Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(40): e2204666119, 2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36161954

RESUMEN

Given the high energy density and eco-friendly characteristics, lithium-carbon dioxide (Li-CO2) batteries have been considered to be a next-generation energy technology to promote carbon neutral and space exploration. However, Li-CO2 batteries suffer from sluggish reaction kinetics, causing large overpotential and poor energy efficiency. Here, we observe enhanced reaction kinetics in aprotic Li-CO2 batteries with unconventional phase 4H/face-centered cubic (fcc) iridium (Ir) nanostructures grown on gold template. Significantly, 4H/fcc Ir exhibits superior electrochemical performance over fcc Ir in facilitating the round-trip reaction kinetics of Li+-mediated CO2 reduction and evolution, achieving a low charge plateau below 3.61 V and high energy efficiency of 83.8%. Ex situ/in situ studies and theoretical calculations reveal that the boosted reaction kinetics arises from the highly reversible generation of amorphous/low-crystalline discharge products on 4H/fcc Ir via the Ir-O coupling. The demonstration of flexible Li-CO2 pouch cells with 4H/fcc Ir suggests the feasibility of using unconventional phase nanomaterials in practical scenarios.

2.
Small ; 20(12): e2307408, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37940624

RESUMEN

Nitrogen-doped titanium carbides (MXene) films exhibit extraordinary volumetric capacitance when high-concentration sulfuric acid electrolyte is utilized owing to the enhancement of pseudocapacitance. However, the energy storage mechanism of nitrogen-doped MXene is unclear due to the complex electrode structure and electrolyte ions' behavior. Here, based on pristine MXene (Ti3C2O2), three different MXene structures are constructed by introducing metal vacancy sites and doped nitrogen atoms, namely, defective MXene (Ti2.9C2O2), nitrogen-doped MXene (Ti3C2O1.9N0.1), and nitrogen-doped MXene with metal vacancy sites (Ti2.9C2O1.9N0.1). Then, the density functional theory (DFT)-based calculations coupled with the effective screening medium reference interaction site method (ESM-RISM) are applied to reveal the electrochemical behavior at the electrode/electrolyte interfacial area. Through analyzing the electronic structure, electrical double-layer capacitance (EDLC), and equilibrium potential of the pseudocapacitance reaction, the specific effect of structural changes on their performance can be clarified: metal vacancy sites can reduce the potential difference of gap layer (Outer Helmholtz plane) at charged state and increase the electronic capacity of Ti, which can be used to explain the high pseudocapacitance, low charge transfer resistance and high-rate capacity properties of nitrogen-doped MXene observed in experiments.

3.
Angew Chem Int Ed Engl ; : e202407810, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38957933

RESUMEN

Hydrogen spillover in metal-supported catalysts can largely enhance electrocatalytic hydrogenation performance and reduce energy consumption. However, its fundamental mechanism, especially at the metal-metal interface, remains further explored, impeding relevant catalyst design. Here, we theoretically profile that a large free energy difference in hydrogen adsorption on two different metals (|ΔGH-metal(i)-ΔGH-metal(ii)|) induces a high kinetic barrier to hydrogen spillover between the metals. Minimizing the difference in their d-band centers (Δϵd) should reduce |ΔGH-metal(i)-ΔGH-metal(ii)|, lowering the kinetic barrier to hydrogen spillover for improved electrocatalytic hydrogenation. We demonstrated this concept using copper-supported ruthenium-platinum alloys with the smallest Δϵd, which delivered record high electrocatalytic nitrate hydrogenation performance, with ammonia production rate of 3.45±0.12 mmol h-1 cm-2 and Faraday efficiency of 99.8±0.2 %, at low energy consumption of 21.4 kWh kgamm -1. Using these catalysts, we further achieve continuous ammonia and formic acid production with a record high-profit space.

4.
Angew Chem Int Ed Engl ; : e202411255, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980971

RESUMEN

Conversion-type electrode materials have gained massive research attention in sodium-ion batteries (SIBs), but their limited reversibility hampers practical use. Herein, we report a bifunctional nanoreactor to boost highly reversible sodium-ion storage, wherein a record-high reversible degree of 85.65 % is achieved for MoS2 anodes. Composed of nitrogen-doped carbon-supported single atom Mn (NC-SAMn), this bifunctional nanoreactor concurrently confines active materials spatially and catalyzes reaction kinetics. In situ/ex situ characterizations including spectroscopy, microscopy, and electrochemistry, combined with theoretical simulations containing density functional theory and molecular dynamics, confirm that the NC-SAMn nanoreactors facilitate the electron/ion transfer, promote the distribution and interconnection of discharging products (Na2S/Mo), and reduce the Na2S decomposition barrier. As a result, the nanoreactor-promoted MoS2 anodes exhibit ultra-stable cycling with a capacity retention of 99.86 % after 200 cycles in the full cell. This work demonstrates the superiority of bifunctional nanoreactors with two-dimensional confined and catalytic effects, providing a feasible approach to improve the reversibility for a wide range of conversion-type electrode materials, thereby enhancing the application potential for long-cycled SIBs.

5.
Nano Lett ; 21(1): 791-797, 2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33377788

RESUMEN

Constructing three-dimensional (3D) structural composite lithium metal anode by molten-infusion strategy is an effective strategy to address the severe problems of Li dendritic growth and huge volume changes. However, various challenges, including uncontrollable Li loading, dense inner structure, and low Li utilization, still need to be addressed for the practical application of 3D Li anode. Herein, we propose a self-propagating method, which is realized by a synergistic effect of chemical reaction and capillarity effect on porous scaffold surface, for fabricating a flexible 3D composite Li metal anode with high Li utilization ratio and controllable low Li loading. The composite 3D anode possesses controllable low loading (8.0-24.0 mAh cm-2) and uniform grid structure, realizing a stable cycling over 600 h at a high Li metal utilization ratio over 75%. The proposed strategy for fabricating composite 3D anode could promote the practical application of Li metal batteries.

6.
Nano Lett ; 20(8): 6199-6205, 2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-32787187

RESUMEN

Heterostructure engineering is one of the most promising modification strategies toward improving sluggish kinetics for the anode of sodium ion batteries (SIBs). Herein, we report a systemic investigation on the different types of heterostructure interfaces' effects of discharging products (Na2O, Na2S, Na2Se) on the rate performance. First-principle calculations reveal that the Na2S/Na2Se interface possesses the lowest diffusion energy barrier (0.39 eV) of Na among three kinds of interface structures (Na2O/Na2S, Na2O/Na2Se, and Na2S/Na2Se) due to its smallest recorded interface deformation, similar electronegativity, and lattice constant. The experimental evidence confirms that the metal sulfide/metal selenide (SnS/SnSe2) hierarchical anode exhibits outstanding rate performance, where the normalized capacity at 10 A g-1 compared to 0.1 A g-1 is 45.6%. The proposed design strategy in this work is helpful to design high rate performance anodes for advanced battery systems.

7.
Nano Lett ; 20(2): 1252-1261, 2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-31887051

RESUMEN

Lithium-sulfur (Li-S) batteries are promising next-generation energy storage technologies due to their high theoretical energy density, environmental friendliness, and low cost. However, low conductivity of sulfur species, dissolution of polysulfides, poor conversion from sulfur reduction, and lithium sulfide (Li2S) oxidation reactions during discharge-charge processes hinder their practical applications. Herein, under the guidance of density functional theory calculations, we have successfully synthesized large-scale single atom vanadium catalysts seeded on graphene to achieve high sulfur content (80 wt % sulfur), fast kinetic (a capacity of 645 mAh g-1 at 3 C rate), and long-life Li-S batteries. Both forward (sulfur reduction) and reverse reactions (Li2S oxidation) are significantly improved by the single atom catalysts. This finding is confirmed by experimental results and consistent with theoretical calculations. The ability of single metal atoms to effectively trap the dissolved lithium polysulfides (LiPSs) and catalytically convert the LiPSs/Li2S during cycling significantly improved sulfur utilization, rate capability, and cycling life. Our work demonstrates an efficient design pathway for single atom catalysts and provides solutions for the development of high energy/power density Li-S batteries.

8.
Nano Lett ; 19(5): 3122-3130, 2019 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-30884241

RESUMEN

Graphene/metal oxides (G/MO) composite materials have attracted much attention as the anode of sodium ion batteries (SIBs), because of the high theoretical capacity. However, most metal oxides operate based on the conversion mechanism and the alloying mechanism has changed to Na2O after the first cycle. The influence of G/Na2O (G/N) on the subsequent sodiation process has never been clearly elucidated. In this work, we report a systematic investigation on the G/N interface from both aspects of theoretical simulation and experiment characterization. By applied first-principles simulations, we find that the sluggish kinetics in the G/MO materials is mainly caused by the high diffusion barrier (0.51 eV) inside the Na2O bulk, while the G/N interface shows a much faster transport kinetics (0.25 eV) via unique double-interstitialcy mechanism. G/N interface possesses an interfacial storage of Na atom through the charge separation mechanism. The experimental evidence confirms that high interfacial ratio structure of G/N greatly improves the rate performance and endows G/MO materials the interfacial storage. Furthermore, the experimental investigation finds that the high interfacial ratio structure of G/N also benefits from the reversible reaction between SnO2 and Sn during cycling. Lastly, the effects of (N, O, S) doping in graphene systems at the G/N interface were also explored. This work provides a fundamental comprehension on the G/MO interface structure during the sodiation process, which is helpful to design energy storage materials with high rate performance and large capacity.

9.
Nano Lett ; 19(10): 7487-7493, 2019 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-31509421

RESUMEN

With the increasing strategies aimed at repressing shuttle problems in the lithium-sulfur battery, dissolved contents of polysulfides are significantly reduced. Except for solid-state Li2S2 and Li2S, aggregated phases of polysulfides remain unexplored, especially in well confined cathode material systems. Here, we report a series of nanosize polysulfide clusters and solid phases from an atomic perspective. The calculated phase diagram and formation energy evolution process demonstrate their stabilities and cohesive tendency. It is interesting to find that Li2S6 can stay in the solid state and contains short S3 chains, further leading to the unique stability and dense structure. Simulated electronic properties indicate reduced band gaps when polysulfides are aggregated, especially for solid phase Li2S6 with a band gap as low as 0.47 eV. Their dissolution behavior and conversion process are also investigated, which provides a more realistic model and gives further suggestions on the future design of the lithium-sulfur battery.

10.
Angew Chem Int Ed Engl ; 58(36): 12569-12573, 2019 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-31267652

RESUMEN

Water, considered as a universal solvent to dissolve salts, has been extensively studied as liquid electrolyte in electrochemical devices. The water/ice phase transition at around 0 °C presents a common phenomenon in nature, however, the chemical and electrochemical behaviors of ice have rarely been studied. Herein, we discovered that the ice phase provides efficient ionic transport channels and therefore can be applied as generalized solid-state ionic conductor. Solid state ionic conducting ices (ICIs) of Li+ , Na+ , Mg2+ , Al3+ , K+ , Mn2+ , Fe2+ , Co2+ , Ni2+ , Cu2+ , and Zn2+ , frozen from corresponding sulphate solutions, exhibit ionic conductivities ranging from ≈10-7  S cm-1 (Zn2+ ) to ≈10-3  S cm-1 (Li+ ) at temperatures spanning from -20 °C to -5 °C. The discovery of ICIs opens new insight to design and fabrication of solid-state electrolytes that are simple, inexpensive, and versatile.

11.
J Nanosci Nanotechnol ; 17(1): 1-17, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29616785

RESUMEN

As one of the most important anticancer drugs, cisplatin and its analogues have been widely used in chemotherapy regimens of various tumors. However, a series of side effects and resistance/cross-resistance have been becoming the main obstacles which limit their application and effectiveness. Recent researches suggest that inorganic nano-materials which act as targeted drug delivery carriers of platinum-based anticancer drugs not only enhance the antitumor activity of platinum-based drugs, but also reduce the side effects and resistance. The nano-targeted drugs delivery system provides a new strategy in clinical application of platinum-based anticancer drugs. This review will focus on recent advances in inorganic nano-carriers for platinum-based targeted drugs delivery system.


Asunto(s)
Antineoplásicos , Portadores de Fármacos , Nanomedicina , Compuestos Organoplatinos , Humanos , Neoplasias/tratamiento farmacológico
12.
Yao Xue Xue Bao ; 50(6): 650-7, 2015 Jun.
Artículo en Zh | MEDLINE | ID: mdl-26521433

RESUMEN

Platinum-based anticancer drugs have been becoming one of the most effective drugs for clinical treatment of malignant tumors for its unique mechanism of action and broad range of anticancer spectrum. But, there are still several problems such as side effects, drug resistance/cross resistance and no-specific targeting, becoming obstacles to restrict its expanding of clinical application. In recent years, supramolecular chemistry drug delivery systems have been gradually concerned for their favorable safety and low toxicity. Supramolecular macrocycles-platinum complexes increased the water solubility, stability and safety of traditional platinum drugs, and have become hot focus of developing novel platinum-based anticancer drugs because of its potential targeting of tumor tissues/organs. This article concentrates in the research progress of the new drug delivery system between platinum-based anticancer drugs with three generations of macrocycles: crown ether, cyclodextrin, cucurbituril and calixarene.


Asunto(s)
Antineoplásicos/farmacología , Sistemas de Liberación de Medicamentos , Compuestos Macrocíclicos/farmacología , Compuestos de Platino/farmacología , Calixarenos , Compuestos Corona , Ciclodextrinas , Humanos , Neoplasias/tratamiento farmacológico
13.
RSC Med Chem ; 15(5): 1565-1577, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38784474

RESUMEN

The design, synthesis and investigation of antitumor activities of some coumarin-furo[2,3-d]pyrimidone hybrid molecules are reported. In vitro, HepG2 cells were used to investigate the cytotoxicity of 6a-n and 10a-n. The results demonstrated that coupling a furopyrimidone scaffold with coumarin through a hydrazide linker can effectively improve their synergistic anticancer activity. The coumarin-furo[2,3-d]pyrimidone combination 10a exhibited significant inhibitory activity against HepG2 cells with IC50 = 7.72 ± 1.56 µM, which is better than those of gefitinib and sorafenib. It is worth mentioning that the coumarin-furo[2,3-d]pyrimidone combination 10a showed excellent inhibition of the EGFR enzymatic activity with IC50 = 1.53 µM and 90% inhibition at 10 µM concentration. In silico investigation predicts the possibility of direct binding between the new coumarin-furo[2,3-d]pyrimidone hybrid molecules and the EGFR. The results suggest that coumarin-furo[2,3-d]pyrimidone hybrid molecules are potential antitumor agents targeting human liver cancer cells.

14.
Adv Mater ; : e2409877, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39279578

RESUMEN

Low-density magnesium (Mg) alloys are excellent engineering materials, and can significantly reduce energy consumption by replacing existing steel and aluminum materials. However, Mg species are susceptible to corrosion, especially in harsh environments (high-temperature or acidic), severely limiting the range of practical applications. Here, 2D covalent organic framework (COF) is synthesized with pore diameters ranging from 1.5 to 2.9 nm to obtain ultrafast nanofluidic channels. Loaded with silver (Ag+) ions, 2-mercaptobenzimidazole (2-MB) inhibitors are immobilized in the COF channels through the silver bridges. Based on the strong metal-complexing capability, Ag+ ions precipitated with various corrosive media (Cl-, Br-, I-, SO3 2-, S2-, S2O3 2- SO4 2-, CO3 2-, PO4 3-); meanwhile, the 2-MB inhibitors are rapidly released through the nanofluidic channels, forming a passivation film as a corrosion barrier to protect the Mg substrate. After integration with commercial polyethersulfone (PES), the COF-based coating exhibits high repairing capability achieving 100% damage restoration within 7 h, outperforming all existing coatings of Mg alloys. Notably, the coating shows almost complete protection of Mg alloys after being treated in respective 473 K, acidic (pH ≈4.0), and alkaline (pH ≈10.0) environments.

15.
ACS Nano ; 18(16): 10902-10911, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38606667

RESUMEN

The practical application of high-energy density lithium-oxygen (Li-O2) batteries is severely impeded by the notorious cycling stability and safety, which mainly comes from slow kinetics of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) at cathodes, causing inferior redox overpotentials and reactive lithium metal in flammable liquid electrolyte. Herein, a bifunctional electrode, a safe gel polymer electrolyte (GPE), and a robust lithium anode are proposed to alleviate above problems. The bifunctional electrode is composed of N-doped carbon nanotubes (N-CNTs) and Co4N by in situ chemical vapor deposition self-catalyzed growth on carbon cloth (N-CNTs@Co4N@CC). The self-supporting, binder-free N-CNTs@Co4N@CC electrode has a strong and stable three-dimensional (3D) interconnected conductive structure, which provides interconnectivity between the active sites and the electrode to promote the transfer of electrons. Furthermore, the N-CNT-intertwined Co4N ensures efficient catalytic activity. Hence, the electrode demonstrates improved electrochemical properties even under a large current density (2000 mA g-1) and long cycling operation (250 cycles). Moreover, a highly safe and flexible rechargeable cell using the 3D N-CNTs@Co4N@CC electrode, GPE, and robust lithium anode design has been explored. The open circuit voltage is stable at ∼3.0 V even after 9800 cycles, which proves the mechanical durability of the integrated GPE cell. The stable cable-type Li-air battery was demonstrated to stably drive the light-emitting diodes (LEDs), highlighting the reliability for practical use.

16.
ACS Nano ; 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39299912

RESUMEN

The poor ambient ionic transport properties of poly(ethylene oxide) (PEO)-based SPEs can be greatly improved through filler introduction. Metal fluorides are effective in promoting the dissociation of lithium salts via the establishment of the Li-F bond. However, too strong Li-F interaction would impair the fast migration of lithium ions. Herein, magnesium aluminum fluoride (MAF) fillers are developed. Experimental and simulation results reveal that the Li-F bond strength could be readily altered by changing fluorine vacancy (VF) concentration in the MAF, and lithium salt anions can also be well immobilized, which realizes a balance between the dissociation degree of lithium salts and fast transport of lithium ions. Consequently, the Li symmetric cells cycle stably for more than 1400 h at 0.1 mA cm-2 with a LiF/Li3N-rich solid electrolyte interphase (SEI). The SPE exhibits a high ionic conductivity (0.5 mS cm-1) and large lithium-ion transference number (0.4), as well as high mechanical strength owing to the hydrogen bonding between MAF and PEO. The corresponding Li//LiFePO4 cells deliver a high discharge capacity of 160.1 mAh g-1 at 1 C and excellent cycling stability with 100.2 mAh g-1 retaining after 1000 cycles. The as-assembled pouch cells show excellent electrochemical stability even at rigorous conditions, demonstrating high safety and practicability.

17.
RSC Adv ; 13(24): 16488-16511, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37274408

RESUMEN

Platinum-based anticancer drugs play a crucial role in the clinical treatment of various cancers. However, the application of platinum-based drugs is heavily restricted by their severe toxicity and drug resistance/cross resistance. Various drug delivery systems have been developed to overcome these limitations of platinum-based chemotherapy. Stimuli-responsive nanocarrier drug delivery systems as one of the most promising strategies attract more attention. And huge progress in stimuli-responsive nanocarrier delivery systems of platinum-based drugs has been made. In these systems, a variety of triggers including endogenous and extracorporeal stimuli have been employed. Endogenous stimuli mainly include pH-, thermo-, enzyme- and redox-responsive nanocarriers. Extracorporeal stimuli include light-, magnetic field- and ultrasound responsive nanocarriers. In this review, we present the recent advances in stimuli-responsive drug delivery systems with different nanocarriers for improving the efficacy and reducing the side effects of platinum-based anticancer drugs.

18.
Sci Bull (Beijing) ; 68(13): 1379-1388, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37336686

RESUMEN

Lithium (Li) metal with low electrochemical potential and high theoretical capacity is a promising anode material for next-generation batteries. However, the low reversibility and safety problems caused by the notorious dendrite growth significantly impede the development of high-energy-density lithium metal batteries (LMBs). Here, to enable a dendrite-free and highly reversible Li metal anode (LMA), we develop a cytomembrane-inspired artificial layer (CAL) with biomimetic ionic channels using a scalable spread coating method. The negatively charged CAL with uniform intraparticle and interparticle ionic channels facilitates the Li-ion transport and redistributes the Li-ion flux, contributing to stable and homogeneous Li stripping and plating. Furthermore, a robust underneath transition layer with abundant lithiophilic inorganic components is in-situ formed through the transformation of CAL during cycling, which promotes Li-ion diffusion and suppresses the continuous side reactions with the electrolyte. Additionally, the resulting cytomembrane-inspired artificial Janus layer (CAJL) displays an ultrahigh Young's modulus (≥10.7 GPa) to inhibit the dendrite growth. Consequently, the CAJL-protected LMA (Li@CAJL) is stably cycled with a high areal capacity of 10 mAh cm-2 at a high current density of 10 mA cm-2. More importantly, the effective CAJL modification realizes the stable operation of a practical 429.2 Wh kg-1 lithium-sulfur (Li-S) pouch cell using a low electrolyte/sulfur (E/S) ratio of 3 µL mg-1. The facile yet effective protection strategy of LMAs can promote the practical application of LMBs.

19.
Adv Mater ; 33(13): e2006247, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33630383

RESUMEN

Despite considerable efforts to prevent lithium (Li) dendrite growth, stable cycling of Li metal anodes with various structures remains extremely difficult due to the direct contact of the liquid electrolyte with Li. Rational design of solid-electrolyte interphase (SEI) for 3D electrodes is a promising but still challenging strategy for preventing Li dendrite growth and avoiding lithium-electrolyte side reactions in Li-metal batteries. Here, a 3D architecture is constructed with g-C3 N4 /graphene/g-C3 N4 insulator-metal-insulator sandwiched nanosheets to guide uniform Li plating/stripping in the van der Waals gap between the graphene and the g-C3 N4 , and the function of which can be regarded as a 3D artificial SEI. Li deposition on the surface of g-C3 N4 is suppressed due to its insulating nature. However, its uniform lithiophilic sites and nanopore channels enable homogeneous lithium plating between the graphene and the g-C3 N4 , prohibiting the direct contact of the electrolyte with the Li metal. The use of the g-C3 N4 -layer-modified 3D anode enables long-term Li deposition with a high Coulombic efficiency and stable cycling of full cells under high cathode loading, limited Li excess, and lean electrolyte conditions. The concept of a 3D artificial SEI will shed light on developing safe and stable Li-metal anodes.

20.
Adv Mater ; 33(12): e2007090, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33599013

RESUMEN

Sodium-ion batteries (SIBs) based on conversion-type metal sulfide (MS) anodes have attracted extraordinary attention due to relatively high capacity and intrinsic safety. The highly reversible conversion of M/Na2 S to pristine MS in charge plays a vital role with regard to the electrochemical performance. Here, taking conventional MoS2 as an example, guided by theoretical simulations, a catalyst of iron single atoms on nitrogen-doped graphene (SAFe@NG) is selected and first used as a substrate to facilitate the reaction kinetics of MoS2 in the discharging process. In the following charging process, using a combination of spectroscopy and microscopy, it is demonstrated that the SAFe@NG catalyst enables an efficient reversible conversion reaction of Mo/Na2 S→NaMoS2 →MoS2 . Moreover, theoretical simulations reveal that the reversible conversion mechanism shows favorable formation energy barrier and reaction kinetics, in which SAFe@NG with the Fe-N4 coordination center facilitates the uniform dispersion of Na2 S/Mo and the decomposition of Na2 S and NaMoS2 . Therefore, efficient reversible conversion reaction MoS2 ↔NaMoS2 ↔Mo/Na2 S is enabled by the SAFe@NG catalyst. This work contributes new avenues for designing conversion-type materials with an efficient reversible mechanism.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA