Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(7): e2314085121, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38330013

RESUMEN

Cancer therapy, including immunotherapy, is inherently limited by chronic inflammation-induced tumorigenesis and toxicity within the tumor microenvironment. Thus, stimulating the resolution of inflammation may enhance immunotherapy and improve the toxicity of immune checkpoint inhibition (ICI). As epoxy-fatty acids (EpFAs) are degraded by the enzyme soluble epoxide hydrolase (sEH), the inhibition of sEH increases endogenous EpFA levels to promote the resolution of cancer-associated inflammation. Here, we demonstrate that systemic treatment with ICI induces sEH expression in multiple murine cancer models. Dietary omega-3 polyunsaturated fatty acid supplementation and pharmacologic sEH inhibition, both alone and in combination, significantly enhance anti-tumor activity of ICI in these models. Notably, pharmacological abrogation of the sEH pathway alone or in combination with ICI counter-regulates an ICI-induced pro-inflammatory and pro-tumorigenic cytokine storm. Thus, modulating endogenous EpFA levels through dietary supplementation or sEH inhibition may represent a unique strategy to enhance the anti-tumor activity of paradigm cancer therapies.


Asunto(s)
Epóxido Hidrolasas , Neoplasias , Ratones , Humanos , Animales , Epóxido Hidrolasas/metabolismo , Ácidos Grasos/metabolismo , Inflamación/metabolismo , Neoplasias/terapia , Inmunoterapia , Microambiente Tumoral
2.
Proc Natl Acad Sci U S A ; 117(15): 8431-8436, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32220957

RESUMEN

Intestinal barrier dysfunction, which leads to translocation of bacteria or toxic bacterial products from the gut into bloodstream and results in systemic inflammation, is a key pathogenic factor in many human diseases. However, the molecular mechanisms leading to intestinal barrier defects are not well understood, and there are currently no available therapeutic approaches to target intestinal barrier function. Here we show that soluble epoxide hydrolase (sEH) is an endogenous regulator of obesity-induced intestinal barrier dysfunction. We find that sEH is overexpressed in the colons of obese mice. In addition, pharmacologic inhibition or genetic ablation of sEH abolishes obesity-induced gut leakage, translocation of endotoxin lipopolysaccharide or bacteria, and bacterial invasion-induced adipose inflammation. Furthermore, systematic treatment with sEH-produced lipid metabolites, dihydroxyeicosatrienoic acids, induces bacterial translocation and colonic inflammation in mice. The actions of sEH are mediated by gut bacteria-dependent mechanisms, since inhibition or genetic ablation of sEH fails to attenuate obesity-induced gut leakage and adipose inflammation in mice lacking gut bacteria. Overall, these results support that sEH is a potential therapeutic target for obesity-induced intestinal barrier dysfunction, and that sEH inhibitors, which have been evaluated in human clinical trials targeting other human disorders, could be promising agents for prevention and/or treatment.


Asunto(s)
Traslocación Bacteriana , Epóxido Hidrolasas/inmunología , Enfermedades Intestinales/enzimología , Intestinos/enzimología , Obesidad/complicaciones , Tejido Adiposo/inmunología , Animales , Bacterias/genética , Bacterias/aislamiento & purificación , Fenómenos Fisiológicos Bacterianos , Epóxido Hidrolasas/genética , Microbioma Gastrointestinal , Humanos , Enfermedades Intestinales/etiología , Enfermedades Intestinales/inmunología , Enfermedades Intestinales/microbiología , Intestinos/inmunología , Intestinos/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/enzimología , Obesidad/genética
3.
Proc Natl Acad Sci U S A ; 117(35): 21576-21587, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32801214

RESUMEN

Toxic environmental carcinogens promote cancer via genotoxic and nongenotoxic pathways, but nongenetic mechanisms remain poorly characterized. Carcinogen-induced apoptosis may trigger escape from dormancy of microtumors by interfering with inflammation resolution and triggering an endoplasmic reticulum (ER) stress response. While eicosanoid and cytokine storms are well-characterized in infection and inflammation, they are poorly characterized in cancer. Here, we demonstrate that carcinogens, such as aflatoxin B1 (AFB1), induce apoptotic cell death and the resulting cell debris stimulates hepatocellular carcinoma (HCC) tumor growth via an "eicosanoid and cytokine storm." AFB1-generated debris up-regulates cyclooxygenase-2 (COX-2), soluble epoxide hydrolase (sEH), ER stress-response genes including BiP, CHOP, and PDI in macrophages. Thus, selective cytokine or eicosanoid blockade is unlikely to prevent carcinogen-induced cancer progression. Pharmacological abrogation of both the COX-2 and sEH pathways by PTUPB prevented the debris-stimulated eicosanoid and cytokine storm, down-regulated ER stress genes, and promoted macrophage phagocytosis of debris, resulting in suppression of HCC tumor growth. Thus, inflammation resolution via dual COX-2/sEH inhibition is an approach to prevent carcinogen-induced cancer.


Asunto(s)
Citocinas/metabolismo , Eicosanoides/metabolismo , Neoplasias Hepáticas/metabolismo , Aflatoxina B1/efectos adversos , Animales , Apoptosis , Carcinogénesis/metabolismo , Carcinógenos/metabolismo , Carcinoma Hepatocelular/metabolismo , Línea Celular , Ciclooxigenasa 2/metabolismo , Citocinas/inmunología , Progresión de la Enfermedad , Eicosanoides/inmunología , Epóxido Hidrolasas/metabolismo , Células Hep G2 , Humanos , Inflamación/metabolismo , Neoplasias Hepáticas/fisiopatología , Macrófagos/metabolismo , Ratones , Procesos Neoplásicos
4.
Ecotoxicol Environ Saf ; 249: 114417, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36525946

RESUMEN

Aflatoxin B1 (AFB1) contamination in food and feed leads to severe global health problems. Acting as the frontier immunological barrier, the intestinal mucosa is constantly challenged by exposure to foodborne toxins such as AFB1 via contaminated diets, but the detailed toxic mechanism and endogenous regulators of AFB1 toxicity are still unclear. Here, we showed that AFB1 disrupted intestinal immune function by suppressing macrophages, especially M2 macrophages, and antimicrobial peptide-secreting Paneth cells. Using an oxylipinomics approach, we identified that AFB1 immunotoxicity is associated with decreased epoxy fatty acids, notably epoxyeicosatrienoic acids, and increased soluble epoxide hydrolase (sEH) levels in the intestine. Furthermore, sEH deficiency or inhibition rescued the AFB1-compromised intestinal immunity by restoring M2 macrophages as well as Paneth cells and their-derived lysozyme and α-defensin-3 in mice. Altogether, our study demonstrates that AFB1 exposure impairs intestinal immunity, at least in part, in a sEH-mediated way. Moreover, the present study supports the potential application of pharmacological intervention by inhibiting the sEH enzyme in alleviating intestinal immunotoxicity and associated complications caused by AFB1 global contamination.


Asunto(s)
Aflatoxina B1 , Epóxido Hidrolasas , Animales , Ratones , Aflatoxina B1/toxicidad , Dieta , Inmunidad , Intestinos
5.
Int J Mol Sci ; 24(5)2023 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-36901999

RESUMEN

Aging, which is characterized by enhanced cell senescence and functional decline of tissues, is a major risk factor for many chronic diseases. Accumulating evidence shows that age-related dysfunction in the colon leads to disorders in multiple organs and systemic inflammation. However, the detailed pathological mechanisms and endogenous regulators underlying colon aging are still largely unknown. Here, we report that the expression and activity of the soluble epoxide hydrolase (sEH) enzyme are increased in the colon of aged mice. Importantly, genetic knockout of sEH attenuated the age-related upregulation of senescent markers p21, p16, Tp53, and ß-galactosidase in the colon. Moreover, sEH deficiency alleviated aging-associated endoplasmic reticulum (ER) stress in the colon by reducing both the upstream regulators Perk and Ire1 as well as the downstream pro-apoptotic effectors Chop and Gadd34. Furthermore, treatment with sEH-derived linoleic acid metabolites, dihydroxy-octadecenoic acids (DiHOMEs), decreased cell viability and increased ER stress in human colon CCD-18Co cells in vitro. Together, these results support that the sEH is a key regulator of the aging colon, which highlights its potential application as a therapeutic target for reducing or treating age-related diseases in the colon.


Asunto(s)
Senescencia Celular , Estrés del Retículo Endoplásmico , Epóxido Hidrolasas , Animales , Humanos , Ratones , Envejecimiento , Colon/metabolismo , Epóxido Hidrolasas/metabolismo , Inflamación , Ratones Endogámicos C57BL
6.
Int J Mol Sci ; 24(12)2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37373086

RESUMEN

Parkinson's disease (PD) is an increasingly common neurodegenerative movement disorder with contributing factors that are still largely unexplored and currently no effective intervention strategy. Epidemiological and pre-clinical studies support the close association between environmental toxicant exposure and PD incidence. Aflatoxin B1 (AFB1), a hazardous mycotoxin commonly present in food and environment, is alarmingly high in many areas of the world. Previous evidence suggests that chronic exposure to AFB1 leads to neurological disorders as well as cancer. However, whether and how aflatoxin B1 contributes to the pathogenesis of PD is poorly understood. Here, oral exposure to AFB1 is shown to induce neuroinflammation, trigger the α-synuclein pathology, and cause dopaminergic neurotoxicity. This was accompanied by the increased expression and enzymatic activity of soluble epoxide hydrolase (sEH) in the mouse brain. Importantly, genetic deletion or pharmacological inhibition of sEH alleviated the AFB1-induced neuroinflammation by reducing microglia activation and suppressing pro-inflammatory factors in the brain. Furthermore, blocking the action of sEH attenuated dopaminergic neuron dysfunction caused by AFB1 in vivo and in vitro. Together, our findings suggest a contributing role of AFB1 to PD etiology and highlight sEH as a potential pharmacological target for alleviating PD-related neuronal disorders caused by AFB1 exposure.


Asunto(s)
Enfermedades Neurodegenerativas , Síndromes de Neurotoxicidad , Enfermedad de Parkinson , Ratones , Animales , Aflatoxina B1/toxicidad , Epóxido Hidrolasas/genética , Epóxido Hidrolasas/metabolismo , Enfermedades Neuroinflamatorias , Enfermedad de Parkinson/metabolismo , Encéfalo/metabolismo
7.
Am J Pathol ; 190(9): 1782-1788, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32650004

RESUMEN

Severe coronavirus disease 2019 (COVID-19) symptoms, including systemic inflammatory response and multisystem organ failure, are now affecting thousands of infected patients and causing widespread mortality. Coronavirus infection causes tissue damage, which triggers the endoplasmic reticulum stress response and subsequent eicosanoid and cytokine storms. Although proinflammatory eicosanoids, including prostaglandins, thromboxanes, and leukotrienes, are critical mediators of physiological processes, such as inflammation, fever, allergy, and pain, their roles in COVID-19 are poorly characterized. Arachidonic acid-derived epoxyeicosatrienoic acids could alleviate the systemic hyperinflammatory response in COVID-19 infection by modulating endoplasmic reticulum stress and stimulating the resolution of inflammation. Soluble epoxide hydrolase (sEH) inhibitors, which increase endogenous epoxyeicosatrienoic acid levels, exhibit potent anti-inflammatory activity and inhibit various pathologic processes in preclinical disease models, including pulmonary fibrosis, thrombosis, and acute respiratory distress syndrome. Therefore, targeting eicosanoids and sEH could be a novel therapeutic approach in combating COVID-19. In this review, we discuss the predominant role of eicosanoids in regulating the inflammatory cascade and propose the potential application of sEH inhibitors in alleviating COVID-19 symptoms. The host-protective action of omega-3 fatty acid-derived epoxyeicosanoids and specialized proresolving mediators in regulating anti-inflammation and antiviral response is also discussed. Future studies determining the eicosanoid profile in COVID-19 patients or preclinical models are pivotal in providing novel insights into coronavirus-host interaction and inflammation modulation.


Asunto(s)
Antiinflamatorios/farmacología , Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Neumonía Viral/tratamiento farmacológico , Animales , Betacoronavirus/patogenicidad , COVID-19 , Eicosanoides/farmacología , Eicosanoides/uso terapéutico , Estrés del Retículo Endoplásmico/efectos de los fármacos , Humanos , Pandemias , SARS-CoV-2
8.
Proc Natl Acad Sci U S A ; 115(20): 5283-5288, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29717038

RESUMEN

Obesity is associated with enhanced colonic inflammation, which is a major risk factor for colorectal cancer. Considering the obesity epidemic in Western countries, it is important to identify novel therapeutic targets for obesity-induced colonic inflammation, to develop targeted strategies for prevention. Eicosanoids are endogenous lipid signaling molecules involved in regulating inflammation and immune responses. Using an LC-MS/MS-based lipidomics approach, we find that obesity-induced colonic inflammation is associated with increased expression of soluble epoxide hydrolase (sEH) and its eicosanoid metabolites, termed fatty acid diols, in colon tissue. Furthermore, we find that pharmacological inhibition or genetic ablation of sEH reduces colonic concentrations of fatty acid diols, attenuates obesity-induced colonic inflammation, and decreases obesity-induced activation of Wnt signaling in mice. Together, these results support that sEH could be a novel therapeutic target for obesity-induced colonic inflammation and associated diseases.


Asunto(s)
Colitis/etiología , Dieta Alta en Grasa/efectos adversos , Epóxido Hidrolasas/fisiología , Inflamación/etiología , Lípidos/análisis , Metabolómica/métodos , Obesidad/complicaciones , Animales , Colitis/metabolismo , Colitis/patología , Inflamación/metabolismo , Inflamación/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal
9.
Small ; 16(36): e2001858, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32519440

RESUMEN

The recent ban of titanium dioxide (TiO2 ) as a food additive (E171) in France intensified the controversy on safety of foodborne-TiO2 nanoparticles (NPs). This study determines the biological effects of TiO2 NPs and TiO2 (E171) in obese and non-obese mice. Oral consumption (0.1 wt% in diet for 8 weeks) of TiO2 (E171, 112 nm) and TiO2 NPs (33 nm) does not cause severe toxicity in mice, but significantly alters composition of gut microbiota, for example, increased abundance of Firmicutes phylum and decreased abundance of Bacteroidetes phylum and Bifidobacterium and Lactobacillus genera, which are accompanied by decreased cecal levels of short-chain fatty acids. Both TiO2 (E171) and TiO2 NPs increase abundance of pro-inflammatory immune cells and cytokines in the colonic mucosa, indicating an inflammatory state. Importantly, TiO2 NPs cause stronger colonic inflammation than TiO2 (E171), and obese mice are more susceptible to the effects. A microbiota transplant study demonstrates that altered fecal microbiota by TiO2 NPs directly mediate inflammatory responses in the mouse colon. Furthermore, proteomic analysis shows that TiO2 NPs cause more alterations in multiple pathways in the liver and colon of obese mice than non-obese mice. This study provides important information on the health effects of foodborne inorganic nanoparticles.


Asunto(s)
Colon , Disbiosis , Microbioma Gastrointestinal , Nanopartículas del Metal , Proteoma , Titanio , Animales , Colon/efectos de los fármacos , Disbiosis/inducido químicamente , Contaminación de Alimentos , Microbioma Gastrointestinal/efectos de los fármacos , Inflamación/inducido químicamente , Nanopartículas del Metal/toxicidad , Ratones , Ratones Obesos , Proteoma/efectos de los fármacos , Proteómica , Titanio/toxicidad
10.
Cancer Metastasis Rev ; 37(2-3): 257-267, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29858741

RESUMEN

Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer-related death in the USA. It is of practical importance to identify novel therapeutic targets of CRC to develop new anti-cancer drugs and to discover novel biomarkers of CRC to develop new detection methods. Eicosanoids, which are metabolites of polyunsaturated fatty acids produced by cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP) enzymes, are important lipid-signaling molecules involved in the regulation of inflammation and tumorigenesis. Substantial studies have shown that the profiles of eicosanoids are deregulated in CRC, and the enzymes, metabolites, and receptors in the eicosanoid signaling cascade play critical roles in regulating colonic inflammation and colon tumorigenesis. In this review, we discuss the roles of the COX, LOX, and CYP pathways in the carcinogenesis of CRC.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , Neoplasias Colorrectales/etiología , Neoplasias Colorrectales/metabolismo , Eicosanoides/metabolismo , Transducción de Señal , Animales , Transformación Celular Neoplásica/genética , Colitis/complicaciones , Colitis/metabolismo , Neoplasias Colorrectales/patología , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Epóxido Hidrolasas/genética , Epóxido Hidrolasas/metabolismo , Humanos , Metabolismo de los Lípidos , Lipooxigenasa/genética , Lipooxigenasa/metabolismo , Obesidad/complicaciones , Obesidad/metabolismo , Prostaglandina-Endoperóxido Sintasas/genética , Prostaglandina-Endoperóxido Sintasas/metabolismo
11.
Adv Exp Med Biol ; 1161: 115-123, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31562626

RESUMEN

Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer-related death in the United States. It is important to discover novel cellular targets which are crucial in the pathogenesis of CRC, which could facilitate development of mechanism-based strategies to reduce the risks of CRC. Emerging studies support that the cytochrome P450 (CYP) monooxygenase/soluble epoxide hydrolase (sEH) pathway and their eicosanoid metabolites play critical roles in colonic inflammation and CRC, and could be therapeutically explored for treating or preventing CRC. Here in this review, we discuss recent studies about the roles of the CYP/sEH eicosanoid pathway in the pathogenesis of colonic inflammation and CRC.


Asunto(s)
Carcinogénesis , Neoplasias Colorrectales , Sistema Enzimático del Citocromo P-450 , Eicosanoides , Transducción de Señal , Carcinogénesis/metabolismo , Neoplasias Colorrectales/fisiopatología , Sistema Enzimático del Citocromo P-450/metabolismo , Eicosanoides/metabolismo , Epóxido Hidrolasas/metabolismo , Humanos
12.
Artículo en Inglés | MEDLINE | ID: mdl-28049021

RESUMEN

The ω-3 polyunsaturated fatty acids (PUFAs) are among the most popular dietary supplements in the US, but they are chemically unstable and highly prone to lipid peroxidation. Many studies performed in different countries demonstrate that the majority of ω-3 PUFA products on the market are oxidized, suggesting that the resulting ω-3 PUFA peroxidation-derived compounds could be widely consumed by the general public. Therefore, it is of practical importance to understand the effects of these oxidized lipid compounds on human health. In this review, we summarize and discuss the chemical structures and biological activities of ω-3 PUFA peroxidation-derived compounds, and emphasize the importance to better understand the role of lipid peroxidation in biological activities of ω-3 PUFAs.


Asunto(s)
Ácidos Grasos Omega-3/química , Ácidos Grasos Omega-3/metabolismo , Peroxidación de Lípido , Animales , Humanos
13.
Artículo en Inglés | MEDLINE | ID: mdl-27913146

RESUMEN

Obesity is a serious health problem in the US and is associated with increased risks of various human diseases. To date, the mechanisms by which obesity increases the risks of a wide range of human diseases are not well understood. Here we used a LC-MS/MS-based lipidomics, which can analyze >100 bioactive lipid mediators produced by cyclooxygenase, lipoxygenase, and cytochrome P450 enzymes, to analyze plasma profiles of lipid mediators in high-fat diet induced obesity in C57BL/6 mice. Our results show that the plasma concentrations of epoxyoctadecenoic acids (EpOMEs, also termed as leukotoxins) are significantly increased in plasma of high-fat diet-fed mice, in addition, EpOMEs are among the most abundant lipid mediators detected in mouse plasma. Since substantial studies have shown that EpOMEs and their metabolites have a large array of detrimental effects on health, enhanced levels of EpOMEs could contribute to the pathology of obesity.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Eicosanoides/sangre , Eicosanoides/metabolismo , Animales , Enzimas/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Masculino , Metabolómica , Ratones , Ratones Endogámicos C57BL
14.
J Biol Chem ; 288(23): 16567-16578, 2013 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-23612972

RESUMEN

The proteasome activator REGγ has been reported to promote degradation of steroid receptor coactivator-3 and cyclin-dependent kinase inhibitors p21, p16, and p19 in a ubiquitin- and ATP-independent manner. A recent comparative analysis of REGγ expression in mouse and human tissues reveals a unique pattern of REGγ in specific cell types, suggesting undisclosed functions and biological importance of this molecule. Despite the emerging progress made in REGγ-related studies, how REGγ function is regulated remains to be explored. In this study, we report for the first time that REGγ can be acetylated mostly on its lysine 195 (Lys-195) residue by CREB binding protein (CBP), which can be reversed by sirtuin 1 (SIRT1) in mammalian cells. Site-directed mutagenesis abrogated acetylation at Lys-195 and significantly attenuated the capability of REGγ to degrade its target substrates, p21 and hepatitis C virus core protein. Mechanistically, acetylation at Lys-195 is important for the interactions between REGγ monomers and ultimately influences REGγ heptamerization. Biological analysis of cells containing REGγ-WT or REGγ-K195R mutant indicates an impact of acetylation on REGγ-mediated regulation of cell proliferation and cell cycle progression. These findings reveal a previously unknown mechanism in the regulation of REGγ assembly and activity, suggesting a potential venue for the intervention of the ubiquitin-independent REGγ proteasome activity.


Asunto(s)
Autoantígenos/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Multimerización de Proteína/fisiología , Proteolisis , Acetilación , Sustitución de Aminoácidos , Animales , Autoantígenos/genética , Proteína de Unión a CREB/genética , Proteína de Unión a CREB/metabolismo , Ciclo Celular/fisiología , Células HEK293 , Células HeLa , Humanos , Ratones , Ratones Noqueados , Mutación Missense , Complejo de la Endopetidasa Proteasomal/genética , Ubiquitina/genética , Ubiquitina/metabolismo
15.
Prostaglandins Other Lipid Mediat ; 113-115: 13-20, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25019221

RESUMEN

Epidemiological and pre-clinical studies support the anti-tumor effects of ω-3 PUFAs; however, the results from human trials are mixed, making it difficult to provide dietary guidelines or recommendations of ω-3 PUFAs for disease prevention or treatment. Understanding the molecular mechanisms by which ω-3 PUFAs inhibit cancer could lead to better nutritional paradigms and human trials to clarify their health effects. The ω-3 PUFAs exert their biological activities mainly through the formation of bioactive lipid metabolites. Here we discuss the biology of cyclooxygenase, lipoxygenase and cytochrome P450 enzymes-derived ω-3-series lipid metabolites on angiogenesis, inflammation and cancer.


Asunto(s)
Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Omega-6/metabolismo , Inflamación/metabolismo , Neoplasias/metabolismo , Animales , Citocromos/metabolismo , Humanos , Inflamación/enzimología , Metabolismo de los Lípidos , Lipooxigenasas/metabolismo , Neoplasias/irrigación sanguínea , Neoplasias/enzimología , Neovascularización Patológica/enzimología , Neovascularización Patológica/metabolismo , Prostaglandina-Endoperóxido Sintasas/metabolismo
16.
bioRxiv ; 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38463975

RESUMEN

Previous studies have implicated persistent innate immune signaling in the pathogenesis of arrhythmogenic cardiomyopathy (ACM), a familial non-ischemic heart muscle disease characterized by life-threatening arrhythmias and progressive myocardial injury. Here, we provide new evidence implicating inflammatory lipid autocoids in ACM. We show that specialized pro-resolving lipid mediators are reduced in hearts of Dsg2mut/mut mice, a well characterized mouse model of ACM. We also found that ACM disease features can be reversed in rat ventricular myocytes expressing mutant JUP by the pro-resolving epoxy fatty acid (EpFA) 14,15-eicosatrienoic acid (14-15-EET), whereas 14,15-EE-5(Z)E which antagonizes actions of the putative 14,15-EET receptor, intensified nuclear accumulation of the desmosomal protein plakoglobin. Soluble epoxide hydrolase (sEH), an enzyme that rapidly converts pro-resolving EpFAs into polar, far less active or even pro-inflammatory diols, is highly expressed in cardiac myocytes in Dsg2mut/mut mice. Inhibition of sEH prevented progression of myocardial injury in Dsg2mut/mut mice and led to recovery of contractile function. This was associated with reduced myocardial expression of genes involved in the innate immune response and fewer pro-inflammatory macrophages expressing CCR2, which mediate myocardial injury in Dsg2mut/mut mice. These results suggest that pro-inflammatory eicosanoids contribute to the pathogenesis of ACM and, further, that inhibition of sEH may be an effective, mechanism-based therapy for ACM patients.

17.
Nutrients ; 12(11)2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-33126566

RESUMEN

Substantial human and animal studies support the beneficial effects of ω-3 polyunsaturated fatty acids (PUFAs) on colonic inflammation and colorectal cancer (CRC). However, there are inconsistent results, which have shown that ω-3 PUFAs have no effect or even detrimental effects, making it difficult to effectively implement ω-3 PUFAs for disease prevention. A better understanding of the molecular mechanisms for the anti-inflammatory and anticancer effects of ω-3 PUFAs will help to clarify their potential health-promoting effects, provide a scientific base for cautions for their use, and establish dietary recommendations. In this review, we summarize recent studies of ω-3 PUFAs on colonic inflammation and CRC and discuss the potential roles of ω-3 PUFA-metabolizing enzymes, notably the cytochrome P450 monooxygenases, in mediating the actions of ω-3 PUFAs.


Asunto(s)
Antiinflamatorios/farmacología , Antineoplásicos/farmacología , Colitis/prevención & control , Neoplasias Colorrectales/prevención & control , Ácidos Grasos Omega-3/farmacología , Animales , Colon/efectos de los fármacos , Sistema Enzimático del Citocromo P-450/metabolismo , Epóxido Hidrolasas/metabolismo , Humanos , Oxigenasas de Función Mixta/metabolismo
18.
Food Funct ; 11(2): 1684-1691, 2020 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-32037431

RESUMEN

Previous studies have shown that curcumin, a bioactive dietary compound with a thiol-reactive α,ß-unsaturated carbonyl moiety, can covalently modify protein thiols. However, most of the previous studies were performed in cultured cells or cell-free enzyme systems, and so it remains unknown whether curcumin could covalently modify proteins after oral administration in vivo. Using click chemistry-based fluorescence imaging, here we show that oral administration of dialkyne-curcumin (Di-Cur), a "click" probe mimicking curcumin, results in covalent modifications of cellular proteins in colon and liver tissues, but not in other tissues, in mice. This result suggests that oral administration of curcumin leads to the formation of the curcumin-protein complex in a tissue-specific manner, which could contribute to the biological effects and/or pharmacokinetics of curcumin. Further studies to elucidate the identities of curcumin-binding proteins could greatly help us to better understand the molecular mechanisms of curcumin, and develop novel strategies for disease prevention.


Asunto(s)
Química Clic/métodos , Curcumina , Administración Oral , Animales , Línea Celular Tumoral , Colon/metabolismo , Curcumina/administración & dosificación , Curcumina/química , Curcumina/metabolismo , Curcumina/farmacocinética , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Sondas Moleculares , Unión Proteica , Distribución Tisular
19.
Gut Microbes ; 12(1): 1690364, 2020 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-31760871

RESUMEN

Triclocarban (TCC) is a widely used antimicrobial ingredient in consumer products and is a ubiquitous contaminant in the environment. In 2016, the FDA removed TCC from over-the-counter handwashing products, but this compound is still approved for use in many other personal care products. A better understanding of its impact on human health could lead to significant impact for public health and regulatory policies. Here we show that exposure to low-dose TCC exaggerated the severity of colitis and exacerbated the development of colitis-associated colon tumorigenesis, via gut microbiota-dependent mechanisms. Exposure to TCC increased dextran sodium sulfate (DSS)- and interleukin 10 (IL-10) knockout-induced colitis, and exaggerated azoxymethane (AOM)/DSS-induced colon tumorigenesis in mice. Regarding the mechanisms, TCC exposure reduced the diversity and altered the composition of gut microbiota and failed to promote DSS-induced colitis in mice lacking the microbiota, supporting that the presence of the microbiota is critical for the pro-colitis effects of TCC. Together, these results support TCC could be a novel risk factor for colitis and colitis-associated colon cancer, and further regulatory policies on this compound could be needed.


Asunto(s)
Antiinfecciosos Locales/efectos adversos , Carbanilidas/efectos adversos , Transformación Celular Neoplásica/efectos de los fármacos , Colitis/inducido químicamente , Neoplasias del Colon/inducido químicamente , Microbioma Gastrointestinal/efectos de los fármacos , Animales , Antiinfecciosos Locales/farmacología , Bifidobacterium longum subspecies infantis/crecimiento & desarrollo , Carbanilidas/farmacología , Colitis/microbiología , Colitis/patología , Neoplasias del Colon/patología , Sulfato de Dextran , Humanos , Inflamación/inducido químicamente , Interleucina-10/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Contaminantes Químicos del Agua/efectos adversos
20.
Toxicol Sci ; 174(1): 92-99, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31868902

RESUMEN

Triclocarban (3,4,4'-trichlorocarbanilide, TCC) is a high-volume chemical used as an antimicrobial ingredient in many consumer and personal care products. In 2016, the Food and Drug Administration removed TCC from over-the-counter hand washing products. However, TCC remains approved to use in many other products and is a ubiquitous contaminant in the environment; furthermore, many common food crops can efficiently accumulate environmental TCC, resulting in potential human exposure through oral ingestion of contaminated food products. Therefore, human exposure to TCC could be a long-lasting and serious problem. A better understanding of its impact on human health could lead to important impact for public health and regulatory policy. Using a spontaneous colonic inflammation model in Il-10-/- mice, here we demonstrate that exposure to TCC, at doses relevant to human exposure, exaggerates spontaneous colonic inflammation in Il-10-/- mice, with reduced colon length, increase fecal concentration of lipocalin 2, enhanced gene expression of Il-6 and Ifn-γ in the colon, and exaggerated crypt damage in the colon. Collectively, these results support that TCC could be a potential environmental risk factor of colitis and associated gut diseases.


Asunto(s)
Antiinfecciosos/toxicidad , Carbanilidas/toxicidad , Colitis/inducido químicamente , Colon/efectos de los fármacos , Interleucina-10/deficiencia , Animales , Colitis/genética , Colitis/metabolismo , Colitis/patología , Colon/metabolismo , Colon/patología , Interferón gamma/genética , Interferón gamma/metabolismo , Interleucina-10/genética , Interleucina-6/genética , Interleucina-6/metabolismo , Lipocalina 2/metabolismo , Masculino , Ratones Noqueados , Medición de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA