Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant Cell ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38819305

RESUMEN

Potassium (K+) plays crucial roles in both plant development and immunity. However, the function of K+ in plant-virus interactions remains largely unknown. Here, we utilized Barley yellow striate mosaic virus (BYSMV), an insect-transmitted plant cytorhabdovirus, to investigate the interplay between viral infection and plant K+ homeostasis. The BYSMV accessory P9 protein exhibits viroporin activity by enhancing membrane permeability in Escherichia coli. Additionally, P9 increases K+ uptake in yeast (Saccharomyces cerevisiae) cells, which is disrupted by a point mutation of Glycine 14 to Threonine (P9G14T). Furthermore, BYSMV P9 forms oligomers and targets to both the viral envelope and the plant membrane. Based on the recombinant BYSMV-green fluorescent protein (BYGFP) virus, a P9-deleted mutant (BYGFPΔP9) was rescued and demonstrated infectivity within individual plant cells of Nicotiana benthamiana and insect vectors. However, BYGFPΔP9 failed to infect barley plants after transmission by insect vectors. Furthermore, infection of barley plants was severely impaired for BYGFP-P9G14T lacking P9 K+ channel activity. In vitro assays demonstrate that K+ facilitates virion disassembly and the release of genome RNA for viral mRNA transcription. Altogether, our results show that the K+ channel activity of viroporins is conserved in plant cytorhabdoviruses and plays crucial roles in insect-mediated virus transmission.

2.
EMBO J ; 41(13): e110060, 2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35642376

RESUMEN

Viral replication and movement are intimately linked; however, the molecular mechanisms regulating the transition between replication and subsequent movement remain largely unknown. We previously demonstrated that the Barley stripe mosaic virus (BSMV) γb protein promotes viral replication and movement by interacting with the αa replicase and TGB1 movement proteins. Here, we found that γb is palmitoylated at Cys-10, Cys-19, and Cys-60 in Nicotiana benthamiana, which supports BSMV infection. Intriguingly, non-palmitoylated γb is anchored to chloroplast replication sites and enhances BSMV replication, whereas palmitoylated γb protein recruits TGB1 to the chloroplasts and forms viral replication-movement intermediate complexes. At the late stages of replication, γb interacts with NbPAT15 and NbPAT21 and is palmitoylated at the chloroplast periphery, thereby shifting viral replication to intracellular and intercellular movement. We also show that palmitoylated γb promotes virus cell-to-cell movement by interacting with NbREM1 to inhibit callose deposition at the plasmodesmata. Altogether, our experiments reveal a model whereby palmitoylation of γb directs a dynamic switch between BSMV replication and movement events during infection.


Asunto(s)
Lipoilación , Virus de Plantas , Nicotiana/metabolismo , Proteínas no Estructurales Virales/metabolismo , Replicación Viral
3.
EMBO J ; 40(16): e107660, 2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34254679

RESUMEN

The plant antioxidant system plays important roles in response to diverse abiotic and biotic stresses. However, the effects of virus infection on host redox homeostasis and how antioxidant defense pathway is manipulated by viruses remain poorly understood. We previously demonstrated that the Barley stripe mosaic virus (BSMV) γb protein is recruited to the chloroplast by the viral αa replicase to enhance viral replication. Here, we show that BSMV infection induces chloroplast oxidative stress. The versatile γb protein interacts directly with NADPH-dependent thioredoxin reductase C (NTRC), a core component of chloroplast antioxidant systems. Overexpression of NbNTRC significantly impairs BSMV replication in Nicotiana benthamiana plants, whereas disruption of NbNTRC expression leads to increased viral accumulation and infection severity. To counter NTRC-mediated defenses, BSMV employs the γb protein to competitively interfere with NbNTRC binding to 2-Cys Prx. Altogether, this study indicates that beyond acting as a helicase enhancer, γb also subverts NTRC-mediated chloroplast antioxidant defenses to create an oxidative microenvironment conducive to viral replication.


Asunto(s)
Cloroplastos/metabolismo , Interacciones Huésped-Patógeno , Nicotiana/virología , Virus de Plantas/fisiología , Proteínas no Estructurales Virales/fisiología , Replicación Viral , Estrés Oxidativo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Virus de Plantas/genética , Plantas Modificadas Genéticamente/virología , Reductasa de Tiorredoxina-Disulfuro/genética , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Nicotiana/genética
4.
EMBO J ; 40(15): e108050, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34155657

RESUMEN

Selective autophagy mediates specific degradation of unwanted cytoplasmic components to maintain cellular homeostasis. The suppressor of gene silencing 3 (SGS3) and RNA-dependent RNA polymerase 6 (RDR6)-formed bodies (SGS3/RDR6 bodies) are essential for siRNA amplification in planta. However, whether autophagy receptors regulate selective turnover of SGS3/RDR6 bodies is unknown. By analyzing the transcriptomic response to virus infection in Arabidopsis, we identified a virus-induced small peptide 1 (VISP1) composed of 71 amino acids, which harbor a ubiquitin-interacting motif that mediates interaction with autophagy-related protein 8. Overexpression of VISP1 induced selective autophagy and compromised antiviral immunity by inhibiting SGS3/RDR6-dependent viral siRNA amplification, whereas visp1 mutants exhibited opposite effects. Biochemistry assays demonstrate that VISP1 interacted with SGS3 and mediated autophagic degradation of SGS3/RDR6 bodies. Further analyses revealed that overexpression of VISP1, mimicking the sgs3 mutant, impaired biogenesis of endogenous trans-acting siRNAs and up-regulated their targets. Collectively, we propose that VISP1 is a small peptide receptor functioning in the crosstalk between selective autophagy and RNA silencing.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/inmunología , Péptidos/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Arabidopsis/metabolismo , Arabidopsis/virología , Proteínas de Arabidopsis/genética , Autofagosomas/fisiología , Autofagia/fisiología , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Regulación de la Expresión Génica de las Plantas , Mutación , Péptidos/metabolismo , Inmunidad de la Planta , Plantas Modificadas Genéticamente , ARN Interferente Pequeño , ARN Polimerasa Dependiente del ARN/genética , Nicotiana/genética
5.
Plant Physiol ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38917205

RESUMEN

Plant virus-derived vectors are rapid and cost-effective for protein expression and gene functional studies in plants, particularly for species that are difficult to genetically transform. However, few efficient viral vectors are available for functional studies in Asteraceae plants. Here, we identified a potyvirus named zinnia mild mottle virus (ZiMMV) from common zinnia (Zinnia elegans Jacq.) through next-generation sequencing. Using a yeast homologous recombination strategy, we established a full-length infectious cDNA clone of ZiMMV under the control of the cauliflower mosaic virus 35S promoter. Furthermore, we developed an efficient expression vector based on ZiMMV for the persistent and abundant expression of foreign proteins in the leaf, stem, root, and flower tissues with mild symptoms during viral infection in common zinnia. We showed that the ZiMMV-based vector can express ZeMYB9, which encodes a transcript factor inducing dark red speckles in leaves and flowers. Additionally, the expression of a gibberellic acid (GA) biosynthesis gene from the ZiMMV vector substantially accelerated plant height growth, offering a rapid and cost-effective method. In summary, our work provides a powerful tool for gene expression, functional studies, and genetic improvement of horticultural traits in Asteraceae plant hosts.

6.
Plant Cell ; 34(8): 3110-3127, 2022 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-35567529

RESUMEN

Signaling by the evolutionarily conserved mitogen-activated protein kinase or extracellular signal-regulated kinase (MAPK/ERK) plays critical roles in converting extracellular stimuli into immune responses. However, whether MAPK/ERK signaling induces virus immunity by directly phosphorylating viral effectors remains largely unknown. Barley yellow striate mosaic virus (BYSMV) is an economically important plant cytorhabdovirus that is transmitted by the small brown planthopper (SBPH, Laodelphax striatellus) in a propagative manner. Here, we found that the barley (Hordeum vulgare) MAPK MPK3 (HvMPK3) and the planthopper ERK (LsERK) proteins interact with the BYSMV nucleoprotein (N) and directly phosphorylate N protein primarily on serine 290. The overexpression of HvMPK3 inhibited BYSMV infection, whereas barley plants treated with the MAPK pathway inhibitor U0126 displayed greater susceptibility to BYSMV. Moreover, knockdown of LsERK promoted virus infection in SBPHs. A phosphomimetic mutant of the N Ser290 (S290D) completely abolished virus infection because of impaired self-interaction of BYSMV N and formation of unstable N-RNA complexes. Altogether, our results demonstrate that the conserved MAPK and ERK directly phosphorylate the viral nucleoprotein to trigger immunity against cross-kingdom infection of BYSMV in host plants and its insect vectors.


Asunto(s)
Hemípteros , Hordeum , Rhabdoviridae , Animales , Antivirales , Hordeum/genética , Insectos Vectores , Nucleoproteínas/genética , Rhabdoviridae/fisiología
7.
J Integr Plant Biol ; 66(3): 579-622, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37924266

RESUMEN

Plant viruses are a group of intracellular pathogens that persistently threaten global food security. Significant advances in plant virology have been achieved by Chinese scientists over the last 20 years, including basic research and technologies for preventing and controlling plant viral diseases. Here, we review these milestones and advances, including the identification of new crop-infecting viruses, dissection of pathogenic mechanisms of multiple viruses, examination of multilayered interactions among viruses, their host plants, and virus-transmitting arthropod vectors, and in-depth interrogation of plant-encoded resistance and susceptibility determinants. Notably, various plant virus-based vectors have also been successfully developed for gene function studies and target gene expression in plants. We also recommend future plant virology studies in China.


Asunto(s)
Patología de Plantas , Virus de Plantas , Enfermedades de las Plantas/genética , Plantas/genética , Plantas/metabolismo , China
8.
Plant Physiol ; 189(3): 1715-1727, 2022 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-35325212

RESUMEN

Salicylic acid (SA) acts as a signaling molecule to perceive and defend against pathogen infections. Accordingly, pathogens evolve versatile strategies to disrupt the SA-mediated signal transduction, and how plant viruses manipulate the SA-dependent defense responses requires further characterization. Here, we show that barley stripe mosaic virus (BSMV) infection activates the SA-mediated defense signaling pathway and upregulates the expression of Nicotiana benthamiana thioredoxin h-type 1 (NbTRXh1). The γb protein interacts directly with NbTRXh1 in vivo and in vitro. The overexpression of NbTRXh1, but not a reductase-defective mutant, impedes BSMV infection, whereas low NbTRXh1 expression level results in increased viral accumulation. Similar with its orthologs in Arabidopsis (Arabidopsis thaliana), NbTRXh1 also plays an essential role in SA signaling transduction in N. benthamiana. To counteract NbTRXh1-mediated defenses, the BSMV γb protein targets NbTRXh1 to dampen its reductase activity, thereby impairing downstream SA defense gene expression to optimize viral cell-to-cell movement. We also found that NbTRXh1-mediated resistance defends against lychnis ringspot virus, beet black scorch virus, and beet necrotic yellow vein virus. Taken together, our results reveal a role for the multifunctional γb protein in counteracting plant defense responses and an expanded broad-spectrum antibiotic role of the SA signaling pathway.


Asunto(s)
Virus de Plantas , Ácido Salicílico , Oxidorreductasas/metabolismo , Enfermedades de las Plantas , Virus de Plantas/metabolismo , Ácido Salicílico/metabolismo , Tiorredoxina h/genética , Tiorredoxina h/metabolismo , Nicotiana/metabolismo
9.
Plant Physiol ; 190(2): 1349-1364, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-35771641

RESUMEN

Plant rhabdoviruses heavily rely on insect vectors for transmission between sessile plants. However, little is known about the underlying mechanisms of insect attraction and transmission of plant rhabdoviruses. In this study, we used an arthropod-borne cytorhabdovirus, Barley yellow striate mosaic virus (BYSMV), to demonstrate the molecular mechanisms of a rhabdovirus accessory protein in improving plant attractiveness to insect vectors. Here, we found that BYSMV-infected barley (Hordeum vulgare L.) plants attracted more insect vectors than mock-treated plants. Interestingly, overexpression of BYSMV P6, an accessory protein, in transgenic wheat (Triticum aestivum L.) plants substantially increased host attractiveness to insect vectors through inhibiting the jasmonic acid (JA) signaling pathway. The BYSMV P6 protein interacted with the constitutive photomorphogenesis 9 signalosome subunit 5 (CSN5) of barley plants in vivo and in vitro, and negatively affected CSN5-mediated deRUBylation of cullin1 (CUL1). Consequently, the defective CUL1-based Skp1/Cullin1/F-box ubiquitin E3 ligases could not mediate degradation of jasmonate ZIM-domain proteins, resulting in compromised JA signaling and increased insect attraction. Overexpression of BYSMV P6 also inhibited JA signaling in transgenic Arabidopsis (Arabidopsis thaliana) plants to attract insects. Our results provide insight into how a plant cytorhabdovirus subverts plant JA signaling to attract insect vectors.


Asunto(s)
Arabidopsis , Hordeum , Rhabdoviridae , Animales , Arabidopsis/metabolismo , Complejo del Señalosoma COP9/metabolismo , Ciclopentanos/metabolismo , Hordeum/genética , Hordeum/metabolismo , Insectos Vectores , Oxilipinas/metabolismo , Proteínas/metabolismo , Rhabdoviridae/metabolismo , Transducción de Señal , Triticum/genética , Triticum/metabolismo , Ubiquitinas/metabolismo
10.
Plant Cell ; 32(9): 2878-2897, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32641349

RESUMEN

Casein kinase 1 (CK1) family members are conserved Ser/Thr protein kinases that regulate important developmental processes in all eukaryotic organisms. However, the functions of CK1 in plant immunity remain largely unknown. Barley yellow striate mosaic virus (BYSMV), a plant cytorhabdovirus, infects cereal crops and is obligately transmitted by the small brown planthopper (SBPH; Laodelphax striatellus). The BYSMV phosphoprotein (P) exists as two forms with different mobilities corresponding to 42 kD (P42) and 44 kD (P44) in SDS-PAGE gels. Mass spectrometric analyses revealed a highly phosphorylated serine-rich (SR) motif at the C-terminal intrinsically disordered region of the P protein. The Ala-substitution mutant (PS5A) in the SR motif stimulated virus replication, whereas the phosphorylation-mimic mutant (PS5D) facilitated virus transcription. Furthermore, PS5A and PS5D associated preferentially with nucleocapsid protein-RNA templates and the large polymerase protein to provide optimal replication and transcription complexes, respectively. Biochemistry assays demonstrated that plant and insect CK1 protein kinases could phosphorylate the SR motif and induce conformational changes from P42 to P44. Moreover, overexpression of CK1 or a dominant-negative mutant impaired the balance between P42 and P44, thereby compromising virus infections. Our results demonstrate that BYSMV recruits the conserved CK1 kinases to achieve its cross-kingdom infection in host plants and insect vectors.


Asunto(s)
Quinasa de la Caseína I/metabolismo , Interacciones Huésped-Patógeno/fisiología , Proteínas de Plantas/metabolismo , Rhabdoviridae/fisiología , Proteínas Virales/metabolismo , Secuencias de Aminoácidos , Quinasa de la Caseína I/genética , Genoma Viral , Proteínas de Insectos/metabolismo , Espectrometría de Masas , Mutación , Fosfoproteínas/metabolismo , Fosforilación , Enfermedades de las Plantas/virología , Rhabdoviridae/patogenicidad , Serina , Nicotiana/virología , Replicación Viral/fisiología
11.
Plant Physiol ; 186(1): 715-730, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-33576790

RESUMEN

Protein phosphorylation is a common post-translational modification that frequently occurs during plant-virus interaction. Host protein kinases often regulate virus infectivity and pathogenicity by phosphorylating viral proteins. The Barley stripe mosaic virus (BSMV) γb protein plays versatile roles in virus infection and the coevolutionary arms race between plant defense and viral counter-defense. Here, we identified that the autophosphorylated cytosolic serine/threonine/tyrosine (STY) protein kinase 46 of Nicotiana benthamiana (NbSTY46) phosphorylates and directly interacts with the basic motif domain (aa 19-47) of γb in vitro and in vivo. Overexpression of wild-type NbSTY46, either transiently or transgenically, suppresses BSMV replication and ameliorates viral symptoms, whereas silencing of NbSTY46 leads to increased viral replication and exacerbated symptom. Moreover, the antiviral role of NbSTY46 requires its kinase activity, as the NbSTY46T436A mutant, lacking kinase activity, not only loses the ability to phosphorylate and interact with γb but also fails to impair BSMV infection when expressed in plants. NbSTY46 could also inhibit the replication of Lychnis ringspot virus, another chloroplast-replicating hordeivirus. In summary, we report a function of the cytosolic kinase STY46 in defending against plant viral infection by phosphorylating a viral protein in addition to its basal function in plant growth, development, and abiotic stress responses.


Asunto(s)
Nicotiana/inmunología , Proteínas de Plantas/genética , Virus de Plantas/fisiología , Proteínas Serina-Treonina Quinasas/genética , Virus ARN/fisiología , Fosforilación , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Nicotiana/genética , Nicotiana/virología
12.
Mol Plant Microbe Interact ; 34(1): 49-61, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32986512

RESUMEN

Plant viruses often infect several distinct host species. Sometimes, viruses can systemically infect a specific host whereas, in other cases, only local infections occur in other species. How viral and host factors interact to determine systemic infections among different hosts is largely unknown, particularly for icosahedral positive-stranded RNA viruses. The Tobacco necrosis virus-A Chinese isolate belongs to the genus Alphanecrovirus in the family Tombusviridae. In this study, we investigated variations in systemic infections of tobacco necrosis virus-AC (TNV-AC) in Nicotiana benthamiana and Glycine max (soybean) by alanine-scanning mutagenesis of the viral coat protein (CP), which is essential for systemic movement of TNV-AC. We found that three amino acids, R169, K177, and Q233, are key residues that mediate varying degrees of systemic infections of N. benthamiana and soybean. Further analysis revealed that variations in systemic trafficking of TNV-AC CP mutants in N. benthamiana and soybean are associated with virion assembly and stability. The CP amino acids K177 and Q233 are highly conserved among all TNV-A isolates and are replaced by Q and K in the TNV-D isolates. We demonstrated that systemic infectivity of either TNV-AC K177A and Q233A or K177Q and Q233K mutants are correlated with the binding affinity of the mutated CPs to the host-specific Hsc70-2 protein. These results expand our understanding of host-dependent long-distance movement of icosahedral viruses in plants.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Proteínas de la Cápside , Glycine max , Interacciones Huésped-Patógeno , Nicotiana , Tombusviridae , Sustitución de Aminoácidos/genética , Proteínas de la Cápside/genética , Interacciones Huésped-Patógeno/genética , ARN Viral/genética , Glycine max/virología , Nicotiana/virología , Tombusviridae/genética , Tombusviridae/patogenicidad
13.
Plant Cell ; 30(7): 1582-1595, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29848767

RESUMEN

Autophagy is a conserved defense strategy against viral infection. However, little is known about the counterdefense strategies of plant viruses involving interference with autophagy. Here, we show that γb protein from Barley stripe mosaic virus (BSMV), a positive single-stranded RNA virus, directly interacts with AUTOPHAGY PROTEIN7 (ATG7). BSMV infection suppresses autophagy, and overexpression of γb protein is sufficient to inhibit autophagy. Furthermore, silencing of autophagy-related gene ATG5 and ATG7 in Nicotiana benthamiana plants enhanced BSMV accumulation and viral symptoms, indicating that autophagy plays an antiviral role in BSMV infection. Molecular analyses indicated that γb interferes with the interaction of ATG7 with ATG8 in a competitive manner, whereas a single point mutation in γb, Tyr29Ala (Y29A), made this protein deficient in the interaction with ATG7, which was correlated with the abolishment of autophagy inhibition. Consistently, the mutant BSMVY29A virus showed reduced symptom severity and viral accumulation. Taken together, our findings reveal that BSMV γb protein subverts autophagy-mediated antiviral defense by disrupting the ATG7-ATG8 interaction to promote plant RNA virus infection, and they provide evidence that ATG7 is a target of pathogen effectors that functions in the ongoing arms race of plant defense and viral counterdefense.


Asunto(s)
Virus de Plantas/metabolismo , Virus de Plantas/patogenicidad , Proteínas de Plantas/metabolismo , Virus de Plantas/genética , Unión Proteica , ARN Viral/genética , Nicotiana/metabolismo , Nicotiana/virología
14.
J Integr Plant Biol ; 63(2): 353-364, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33085164

RESUMEN

The vacuole is a unique plant organelle that plays an important role in maintaining cellular homeostasis under various environmental stress conditions. However, the effects of biotic stress on vacuole structure has not been examined using three-dimensional (3D) visualization. Here, we performed 3D electron tomography to compare the ultrastructural changes in the vacuole during infection with different viruses. The 3D models revealed that vacuoles are remodeled in cells infected with cucumber mosaic virus (CMV) or tobacco necrosis virus A Chinese isolate (TNV-AC ), resulting in the formation of spherules at the periphery of the vacuole. These spherules contain neck-like channels that connect their interior with the cytosol. Confocal microscopy of CMV replication proteins 1a and 2a and TNV-AC auxiliary replication protein p23 showed that all of these proteins localize to the tonoplast. Electron microscopy revealed that the expression of these replication proteins alone is sufficient to induce spherule formation on the tonoplast, suggesting that these proteins play prominent roles in inducing vacuolar membrane remodeling. This is the first report of the 3D structures of viral replication factories built on the tonoplasts. These findings contribute to our understanding of vacuole biogenesis under normal conditions and during assembly of plant (+) RNA virus replication complexes.


Asunto(s)
Imagenología Tridimensional , Membranas Intracelulares/metabolismo , Enfermedades de las Plantas/virología , Virus de Plantas/fisiología , Vacuolas/metabolismo , Cucumovirus/fisiología , Cucumovirus/ultraestructura , Tomografía con Microscopio Electrónico , Membranas Intracelulares/ultraestructura , Epidermis de la Planta/citología , Epidermis de la Planta/ultraestructura , Epidermis de la Planta/virología , Virus de Plantas/ultraestructura , Fracciones Subcelulares/metabolismo , Nicotiana/citología , Tombusviridae/fisiología , Tombusviridae/ultraestructura , Vacuolas/ultraestructura , Proteínas Virales/metabolismo , Replicación Viral/fisiología
15.
New Phytol ; 226(5): 1399-1412, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31981419

RESUMEN

Organ size is a major agronomic trait that determines grain yield and biomass production in crops. However, the molecular mechanisms controlling organ size, especially in legumes, are poorly understood. Using forward genetic approaches in a Tnt1 insertion mutant population of the model legume Medicago truncatula, we identified SMALL LEAF AND BUSHY1 (SLB1), which is required for the control of organ size and lateral branching. Loss of function of SLB1 led to reduced leaf and flower size but increased lateral branch formation in M. truncatula. SLB1 encodes an F-box protein, an orthologue of Arabidopsis thaliana STERILE APETALA (SAP), that forms part of an SKP1/Cullin/F-box E3 ubiquitin ligase complex. Biochemical and genetic analyses revealed that SLB1 controls M. truncatula organ growth and lateral branching by modulating the stability of BIG SEEDS1 (BS1). Moreover, the overexpression of SLB1 increased seed and leaf size in both M. truncatula and soybean (Glycine max), indicating functional conservation. Our findings revealed a novel mechanism by which SLB1 targets BS1 for degradation to regulate M. truncatula organ size and shoot branching, providing a new genetic tool for increasing seed yield and biomass production in crop and forage legumes.


Asunto(s)
Medicago truncatula , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Medicago truncatula/genética , Medicago truncatula/metabolismo , Tamaño de los Órganos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
16.
J Exp Bot ; 71(20): 6684-6696, 2020 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-32865553

RESUMEN

Copper is essential for many metabolic processes but must be sequestrated by copper chaperones. It is well known that plant copper chaperones regulate various physiological processes. However, the functions of copper chaperones in the plant nucleus remain largely unknown. Here, we identified a putative copper chaperone induced by pathogens (CCP) in Arabidopsis thaliana. CCP harbors a classical MXCXXC copper-binding site (CBS) at its N-terminus and a nuclear localization signal (NLS) at its C-terminus. CCP mainly formed nuclear speckles in the plant nucleus, which requires the NLS and CBS domains. Overexpression of CCP induced PR1 expression and enhanced resistance against Pseudomonas syringae pv. tomato DC3000 compared with Col-0 plants. Conversely, two CRISPR/Cas9-mediated ccp mutants were impaired in plant immunity. Further biochemical analyses revealed that CCP interacted with the transcription factor TGA2 in vivo and in vitro. Moreover, CCP recruits TGA2 to the PR1 promoter sequences in vivo, which induces defense gene expression and plant immunity. Collectively, our results have identified a putative nuclear copper chaperone required for plant immunity and provided evidence for a potential function of copper in the salicylic pathway.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cobre , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas , Inmunidad de la Planta , Pseudomonas syringae/metabolismo , Ácido Salicílico
17.
Proc Natl Acad Sci U S A ; 114(6): 1377-1382, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28123063

RESUMEN

Dicer-mediated processing of virus-specific dsRNA into short interfering RNAs (siRNAs) in plants and animals initiates a specific antiviral defense by RNA interference (RNAi). In this study, we developed a forward genetic screen for the identification of host factors required for antiviral RNAi in Arabidopsis thaliana Using whole-genome sequencing and a computational pipeline, we identified aminophospholipid transporting ATPase 2 (ALA2) and the related ALA1 in the type IV subfamily of P-type ATPases as key components of antiviral RNAi. ALA1 and ALA2 are flippases, which are transmembrane lipid transporter proteins that transport phospholipids across cellular membranes. We found that the ala1/ala2 single- and double-mutant plants exhibited enhanced disease susceptibility to cucumber mosaic virus when the virus-encoded function to suppress RNAi was disrupted. Notably, the antiviral activity of both ALA1 and ALA2 was abolished by a single amino acid substitution known to inactivate the flippase activity. Genetic analysis revealed that ALA1 and ALA2 acted to enhance the amplification of the viral siRNAs by RNA-dependent RNA polymerase (RdRP) 1 (RDR1) and RDR6 and of the endogenous virus-activated siRNAs by RDR1. RNA virus replication by plant viral RdRPs occurs inside vesicle-like membrane invaginations induced by the recruitment of the viral RdRP and host factors to subcellular membrane microdomains enriched with specific phospholipids. Our results suggest that the phospholipid transporter activity of ALA1/ALA2 may be necessary for the formation of similar invaginations for the synthesis of dsRNA precursors of highly abundant viral and host siRNAs by the cellular RdRPs.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Cucumovirus/genética , Proteínas de Transferencia de Fosfolípidos/genética , Interferencia de ARN , ARN Interferente Pequeño/genética , Arabidopsis/virología , Proteínas de Arabidopsis/metabolismo , Cucumovirus/fisiología , Interacciones Huésped-Patógeno/genética , Mutación , Proteínas de Transferencia de Fosfolípidos/metabolismo , Fosfolípidos/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/virología , Plantas Modificadas Genéticamente , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo
18.
PLoS Pathog ; 13(4): e1006319, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28388677

RESUMEN

RNA viruses encode various RNA binding proteins that function in many steps of viral infection cycles. These proteins function as RNA helicases, methyltransferases, RNA-dependent RNA polymerases, RNA silencing suppressors, RNA chaperones, movement proteins, and so on. Although many of the proteins bind the viral RNA genome during different stages of infection, our knowledge about the coordination of their functions is limited. In this study, we describe a novel role for the Barley stripe mosaic virus (BSMV) γb as an enhancer of αa RNA helicase activity, and we show that the γb protein is recruited by the αa viral replication protein to chloroplast membrane sites of BSMV replication. Mutagenesis or deletion of γb from BSMV resulted in reduced positive strand (+) RNAα accumulation, but γb mutations abolishing viral suppressor of RNA silencing (VSR) activity did not completely eliminate genomic RNA replication. In addition, cis- or trans-expression of the Tomato bushy stunt virus p19 VSR protein failed to complement the γb replication functions, indicating that the direct involvement of γb in BSMV RNA replication is independent of VSR functions. These data support a model whereby two BSMV-encoded RNA-binding proteins act coordinately to regulate viral genome replication and provide new insights into strategies whereby double-stranded viral RNA unwinding is regulated, as well as formation of viral replication complexes.


Asunto(s)
Cloroplastos/virología , Virus del Mosaico/aislamiento & purificación , Virus ARN/metabolismo , ARN Viral/metabolismo , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/fisiología , Cloroplastos/metabolismo , Expresión Génica/fisiología , Interferencia de ARN/fisiología , Virus ARN/genética , ARN Viral/genética , ARN Polimerasa Dependiente del ARN/metabolismo
19.
PLoS Pathog ; 13(7): e1006522, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28727810

RESUMEN

Shoot apical meristems (SAM) are resistant to most plant viruses due to RNA silencing, which is restrained by viral suppressors of RNA silencing (VSRs) to facilitate transient viral invasion of the SAM. In many cases chronic symptoms and long-term virus recovery occur, but the underlying mechanisms are poorly understood. Here, we found that wild-type Cucumber mosaic virus (CMVWT) invaded the SAM transiently, but was subsequently eliminated from the meristems. Unexpectedly, a CMV mutant, designated CMVRA that harbors an alanine substitution in the N-terminal arginine-rich region of the coat protein (CP) persistently invaded the SAM and resulted in visible reductions in apical dominance. Notably, the CMVWT virus elicited more potent antiviral silencing than CMVRA in newly emerging leaves of infected plants. However, both viruses caused severe symptoms with minimal antiviral silencing effects in the Arabidopsis mutants lacking host RNA-DEPENDENT RNA POLYMERASE 6 (RDR6) or SUPPRESSOR OF GENE SILENCING 3 (SGS3), indicating that CMVWT induced host RDR6/SGS3-dependent antiviral silencing. We also showed that reduced accumulation of the 2b protein is elicited in the CMVWT infection and consequently rescues potent antiviral RNA silencing. Indeed, co-infiltration assays showed that the suppression of posttranscriptional gene silencing mediated by 2b is more severely compromised by co-expression of CPWT than by CPRA. We further demonstrated that CPWT had high RNA binding activity leading to translation inhibition in wheat germ systems, and CPWT was associated with SGS3 into punctate granules in vivo. Thus, we propose that the RNAs bound and protected by CPWT possibly serve as templates of RDR6/SGS3 complexes for siRNA amplification. Together, these findings suggest that the CMV CP acts as a central hub that modulates antiviral silencing and VSRs activity, and mediates viral self-attenuation and long-term symptom recovery.


Asunto(s)
Arabidopsis/virología , Proteínas de la Cápside/metabolismo , Cucumovirus/metabolismo , Enfermedades de las Plantas/virología , Proteínas Virales/metabolismo , Arabidopsis/genética , Arabidopsis/inmunología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/inmunología , Proteínas de la Cápside/genética , Cucumovirus/genética , Silenciador del Gen , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Hojas de la Planta/genética , Hojas de la Planta/inmunología , Hojas de la Planta/virología , Interferencia de ARN , Nicotiana/genética , Nicotiana/inmunología , Nicotiana/virología , Proteínas Virales/genética
20.
New Phytol ; 223(4): 2120-2133, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31059138

RESUMEN

Plant viruses have been used as rapid and cost-effective expression vectors for heterologous protein expression in genomic studies. However, delivering large or multiple foreign proteins in monocots and insect pests is challenging. Here, we recovered a recombinant plant cytorhabdovirus, Barley yellow striate mosaic virus (BYSMV), for use as a versatile expression platform in cereals and the small brown planthopper (SBPH, Laodelphax striatellus) insect vector. We engineered BYSMV vectors to provide versatile expression platforms for simultaneous expression of three foreign proteins in barley plants and SBPHs. Moreover, BYSMV vectors could express the c. 600-amino-acid ß-glucuronidase (GUS) protein and a red fluorescent protein stably in systemically infected leaves and roots of cereals, including wheat, barley, foxtail millet, and maize plants. Moreover, we have demonstrated that BYSMV vectors can be used in barley to analyze biological functions of gibberellic acid (GA) biosynthesis genes. In a major technical advance, BYSMV vectors were developed for simultaneous delivery of CRISPR/Cas9 nuclease and single guide RNAs for genomic editing in Nicotiana benthamiana leaves. Taken together, our results provide considerable potential for rapid screening of functional proteins in cereals and planthoppers, and an efficient approach for developing other insect-transmitted negative-strand RNA viruses.


Asunto(s)
Grano Comestible/genética , Grano Comestible/virología , Genoma de Planta , Genómica , Hemípteros/virología , Virus de Plantas/fisiología , Rhabdoviridae/fisiología , Animales , Secuencia de Bases , ADN Complementario/genética , Edición Génica , Vectores Genéticos/metabolismo , Glucuronidasa/metabolismo , Hordeum/ultraestructura , Hordeum/virología , Hojas de la Planta/virología , Virus de Plantas/ultraestructura , ARN Guía de Kinetoplastida/metabolismo , Rhabdoviridae/ultraestructura , Nicotiana/ultraestructura , Nicotiana/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA