways against CI with treatment of YZS. The integrated lipidomics and network pharmacology analysis were conducted by Cytoscape software. The results showed that YZS could alleviate neurodegenerative impairment. It was verified that model rats had longer latency time, shorter exploration paths, lower new objects recognition indexes, and shorter exercise time and distances compared with the normal rats in behavioral experiments, indicating that the model rats were successfully established. Rats of YZS 6.67 had significant differences in retention time (p < 0.05), number of entrances (p < 0.01), new object recognition indexes (p < 0.05, p < 0.01), exercise time (p < 0.05), and content of Ca [2]+, CAM, APP, CREB (p < 0.01), CAMK2 (p < 0.05). Rats of YZS 6.67 had five cell layers in hippocampus histological morphology. Behavioral experiments results showed that YZS had an active effect on CI rats. From lipidomics analysis, 129 lipids were screened out by conditions of VIP > 1 and p < 0.05, and 17 lipid markers were identified from the databases, which were divided mainly into five types. Pathway analysis indicated that linoleic acid, α-linolenic acid, arachidonic acid, and glycerophospholipid metabolisms were potential target pathways closely involved in the mechanism YZS's effects against CI. Network pharmacology focused on 84 chemical compounds, 130 intersection targets, and 10 hub genes of YZS's effects against CI. Six hub genes and four lipid compounds had intrinsic contact with arachidonic acid metabolism, glycerophospholipid metabolism and linoleate metabolism. The study revealed that YZS could improve animal cognitive behaviors, the expression of factors associated with memory in serum and the histological morphology of hippocampus. Four lipid compounds, three metabolic pathways, and six hub genes of YZS could effectively modulated CI. These results collectively suggest that the main mechanism of YZS in improving CI involves lipid metabolism, which affects biological processes and targets of action in the body.


Asunto(s)
Disfunción Cognitiva/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Lipidómica , Sustancias Protectoras/farmacología , Animales , Disfunción Cognitiva/metabolismo , Relación Dosis-Respuesta a Droga , Medicamentos Herbarios Chinos/química , Metabolismo de los Lípidos/efectos de los fármacos , Estructura Molecular , Farmacología en Red , Sustancias Protectoras/química , Ratas , Ratas Sprague-Dawley , Relación Estructura-Actividad
19.
J Clin Pharm Ther ; 47(5): 652-661, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34939677

RESUMEN

WHAT IS KNOWN AND OBJECTIVE: Despite the availability of clinical practice guidelines (CPGs), there are considerable differences in their recommendations in the perioperative management of stented patients who need elective noncardiac surgery. Our aim was to systematically review the quality of CPGs for perioperative management of dual antiplatelet therapy (DAPT) and summarize the recommendations. METHODS: A systematic search for perioperative DAPT guidelines was conducted on PubMed, Embase and websites of guideline organizations and professional societies until 4 February 2021. Independently, two assessors appraised the quality of CPGs using the Appraisal of Guidelines for Research & Evaluation II (AGREE II) instrument and extracted the data. Recommendations were summarized, and a comparative study was conducted to analyse the consistency among guidelines. RESULTS AND DISCUSSION: A total of 10 guidelines fulfilled our inclusion criteria. The domain of scope and purpose and clarity of presentation obtained the highest median scores, while the domain of stakeholder involvement and rigour of development obtained the lowest median scores. Three guidelines (ACCP, ESC/ESA and ACC/AHA) with a score of at least 60% in most AGREE II domains were recommended. Recommendations across perioperative management of DAPT guidelines were inconsistent. WHAT IS NEW AND CONCLUSION: The ACCP, ESC/ESA and ACC/AHA CPGs were recommended. There is a need for high-quality prospective studies assessing different management strategies on this issue. Given the lack of consensus, the results of this study will help to guide perioperative dual antiplatelet management strategies for patients with coronary stents who are undergoing noncardiac surgery.


Asunto(s)
Procedimientos Quirúrgicos Electivos , Inhibidores de Agregación Plaquetaria , Humanos , Inhibidores de Agregación Plaquetaria/uso terapéutico , Estudios Prospectivos
20.
Ecotoxicol Environ Saf ; 231: 113159, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35032728

RESUMEN

Desiccation is a common stress experienced by crabs during aquaculture and transportation. In China, the crustacean, Chinese mitten crab (Eriocheir sinensis), is economically important. However, little is known about the molecular pathways underlying physiological stress. Here, by using untargeted gas chromatography-mass spectrometry metabolomics, we investigated the metabolic responses of the gills of E. sinensis subjected to air-exposure stress by six biological replicates of the control group (CG) and the air-exposure stress group (AG). Metabolomic analysis identified 43 differential metabolites in the AG versus the CG that could be potential biomarkers of desiccation stress. In addition, integrated analysis of key metabolic pathways revealed the involvement of histidine metabolism; glycine, serine and threonine metabolism; the pentose phosphate pathway; the citrate cycle (TCA cycle); and nicotinate and nicotinamide metabolism. These findings indicated the special physiological responses to air-exposure stresses in this species.


Asunto(s)
Braquiuros , Branquias , Animales , China , Cromatografía de Gases y Espectrometría de Masas , Metabolómica , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA