Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Mater ; 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605194

RESUMEN

Magnetic skyrmions are promising as next-generation information units. Their antiparticle-the antiskyrmion-has also been discovered in chiral magnets. Here we experimentally demonstrate antiskyrmion sliding in response to a pulsed electric current at room temperature without the requirement of an external magnetic field. This is realized by embedding antiskyrmions in helical stripe domains, which naturally provide one-dimensional straight tracks along which antiskyrmion sliding can be easily launched with low current density and without transverse deflection from the antiskyrmion Hall effect. The higher mobility of the antiskyrmions in the background of helical stripes in contrast to the typical ferromagnetic state is a result of intrinsic material parameters and elastic energy of the stripe domain, thereby smearing out the random pinning potential, as supported by micromagnetic simulations. The demonstration and comprehensive understanding of antiskyrmion movement along naturally straight tracks offers a new perspective for (anti)skyrmion application in spintronics.

2.
Proc Natl Acad Sci U S A ; 119(45): e2208505119, 2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36322772

RESUMEN

The linear positive magnetoresistance (LPMR) is a widely observed phenomenon in topological materials, which is promising for potential applications on topological spintronics. However, its mechanism remains ambiguous yet, and the effect is thus uncontrollable. Here, we report a quantitative scaling model that correlates the LPMR with the Berry curvature, based on a ferromagnetic Weyl semimetal CoS2 that bears the largest LPMR of over 500% at 2 K and 9 T, among known magnetic topological semimetals. In this system, masses of Weyl nodes existing near the Fermi level, revealed by theoretical calculations, serve as Berry-curvature monopoles and low-effective-mass carriers. Based on the Weyl picture, we propose a relation [Formula: see text], with B being the applied magnetic field and [Formula: see text] the average Berry curvature near the Fermi surface, and further introduce temperature factor to both MR/B slope (MR per unit field) and anomalous Hall conductivity, which establishes the connection between the model and experimental measurements. A clear picture of the linearly slowing down of carriers, i.e., the LPMR effect, is demonstrated under the cooperation of the k-space Berry curvature and real-space magnetic field. Our study not only provides experimental evidence of Berry curvature-induced LPMR but also promotes the common understanding and functional designing of the large Berry-curvature MR in topological Dirac/Weyl systems for magnetic sensing or information storage.

3.
Chem Soc Rev ; 53(7): 3457-3484, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38411467

RESUMEN

Chiral carbon-carbon (C-C) and carbon-heteroatom (C-X) bonds are pervasive and very essential in natural products, bioactive molecules, and functional materials, and their catalytic construction has emerged as one of the hottest research fields in synthetic organic chemistry. The last decade has witnessed vigorous progress in Rh(I)-catalyzed asymmetric C-H functionalization as a complement to Rh(II) and Rh(III) catalysis. This review aims to provide the most comprehensive and up-to-date summary covering the recent advances in Rh(I)-catalyzed C-H activation for asymmetric functionalization. In addition to the development of diverse reactions, chiral ligand design and mechanistic investigation (inner-sphere mechanism, outer-sphere mechanism, and 1,4-Rh migration) will also be highlighted.

4.
Nano Lett ; 24(5): 1587-1593, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38259044

RESUMEN

Magnetic skyrmions in bulk materials are typically regarded as two-dimensional structures. However, they also exhibit three-dimensional configurations, known as skyrmion tubes, that elongate and extend in-depth. Understanding the configurations and stabilization mechanism of skyrmion tubes is crucial for the development of advanced spintronic devices. However, the generation and annihilation of skyrmion tubes in confined geometries are still rarely reported. Here, we present direct imaging of skyrmion tubes in nanostructured cuboids of a chiral magnet FeGe using Lorentz transmission electron microscopy (TEM), while applying an in-plane magnetic field. It is observed that skyrmion tubes stabilize in a narrow field-temperature region near the Curie temperature (Tc). Through a field cooling process, metastable skyrmion tubes can exist in a larger region of the field-temperature diagram. Combining these experimental findings with micromagnetic simulations, we attribute these phenomena to energy differences and thermal fluctuations. Our results could promote topological spintronic devices based on skyrmion tubes.

5.
J Am Chem Soc ; 146(14): 9768-9778, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38545837

RESUMEN

A rhodium-catalyzed 3-component conjunctive diastereo- and regioselective arylamidation of (homo)allylic sulfides, organon boronic acids, and dioxazolones is reported. These reactions deliver the 1,2-insertion and 2,1-insertion arylamidation products, respectively, for allylic sulfides and homoallylic sulfides. The enantioselective arylamidation of terminal and internal allylic sulfides is achieved, furnishing various 1,3-N,S compounds featuring one or two contiguous stereocenters in high yields and with high diastereo- and enantioselectivities. Mechanistic studies suggest a change in the turnover-limiting and selectivity-determining steps induced by the native and easily removable sulfide group.

6.
J Am Chem Soc ; 146(8): 5081-5087, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38358355

RESUMEN

The asymmetric hydrogenation (AH) of N-unprotected indoles is a straightforward, yet challenging method to access biologically interesting NH chiral indolines. This method has for years been limited to 2/3-monosubstituted or 2,3-disubstituted indoles, which produce chiral indolines bearing endocyclic chiral centers. Herein, we have reported an innovative Pd-catalyzed AH of racemic α-alkyl or aryl-substituted indole-2-acetates using an acid-assisted dynamic kinetic resolution (DKR) process, affording a range of structurally fascinating chiral indolines that contain exocyclic stereocenters with excellent yields, diastereoselectivities, and enantioselectivities. Mechanistic studies support that the DKR process relies on a rapid interconversion of each enantiomer of racemic substrates, leveraged by an acid-promoted isomerization between the aromatic indole and nonaromatic exocyclic enamine intermediate. The reaction can be performed on a gram scale, and the products can be derivatized into non-natural ß-amino acids via facile debenzylation and amino alcohol upon reduction.

7.
Small ; 20(23): e2311430, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38444270

RESUMEN

Effectively tuning magnetic state by using current is essential for novel spintronic devices. Magnetic van der Waals (vdW) materials have shown superior properties for the applications of magnetic information storage based on the efficient spin torque effect. However, for most of known vdW ferromagnets, the ferromagnetic transition temperatures lower than room temperature strongly impede their applications and the room-temperature vdW spintronic device with low energy consumption is still a long-sought goal. Here, the highly efficient room-temperature nonvolatile magnetic switching is realized by current in a single-material device based on vdW ferromagnet Fe3GaTe2. Moreover, the switching current density and power dissipation are about 300 and 60000 times smaller than conventional spin-orbit-torque devices of magnet/heavy-metal heterostructures. These findings make an important progress on the applications of magnetic vdW materials in the fields of spintronics and magnetic information storage.

8.
BMC Musculoskelet Disord ; 25(1): 56, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38216954

RESUMEN

BACKGROUND: To analyze the clinical efficacy of K-wire placement guided technology in paediatric supracondylar humerus fractures. METHODS: A retrospective study was conducted in 105 patients who underwent closed reduction and percutaneous pinning surgeries in our hospital from June 2019 to August 2022. 54 patients treated with a assisted reduction fixation device to assist in closed reduction and percutaneous K-wire cross-fixation were allocated into the Non-guided group, and 51 patients with K-wire placement guided technology to guide K-wire placement were assigned into the Guided group. The operation duration, number of disposable K-wire placement, intraoperative fluoroscopy frequency, Baumann angle, carrying angle, fracture healing time and Flynn score of elbow joint function at the final follow-up were compared between two groups. The postoperative complications of two groups were recorded. RESULTS: There were significant differences between two groups in terms of operation duration, intraoperative fluoroscopy frequency, and disposable K-wire placement rate (p < 0. 05), while no significant differences of Baumann angle, carrying angle and the fracture healing time between two groups were observed (p > 0. 05). In the control group, ulnar nerve injury in 2 case, pin site infection in 4 cases, mild cubitus varus in 2 cases and loss of reduction in 4 cases were detected. In the study group, ulnar nerve injury in 1 case, pin site infection in 2 cases and loss of reduction in 1 case was observed. There was no significant difference in Flynn scores between two groups. CONCLUSION: K-wire placement guided technology is simple and convenient. The application of K-wire placement guided technology could relatively improved disposable K-wire placement rate, shorten the intraoperative fluoroscopy frequencies and reduce complication rates.


Asunto(s)
Hilos Ortopédicos , Fracturas del Húmero , Niño , Humanos , Estudios Retrospectivos , Fracturas del Húmero/diagnóstico por imagen , Fracturas del Húmero/cirugía , Fluoroscopía , Fijación Interna de Fracturas/efectos adversos , Resultado del Tratamiento , Tecnología , Húmero
9.
Nano Lett ; 23(14): 6449-6457, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37379096

RESUMEN

Spin obit torque (SOT) driven magnetization switching has been used widely for encoding consumption-efficient memory and logic. However, symmetry breaking under a magnetic field is required to realize the deterministic switching in synthetic antiferromagnets with perpendicular magnetic anisotropy (PMA), which limits their potential applications. Herein, we report all electric-controlled magnetization switching in the antiferromagnetic Co/Ir/Co trilayers with vertical magnetic imbalance. Besides, the switching polarity could be reversed by optimizing the Ir thickness. By using the polarized neutron reflection (PNR) measurements, the canted noncollinear spin configuration was observed in Co/Ir/Co trilayers, which results from the competition of magnetic inhomogeneity. In addition, the asymmetric domain walls demonstrated by micromagnetic simulations result from introducing imbalance magnetism, leading to the deterministic magnetization switching in Co/Ir/Co trilayers. Our findings highlight a promising route to electric-controlled magnetism via tunable spin configuration, improve our understanding of physical mechanisms, and significantly promote industrial applications in spintronic devices.

10.
Angew Chem Int Ed Engl ; 63(12): e202400502, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38279683

RESUMEN

Chiral cyclopentadienyl-rhodium(III) Cpx Rh(III) catalysis has been demonstrated to be competent for catalyzing highly enantioselective aziridination of challenging unactivated terminal alkenes and nitrene sources. The chiral Cpx Rh(III) catalysis system exhibited outstanding catalytic performance and wide functional group tolerance, yielding synthetically important and highly valuable chiral aziridines with good to excellent yields and enantioselectivities (up to 99 % yield, 93 % ee). This protocol presents a novel and effective strategy for synthesizing enantioenriched aziridines from simple alkenes. Various transformations were performed on the aziridine products, illustrating the versatility and synthetic potential of this protocol for constructing highly functionalized compounds.

11.
Small ; 19(29): e2300246, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37013460

RESUMEN

2D materials with low symmetry are explored in recent years because of their anisotropic advantage in polarization-sensitive photodetection. Herein the controllably grown hexagonal magnetic semiconducting α-MnTe nanoribbons are reported with a highly anisotropic (100) surface and their high sensitivity to polarization in a broadband photodetection, whereas the hexagonal structure is highly symmetric. The outstanding photoresponse of α-MnTe nanoribbons occurs in a broadband range from ultraviolet (UV, 360 nm) to near infrared (NIR, 914 nm) with short response times of 46 ms (rise) and 37 ms (fall), excellent environmental stability, and repeatability. Furthermore, due to highly anisotropic (100) surface, the α-MnTe nanoribbons as photodetector exhibit attractive sensitivity to polarization and high dichroic ratios of up to 2.8 under light illumination of UV-to-NIR wavelengths. These results demonstrate that 2D magnetic semiconducting α-MnTe nanoribbons provide a promising platform to design the next-generation polarization-sensitive photodetectors in a broadband range.

12.
Small ; 19(38): e2300122, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37144423

RESUMEN

As a clean and effective approach, the introduction of external magnetic fields to improve the performance of catalysts has attracted extensive attention. Owing to its room-temperature ferromagnetism, chemical stability, and earth abundance, VSe2 is expected to be a promising and cost-effective ferromagnetic electrocatalyst for the accomplishment of high-efficient spin-related OER kinetics. In this work, a facile pulsed laser deposition (PLD) method combined with rapid thermal annealing (RTA) treatment is used to successfully confine monodispersed 1T-VSe2 nanoparticles in amorphous carbon matrix. As expected, with external magnetic fields of 800 mT stimulation, the confined 1T-VSe2 nanoparticles exhibit highly efficient oxygen evolution reaction (OER) catalytic activity with an overpotential of 228 mV for 10 mA cm-2 and remarkable durability without deactivation after >100 h OER operation. The experimental results together with theoretical calculations illustrate that magnetic fields can facilitate the surface charge transfer dynamics of 1T-VSe2 , and modify the adsorption-free energy of *OOH, thus finally improving the intrinsic activity of the catalysts. This work realizes the application of ferromagnetic VSe2 electrocatalyst in highly efficient spin-dependent OER kinetics, which is expected to promote the application of transition metal chalcogenides (TMCs) in external magnetic field-assisted electrocatalysis.

13.
Cell Mol Neurobiol ; 42(5): 1557-1568, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33595805

RESUMEN

Studies have found that molecular targets that regulate tissue development are also involved in regulating tissue regeneration. Erythropoietin-producing hepatocyte A4 (EphA4) not only plays a guiding role in neurite outgrowth during the development of the central nervous system (CNS) but also induces injured axon retraction and inhibits axon regeneration after spinal cord injury (SCI). EphA4 targets several ephrin ligands (including ephrin-A and ephrin-B) and is involved in cortical cell migration, axon guidance, synapse formation and astrocyte function. However, how EphA4 affects axon regeneration after SCI remains unclear. This study focuses on the effect and mechanism of EphA4-regulated astrocyte function in neuronal regeneration after SCI. Our research found that EphA4 expression increased significantly after SCI and peaked at 3 days post-injury; accordingly, we identified the cellular localization of EphA4 and ephrin-B ligands in neurons and astrocytes after SCI. EphA4 was mainly expressed on the surface of neurons, ephrin-B1 and ephrin-B3 were mainly localized on astrocytes, and ephrin-B2 was distributed on both neurons and astrocytes. To further elucidate the effect of EphA4 on astrocyte function after SCI, we detected the related cytokines secreted by astrocytes in vivo. We found that the levels of neurotrophic factors including nerve growth factor (NGF) and basic fibroblast growth factor (bFGF) increased significantly after SCI (NGF peaked at 3 days and bFGF peaked at 7 days); the expression of laminin and fibronectin increased gradually after SCI; the expression of inflammatory factors [interleukin (IL)-1ß and IL-6] increased significantly from 4 h to 7 days after SCI; and the levels of glial fibrillary acidic protein (GFAP), a marker of astrocyte activation, and chondroitin sulphate proteoglycan (CSPG), the main component of glial scars, both peaked at 7 days after SCI. Using a damaged astrocyte model in vitro, we similarly found that the levels of related cytokines increased after injury. Consequently, we observed the effect of damaged astrocytes on neurite outgrowth and regeneration, and the results showed that damaged astrocytes hindered neurite outgrowth and regeneration; however, the inhibitory effect of injured astrocytes on neurite regeneration was reduced following ephrin-B receptor knockdown or inflammatory inhibition at 24 h after astrocyte injury. Our results showed that EphA4 regulates the secretion of neurotrophic factors, adhesion molecules, inflammatory factors and glial scar formation by binding with the ligand ephrin-B located on the surface of astrocytes. EphA4 affects neurite outgrowth and regeneration after SCI by regulating astrocyte function.


Asunto(s)
Eritropoyetina , Traumatismos de la Médula Espinal , Astrocitos/metabolismo , Axones/metabolismo , Citocinas/metabolismo , Efrinas/metabolismo , Eritropoyetina/metabolismo , Gliosis/metabolismo , Hepatocitos/metabolismo , Humanos , Ligandos , Factor de Crecimiento Nervioso/metabolismo , Regeneración Nerviosa/fisiología , Neuronas/metabolismo , Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/metabolismo
14.
Angew Chem Int Ed Engl ; 61(32): e202205743, 2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35652388

RESUMEN

Catalytic enantioselective hydroxylation of prochiral dihydrosilanes with water is expected to be a highly efficient way to access Si-chiral silanols, yet has remained unknown up to date. Herein, we describe a strategy for realizing this reaction: using an alkyl bromide as a single-electron transfer (SET) oxidant for invoking CuII species and chiral multidentate anionic N,N,P-ligands for effective enantiocontrol. The reaction readily provides a broad range of Si-chiral silanols with high enantioselectivity and excellent functional group compatibility. In addition, we manifest the synthetic potential by establishing two synthetic schemes for transforming the obtained products into Si-chiral compounds with high structural diversity. Our preliminary mechanistic studies support a mechanism involving SET for recruiting chiral CuII species as the active catalyst and its subsequent σ-metathesis with dihydrosilanes.

15.
J Org Chem ; 86(6): 4598-4606, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33686862

RESUMEN

This density functional theory (DFT) study reveals a detailed plausible mechanism for the Sc-catalyzed C-H cycloaddition of imidazoles to 1,1-disubstituted alkenes to form all-carbon quaternary stereocenters. The Sc complex binds the imidazole substrate to enable deprotonative C2-H bond activation by the Sc-bound α-carbon to afford the active species. This complex undergoes intramolecular cyclization (C═C into Sc-imidazolyl insertion) with exo-selectivity, generating a ß-all-carbon-substituted quaternary center in the polycyclic imidazole derivative. The Sc-bound α-carbon deprotonates the imidazole C2-H bond to deliver the product and regenerate the active catalyst, which is the rate-determining step. Calculations illuminate the electronic effect of the ancillary Cp ligand on the catalyst activity and reveal the steric bias caused by using a chiral catalyst that induce the enantioselectivity. The insights can have implications for advancing rare-earth metal-catalyzed C-H functionalization of imidazoles.


Asunto(s)
Alquenos , Escandio , Alquilación , Carbono , Catálisis , Imidazoles
16.
Inorg Chem ; 60(9): 6157-6161, 2021 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-33885292

RESUMEN

It is known that few Co-based superconducting compounds have been found compared with their Fe- or Ni-based counterparts. In this study, we have found superconductivity of 4 K in the LaCoSi compound for the first time. The combined analysis of neutron and synchrotron X-ray powder diffractions reveals that LaCoSi exhibits an isostructure with the known Fe-based LiFeAs superconductor, which is the first "111" Co-based superconductor. First-principles calculation shows that LaCoSi presents a quasi-two-dimensional band structure that is also similar to that of LiFeAs. The small structural distortion may be more conducive to the emergence of superconductivity in the LaCoSi compound, which provides a direction for finding new Co-based superconducting compounds.

17.
Org Biomol Chem ; 19(41): 8934-8939, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34636833

RESUMEN

A series of half-sandwich Ir(III) complexes 1-6 bearing an amidato bidentate ligand were conveniently synthesized and applied to the catalytic Leuckart-Wallach reaction to produce racemic α-chiral primary amines. With 0.1 mol% of complex 1, a broad range of ketones, including aryl ketones, dialkyl ketones, cyclic ketones, α-keto acids, α-keto esters and diketones, could be transformed to their corresponding primary amines with moderate to excellent yields (40%-95%). Asymmetric transformation was also attempted with chiral Ir complexes 3-6, and 16% ee of the desired primary amine was obtained. Despite the unsatisfactory enantio-control achieved so far, the current exploration might stimulate more efforts towards the discovery of better chiral catalysts for this challenging but important transformation.

18.
Nano Lett ; 20(4): 2923-2930, 2020 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-32203664

RESUMEN

Numerous efforts in improving the hydrogen evolution reaction (HER) performance of transition metal dichalcogenides mostly focus on active sites exposing, vacancy engineering, and phase engineering. However, little room is left for improvement in these approaches. It should be noted that efficient electron transfer also plays a crucial role in catalytic activity. In this work, by employment of an external vertical magnetic field, ferromagnetic bowl-like MoS2 flakes can afford electrons transmitting easily from a glassy carbon electrode to active sites to drive HER, and thus perform magnetic HER enhancement. The ferromagnetic bowl-like MoS2 flakes with an external vertical magnetic field can provide a roughly doubled current density compared to that without an external vertical magnetic field at a constant overpotential of -150 mV. Our work may provide a new pathway to break the bottleneck for further improvement of HER performance and also paves the way to utilize the magnetic enhancement in widely catalytic application.

19.
Nano Lett ; 20(5): 3299-3305, 2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32282217

RESUMEN

Magnetic skyrmions are vortex-like spin textures with nontrivial spin topology and novel physical properties that show promise as an essential building block for novel spintronic applications. Skyrmions in synthetic antiferromagnets (SAF) have been proposed long-term to have many advantages than those in ferromagnetic materials, which suffer from fundamental limits for size and efficient manipulation. Thus, experimental realization of skyrmions in SAF is intensely pursued. Here we show the observation of zero-field stable magnetic skyrmions at room temperature in SAF [Co/Pd]/Ru/[Co/Pd] multilayers with Lorentz transmission electron microscope, where uncompensated moments of the SAF provide a medium for the skyrmion characterization. Isolated skyrmions and high-density skyrmions via magnetic field and electromagnetic coordinated methods have been observed, respectively. These created high-density skyrmions maintain at zero-field even when both the current and magnetic field are removed. The use of skyrmions in SAF would advance the process toward practical nonvolatile memories based on spin topology.

20.
Inorg Chem ; 59(12): 8603-8608, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32462872

RESUMEN

A large linear negative thermal expansion (NTE) and expanded NTE temperature range (ΔTNTE) were obtained in magnetoelastic CrTe1-xSex (0 ≤ x ≤ 0.15) compounds. For CrTe compound, its thermal expansion coefficient of volume (αV) was calculated to be -28.8 ppm K-1 with the temperature ranging from 280 to 340 K. Substituting Te with Se atoms, the NTE behavior and magnetic properties can be well manipulated. With increasing Se in CrTe1-xSex (0 ≤ x ≤ 0.15) compounds, the ΔTNTE increases from 60 K (280-340 K for x = 0), to 80 K (240-320 K for x = 0.05), to 95 K (200-295 K for x = 0.1), and finally to 100 K (170-270 K for x = 0.15). Furthermore, a linear NTE remains independent of temperature for samples with x ≤ 0.1. The relationship between tunable NTE and magnetic properties was analyzed in detail, indicating that the NTE in CrTe1-xSex compounds originates from the magnetovolume effect (MVE).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA