Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 336
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant Physiol ; 192(4): 2756-2767, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37084381

RESUMEN

As a climbing organ, the tendril undergoes rapid elongation to increase its length to locate support within a short growth time. However, the molecular mechanism underlying this observation is poorly understood. Here, tendril development was divided into 4 stages in cucumber (Cucumis sativus L.) along with its growth. Phenotypic observations and section analyses showed that the rapid elongation of tendril primarily happened during stage 3 and was mainly due to cell expansion. RNA-seq analysis showed that PACLOBUTRAZOL-RESISTANCE4 (CsPRE4) was highly expressed in the tendril. Our RNAi studies in cucumber and transgenic overexpression in Arabidopsis (Arabidopsis thaliana) suggested that CsPRE4 functions as a conserved activator of cell expansion to promote cell expansion and tendril elongation. Through a triantagonistic HLH (helix-loop-helix)-HLH-bHLH (basic helix-loop-helix) cascade, CsPRE4-CsPAR1 (PHYTOCHROME RAPIDLY REGULATED1)-CsBEE1 (BR-ENHANCED EXPRESSION 1), CsPRE4 released the transcription factor CsBEE1, which activated expansin A12 (CsEXPA12) to loosen the cell wall structure in tendrils. Gibberellin (GA) promoted tendril elongation by modulating cell expansion, and CsPRE4 expression was induced by exogenous GA treatment, suggesting that CsPRE4 acts downstream of GA in regulating tendril elongation. In summary, our work suggested a CsPRE4-CsPAR1-CsBEE1-CsEXPA12 pathway in regulating cell expansion in cucumber tendrils, which might enable rapid tendril elongation to quickly locate support.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Cucumis sativus , Cucumis sativus/genética , Cucumis sativus/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación de la Expresión Génica de las Plantas
2.
J Cardiovasc Magn Reson ; : 101047, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38825155

RESUMEN

BACKGROUND: Coronary artery wall contrast enhancement (CE) has been applied to non-invasive visualization of changes to the coronary artery wall in systemic lupus erythematosus (SLE). This study investigated the feasibility of quantifying CE to detect coronary involvement in IgG4-related disease (IgG4-RD), as well as the influence on disease activity assessment. METHODS: A total of 93 subjects (31 IgG4-RD; 29 SLE; 33 controls) were recruited in the study. Coronary artery wall imaging was performed in a 3.0T MRI scanner. Serological markers and IgG4-RD Responder Index (IgG4-RD-RI) scores were collected for correlation analysis. RESULTS: Coronary wall CE was observed in 29 (94%) IgG4-RD patients and 22 (76%) SLE patients. Contrast-to-noise ratio (CNR) and total CE area were significantly higher in patient groups compared to controls (CNR: 6.1 ± 2.7 [IgG4-RD] v. 4.2 ± 2.3 [SLE] v. 1.9 ± 1.5 [control], P < 0.001; Total CE area: 3.0 [3.0-6.6] v. 1.7 [1.5-2.6] v. 0.3 [0.3-0.9], P < 0.001). In the IgG4-RD group, CNR and total CE area were correlated with the RI (CNR: r =0.55, P =0.002; total CE area: r = 0.39, P = 0.031). RI´ scored considering coronary involvement by CE, differed significantly from RI scored without consideration of CE (RI v. RI´: 15 ± 6v. 16 ± 6, P < 0.001). CONCLUSIONS: Visualization and quantification of CMR coronary CE by CNR and total CE area could be utilized to detect subclinical and clinical coronary wall involvement, which is prevalent in IgG4-RD. The potential inclusion of small and medium-sized vessel involvements in the assessment of disease activity in IgG4-RD is worthy of further investigation.

3.
J Chem Phys ; 161(1)2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38953446

RESUMEN

Two-dimensional (2D) Sn-based perovskites exhibit significant potential in diverse optoelectronic applications, such as on-chip lasers and photodetectors. Yet, the underlying mechanism behind the frequently observed dual-peak emission in 2D Sn-based perovskites remains a subject of intense debate, and there is a lack of research on the carrier dynamics in these materials. In this study, we investigate these issues in a representative 2D Sn-based perovskite, namely, PEA2SnI4, through temperature-, excitation intensity-, angle-, and time-dependent photoluminescence studies. The results indicate that the high- and low-energy peaks originate from in-face and out-of-face dipole transitions, respectively. In addition, we observe an anomalous increase in the non-radiative recombination rate as temperature decreases. After ruling out enhanced electron-phonon coupling and Auger recombination as potential causes of the anomalous carrier dynamics, we propose that the significantly increased exciton binding energy (Eb) plays a decisive role. The increased Eb arises from enhanced electronic localization, a consequence of weakened lattice distortion at low temperatures, as confirmed by first-principles calculations and temperature-dependent x-ray diffraction measurements. These findings offer valuable insights into the electronic processes in the unique 2D Sn-based perovskites.

4.
World J Surg Oncol ; 22(1): 22, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38245723

RESUMEN

BACKGROUND: Transforming growth factor ß (TGFß) is a critical regulator of lung metastasis of breast cancer and is correlated with the prognosis of breast cancer. However, not all TGFß stimulated genes were functional and prognostic in breast cancer lung metastatic progress. In this study, we tried to determine the prognosis of TGFß stimulated genes in breast cancer. METHODS: TGFß stimulated genes in MDA-MB-231 cells and lung metastasis-associated genes in LM2-4175 cells were identified through gene expression microarray. The prognosis of the induced gene (TGFBI) in breast cancer was determined through bioinformatics analysis and validated using tissue microarray. The immune infiltrations of breast cancer were determined through "ESTIMATE" and "TIMER". RESULTS: TGFBI was up-regulated by TGFß treatment and over-expressed in LM2-4175 cells. Through bioinformatics analysis, we found that higher expression of TGFBI was associated with shorted lung metastasis-free survival, relapse-free survival, disease-free survival, and overall survival of breast cancer. Moreover, the prognosis of TGFBI was validated in 139 Chinese breast cancer patients. Chinese breast cancer patients with higher TGFBI expression had lower overall survival. Correspondingly, breast cancer patients with higher TGFBI methylation had higher overall survival. TGFBI was correlated with the score of the TGFß signaling pathway and multiple immune-related signaling pathways in breast cancer. The stromal score, immune score, and the infiltrations of immune cells were also correlated with TGFBI expression in breast cancer. CONCLUSIONS: TGFß-induced gene TGFBI was correlated with the prognosis and immune infiltrations of breast cancer.


Asunto(s)
Neoplasias de la Mama , Neoplasias Pulmonares , Humanos , Femenino , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Recurrencia Local de Neoplasia , Pronóstico , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Neoplasias Pulmonares/patología , Factores de Crecimiento Transformadores , Línea Celular Tumoral
5.
Ecotoxicol Environ Saf ; 270: 115907, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38176185

RESUMEN

Fluoride has strong electronegativity and exposes diversely in nature. Water fluoridation is the most pervasive form of occurrence, representing a significant threat to human health. In this study, we investigate the morphometric and physiological alterations triggered by fluoride stimulation during the embryogenesis of zebrafish and reveal its putative effects of stage- and/or dose-dependent. Fluoride exhibits potent biological activity and can be extensively absorbed by the yolk sac, exerting significant effects on the development of multiple organs. This is primarily manifested as restricted nutrient utilization and elevated levels of lipid peroxidation, further leading to the accumulation of superoxide in the yolk sac, liver, and intestines. Moreover, pericardial edema exerts pressure on the brain and eye development, resulting in spinal curvature and reduced body length. Besides, acute fluoride exposure with varying concentrations has led to diverse teratogenic outcomes. A low dose of water fluoridation tends to induce abnormal development of the embryonic yolk sac, while vascular malformation is widely observed in all fluoride-treated groups. The effect of fluoride exposure on blood circulation is universally present, even in zebrafish larvae that do not exhibit obvious deformities. Their swimming behavior is also affected by water fluoridation, resulting in reduced activity and delayed reactions. In conclusion, this study provides valuable insights into the monitoring of environmental quality related to water fluoridation and disease prevention.


Asunto(s)
Contaminantes Químicos del Agua , Pez Cebra , Animales , Humanos , Fluoruros/toxicidad , Fluoruración , Desarrollo Embrionario , Saco Vitelino , Embrión no Mamífero , Contaminantes Químicos del Agua/toxicidad
6.
Int J Sports Med ; 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38648799

RESUMEN

Cardiovascular disease is a leading cause of morbidity and mortality, and exercise-training (TRN) is known to reduce risk factors and protect the heart from ischemia and reperfusion injury. Though the cardioprotective effects of exercise are well-documented, underlying mechanisms are not well understood. This review highlights recent findings and focuses on cardiac factors with emphasis on K+ channel control of the action potential duration (APD), ß-adrenergic and adenosine regulation of cardiomyocyte function, and mitochondrial Ca2+ regulation. TRN-induced prolongation and shortening of the APD at low and high activation rates, respectively, is discussed in the context of a reduced response of the sarcolemma delayed rectifier potassium channel (IK) and increased content and activation of the sarcolemma KATP channel. A proposed mechanism underlying the latter is presented, including the phosphatidylinositol-3kinase/protein kinase B pathway. TRN induced increases in cardiomyocyte contractility and the response to adrenergic agonists are discussed. The TRN-induced protection from reperfusion injury is highlighted by the increased content and activation of the sarcolemma KATP channel and the increased phosphorylated glycogen synthase kinase-3ß, which aid in preventing mitochondrial Ca2+ overload and mitochondria-triggered apoptosis. Finally, a brief section is presented on the increased incidences of atrial fibrillation associated with age and in life-long exercisers.

7.
Nano Lett ; 23(24): 11860-11865, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38085911

RESUMEN

The origin of the long lifetime of self-trapped exciton emission in low-dimensional copper halides is currently the subject of extensive debate. In this study, we address this issue in a prototypical zero-dimensional copper halide, Cs2(C18)2Cu2I4-DMSO, through magneto-optical studies at low temperatures down to 0.2 K. Our results exclude spin-forbidden dark states and indirect phonon-assisted recombination as the origin of the long photoluminescence lifetime. Instead, we propose that the minimal Franck-Condon factor of the radiative transition from excited states to the ground state is the decisive factor, based on the transition probability analysis. Our findings offer insights into the electronic processes in low-dimensional copper halides and have the potential to advance the application of these distinctive materials in optoelectronics.

8.
Hum Brain Mapp ; 44(2): 599-611, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36161679

RESUMEN

Bipolar disorder (BD) is a serious mental disorder involving widespread abnormal interactions between brain regions, and it is believed to be associated with imbalanced functions in the brain. However, how this brain imbalance underlies distinct BD symptoms remains poorly understood. Here, we used a nested-spectral partition (NSP) method to study the segregation, integration, and balance in resting-state brain functional networks in BD patients and healthy controls (HCs). We first confirmed that there was a high deviation in the brain functional network toward more segregation in BD patients than in HCs and that the limbic system had the largest alteration. Second, we demonstrated a network balance of segregation and integration that corresponded to lower anxiety in BD patients but was not related to other symptoms. Subsequently, based on a machine-learning approach, we identified different system-level mechanisms underlying distinct BD symptoms and found that the features related to the brain network balance could predict BD symptoms better than graph theory analyses. Finally, we studied attention-deficit/hyperactivity disorder (ADHD) symptoms in BD patients and identified specific patterns that distinctly predicted ADHD and BD scores, as well as their shared common domains. Our findings supported an association of brain imbalance with anxiety symptom in BD patients and provided a potential network signature for diagnosing BD. These results contribute to further understanding the neuropathology of BD and to screening ADHD in BD patients.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastorno Bipolar , Humanos , Trastorno Bipolar/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Sistema Límbico , Ansiedad
9.
Development ; 147(8)2020 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-32188631

RESUMEN

Continual spermatogenesis relies on the actions of an undifferentiated spermatogonial population that is composed of stem cells and progenitors. Here, using mouse models, we explored the role of RNA-binding proteins (RBPs) in regulation of the biological activities of this population. Proteins bound to polyadenylated RNAs in primary cultures of undifferentiated spermatogonia were captured with oligo (dT)-conjugated beads after UV-crosslinking and profiled by proteomics (termed mRBPome capture), yielding a putative repertoire of 473 RBPs. From this database, the RBP TRIM71 was identified and found to be expressed by stem and progenitor spermatogonia in prepubertal and adult mouse testes. Tissue-specific deletion of TRIM71 in the male germline led to reduction of the undifferentiated spermatogonial population and a block in transition to the differentiating state. Collectively, these findings demonstrate a key role of the RBP system in regulation of the spermatogenic lineage and may provide clues about the influence of RBPs on the biology of progenitor cell populations in other lineages.


Asunto(s)
Proteoma/metabolismo , Proteínas de Unión al ARN/metabolismo , Espermatogonias/citología , Factores de Transcripción/metabolismo , Animales , Diferenciación Celular/genética , Proliferación Celular/genética , Células Cultivadas , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratones Endogámicos C57BL , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Testículo/citología , Regulación hacia Arriba/genética
10.
J Neuroinflammation ; 20(1): 110, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37158916

RESUMEN

BACKGROUND: Depression and dysosmia have been regarded as primary neurological symptoms in COVID-19 patients, the mechanism of which remains unclear. Current studies have demonstrated that the SARS-CoV-2 envelope (E) protein is a pro-inflammatory factor sensed by Toll-like receptor 2 (TLR2), suggesting the pathological feature of E protein is independent of viral infection. In this study, we aim to ascertain the role of E protein in depression, dysosmia and associated neuroinflammation in the central nervous system (CNS). METHODS: Depression-like behaviors and olfactory function were observed in both female and male mice receiving intracisternal injection of E protein. Immunohistochemistry was applied in conjunction with RT-PCR to evaluate glial activation, blood-brain barrier status and mediators synthesis in the cortex, hippocampus and olfactory bulb. TLR2 was pharmacologically blocked to determine its role in E protein-related depression-like behaviors and dysosmia in mice. RESULTS: Intracisternal injection of E protein evoked depression-like behaviors and dysosmia in both female and male mice. Immunohistochemistry suggested that the E protein upregulated IBA1 and GFAP in the cortex, hippocampus and olfactory bulb, while ZO-1 was downregulated. Moreover, IL-1ß, TNF-α, IL-6, CCL2, MMP2 and CSF1 were upregulated in both cortex and hippocampus, whereas IL-1ß, IL-6 and CCL2 were upregulated in the olfactory bulb. Furtherly, inhibiting microglia, rather than astrocytes, alleviated depression-like behaviors and dysosmia induced by E protein. Finally, RT-PCR and immunohistochemistry suggested that TLR2 was upregulated in the cortex, hippocampus and olfactory bulb, the blocking of which mitigated depression-like behaviors and dysosmia induced by E protein. CONCLUSIONS: Our study demonstrates that envelope protein could directly induce depression-like behaviors, dysosmia, and obvious neuroinflammation in CNS. TLR2 mediated depression-like behaviors and dysosmia induced by envelope protein, which could serve as a promising therapeutic target for neurological manifestation in COVID-19 patients.


Asunto(s)
COVID-19 , Trastornos del Olfato , Femenino , Masculino , Animales , Ratones , Depresión/etiología , Interleucina-6 , Enfermedades Neuroinflamatorias , SARS-CoV-2 , Receptor Toll-Like 2 , Trastornos del Olfato/etiología
11.
Appl Environ Microbiol ; 89(7): e0058123, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37338346

RESUMEN

Phage-encoded endolysins are emerging antibacterial agents based on their ability to efficiently degrade peptidoglycan on Gram-positive bacteria, but the envelope characteristics of Gram-negative bacteria limit their application. Engineering modifications of endolysins can improve the optimization of their penetrative and antibacterial properties. This study constructed a screening platform to screen for engineered Artificial-Bp7e (Art-Bp7e) endolysins with extracellular antibacterial activity against Escherichia coli. An oligonucleotide of 20 repeated NNK codons was inserted upstream of the endolysin gene Bp7e to construct a chimeric endolysin library in the pColdTF vector. The chimeric Art-Bp7e proteins were expressed by transforming the plasmid library into E. coli BL21 and released by chloroform fumigation, and the protein activities were evaluated by the spotting method and the colony-counting method to screen for promising proteins. Sequence analysis showed that all screened proteins with extracellular activities had a chimeric peptide with a positive charge and an α-helical structure. Also, a representative protein, Art-Bp7e6, was further characterized. It exhibited broad antibacterial activity against E. coli (7/21), Salmonella enterica serovar Enteritidis (4/10), Pseudomonas aeruginosa (3/10), and even Staphylococcus aureus (1/10). In the transmembrane process, the chimeric peptide of Art-Bp7e6 depolarized the host cell envelope, increased the permeability of the cell, and facilitated the movement of Art-Bp7e6 across the envelope to hydrolyze the peptidoglycan. In conclusion, the screening platform successfully screened for chimeric endolysins with extracellular antibacterial activities against Gram-negative bacteria, which provides methodological support for the further screening of engineered endolysins with high extracellular activities against Gram-negative bacteria. Also, the established platform showed broad application prospects and can be used to screen various proteins. IMPORTANCE The presence of the envelope in Gram-negative bacteria limits the use of phage endolysins, and engineering endolysins is an efficient way to optimize their penetrative and antibacterial properties. We built a platform for endolysin engineering and screening. A random peptide was fused with the phage endolysin Bp7e to construct a chimeric endolysin library, and engineered Artificial-Bp7e (Art-Bp7e) endolysins with extracellular activity against Gram-negative bacteria were successfully screened from the library. The purposeful Art-Bp7e had a chimeric peptide with an abundant positive charge and an α-helical structure, which led Bp7e to acquire the ability for the extracellular lysis of Gram-negative bacteria and showed a broad lysis spectrum. The platform provides a huge library capacity without the limitations of reported proteins or peptides. It can be utilized for the further screening of optimal endolysins against Gram-negative bacteria as well as for the screening of additional proteins with specific modifications.


Asunto(s)
Bacteriófagos , Bacteriófagos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Peptidoglicano/metabolismo , Antibacterianos/metabolismo , Bacterias Gramnegativas/metabolismo , Endopeptidasas/genética , Endopeptidasas/farmacología , Endopeptidasas/química
12.
Cell Tissue Res ; 391(2): 375-391, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36422735

RESUMEN

Bepridil is a commonly used medication for arrhythmia and heart failure. It primarily exerts hemodynamic effects by inhibiting Na+/K+ movement and regulating the Na+/Ca2+ exchange. In comparison to other Ca2+ inhibitors, bepridil has a long half-life and a complex pharmacology. Additionally, it is widely used in antiviral research and the treatment of various diseases. However, the toxicity of this compound and its other possible effects on embryonic development are unknown. In this study, we investigated the toxicity of bepridil on rat myocardial H9c2 cells. After treatment with bepridil, the cells became overloaded with Ca2+ and entered a state of cytoplasmic vacuolization and nuclear abnormality. Bepridil treatment resulted in several morphological abnormalities in zebrafish embryo models, including pericardium enlargement, yolk sac swelling, and growth stunting. The hemodynamic effects on fetal development resulted in abnormal cardiovascular circulation and myocardial weakness. After inhibiting the Ca2+ transmembrane, the liver of zebrafish larvae also displayed an ectopic and deficient spatial location. Additionally, the results of the RNA-seq analysis revealed the detailed gene expression profiles and metabolic responses to bepridil treatment in zebrafish embryonic development. Taken together, our study provides an important evaluation of antiarrhythmic agents for clinical use in prenatal heart patients.


Asunto(s)
Bepridil , Pez Cebra , Animales , Ratas , Bepridil/metabolismo , Bepridil/farmacología , Antiarrítmicos/metabolismo , Antiarrítmicos/farmacología , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo
13.
New Phytol ; 239(1): 364-373, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36967583

RESUMEN

Tendril is a morphological innovation during plant evolution, which provides the plants to obtain climbing ability. However, the tendril morphogenesis is poorly understood. A novel tendril morphogenesis defective mutant (tmd1) was identified in cucumber. The apical part of tendril was replaced by a leaf blade in tmd1 mutant, and it lost the climbing ability. Map-based cloning, qPCR detection, bioinformatic analysis, yeast one-hybrid assay, electrophoretic mobility shift assay, and luciferase assay were used to explore the molecular mechanism of CsaTMD1 in regulating tendril morphogenesis. CsaUFO was the candidate causal gene, and a fragment deletion within promoter impaired CsaUFO expression in tmd1 mutant. A conserved motif 1, which harbored two putative TCP transcription factor binding sites, was located within this deleted fragment. CsaTEN directly bound the motif 1 and positively regulated CsaUFO, and mutation in motif 1 removed this regulation. Our work shows a CsaTEN-CsaUFO module in regulating tendril morphogenesis, indicating that evolution of tendril in cucumber due to simply drive of CsaUFO by CsaTEN in tendril. Additionally, the conserved motif 1 provides a strategy for engineering tendril-less Cucurbitaceae crops.


Asunto(s)
Cucumis sativus , Cucumis sativus/genética , Cucumis sativus/metabolismo , Mutación/genética , Morfogénesis , Regulación de la Expresión Génica de las Plantas
14.
J Med Virol ; 95(7): e28899, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37401337

RESUMEN

To analyze changes in the detection of parainfluenza virus (PIV) in children hospitalized with acute respiratory tract infection (ARTI) during 2014-2022 in Hubei Province, and explore the impact of the universal two-child policy and the public health measures against COVID-19 epidemic on the prevalence of PIV in China. The study was conducted at the Maternal and Child Health Hospital of Hubei Province. Children aged <18 years with ARTI admitted from January 2014 to June 2022 were enrolled. The infection of PIV was confirmed by the direct immunofluorescence method in nasopharyngeal specimens. Adjusted logistic regression models were used to analyze the influence of the universal two-child policy implementation and public health measurements against COVID-19 on PIV detection. Totally 75 128 inpatients meeting the criteria were enrolled in this study from January 2014 to June 2022 with an overall PIV positive rate of 5.5%. The epidemic seasons of PIV prevalence lagged substantially in 2020. A statistically significant higher positive rate of PIV was observed in 2017-2019 compared to that in 2014-2015 (6.12% vs 2.89%, risk ratio = 2.12, p < 0.001) after the implementation of the universal two-child policy in 2016. A steep decline occurred in PIV positive rate during the COVID-19 epidemic in 2020 (0.92% vs 6.92%, p < 0.001) and it rebounded during the regular epidemic prevention and control period in 2021-2022 (6.35%, p = 0.104). In Hubei Province, the implementation of the universal two-child policy might have led to an increase of PIV prevalence, and public health measures during the COVID-19 epidemic might have influenced the fluctuation in PIV detection since 2020.


Asunto(s)
COVID-19 , Infecciones por Paramyxoviridae , Infecciones del Sistema Respiratorio , Humanos , Niño , Lactante , Niño Hospitalizado , Pandemias , COVID-19/epidemiología , Infecciones del Sistema Respiratorio/epidemiología , China/epidemiología , Virus de la Parainfluenza 1 Humana , Virus de la Parainfluenza 2 Humana , Infecciones por Paramyxoviridae/epidemiología
15.
Clin Genet ; 103(4): 413-423, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36537221

RESUMEN

The fimbrin protein family contains a variety of proteins, among which Plastin1 (PLS1) is an important member. According to recent studies, variations in the coding region of the PLS1 gene are associated with the development of deafness. However, the molecular mechanism of deafness caused by PLS1 gene variants remains unknown. Whole-exome sequencing was performed on hearing-impaired family members and hearing family members to identify pathogenic variants, followed by Sanger sequencing. A minigene assay was conducted to investigate the effect of the variant on PLS1 mRNA splicing. The pathogenicity of the variant was further investigated in zebrafish. RNA-sequencing (RNA-seq) was performed to analyze the dysregulation of downstream signaling pathways caused by knockdown of PLS1 expression. We identified a novel variant, PLS1 c.981+1G>A, in a large Chinese family with hearing loss and showed that the variant is responsible for the occurrence of hearing loss by inducing exon 8 skipping. The variant caused abnormal inner ear phenotypes, characterized by decreases in the mean otolith distance, anterior otolith diameter, posterior otolith diameter, cochlear diameter, and swimming speed and distance in zebrafish. Furthermore, silencing PLS1 expression significantly upregulated the expression of genes in the PI3K-Akt signaling pathway, including Col6a3, Spp1, Itgb3 and hepatocyte growth factor (Hgf). PLS1 c.981+1G>A is a novel pathogenic variant causing hearing loss by inducing exon 8 skipping. Upregulation of the expression of genes in the PI3K-Akt signaling pathway plays an important role in the pathogenesis caused by variants in the PLS1 gene.


Asunto(s)
Sordera , Pérdida Auditiva Sensorineural , Pérdida Auditiva , Animales , Humanos , Pez Cebra/genética , Proteínas Proto-Oncogénicas c-akt/genética , Fosfatidilinositol 3-Quinasas/genética , Pérdida Auditiva Sensorineural/genética , Sordera/genética , Pérdida Auditiva/genética , Linaje , Mutación
16.
Chemistry ; 29(12): e202203136, 2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36424358

RESUMEN

Countless people have been affected by the COVID-19 pandemic on a global scale. Favipiravir, has shown potential as an effective drug for SARS-CoV-2, attracting scientists' attention. However, overuse of Favipiravir easily leads to serious side effects, requiring real-time monitoring in body fluids. Given this, a new lanthanide metal-organic framework (MOF) was prepared under solvothermal conditions from either Eu (Eu-MOF or (1)) or Tb (Tb-MOF or (2)) using the highly delocalized imidazoledicarboxylic acid linker H2 L (H2 L=5-(4-(imidazol-1-yl) phenyl) isophthalic acid) and could be successfully applied to selective optical detection of Favipiravir. In this MOF framework, the organic linker H2 L provides a high excitation energy transfer efficiency that can sensitize luminescence in lanthanides. In addition, through deliberate tuning of Eu/Tb molar ratio and reaction concentration in the lanthanide framework, ratiometric recyclable luminescent Eux Tb1-x -MOF nanoparticles with open metal sites have been constructed, which present a high detection sensitivity (Ksv =1×107 [M-1 ], detection limit is 4.63 nM) for Favipiravir. The detection mechanism is discussed with the help of Density Functional Theory (DFT) calculations that sheds light over the selective sensing of Favipiravir over other related COVID-19 drug candidates. Finally, to explore the practical application of Favipiravir sensing, MOF based thin films have been used for visual detection of Favipiravir and recycled 5 times.


Asunto(s)
COVID-19 , Elementos de la Serie de los Lantanoides , Estructuras Metalorgánicas , Humanos , Luminiscencia , Pandemias , SARS-CoV-2
17.
Virol J ; 20(1): 122, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37312198

RESUMEN

PURPOSE: Influenza virus (IFV) causes acute respiratory tract infection (ARTI) and leads to high morbidity and mortality annually. This study explored the epidemiological change of IFV after the implementation of the universal two-child policy and evaluated the impact of coronavirus disease 2019 (COVID-19) pandemic on the detection of IFV. METHODS: Hospitalized children under 18 years with ARTI were recruited from Hubei Maternal and Child Healthcare Hospital of Hubei Province from January 2014 to June 2022. The positive rates of IFV were compared among different periods by the implementation of the universal two-child policy and public health measures against COVID-19 pandemic. RESULTS: Among 75,128 hospitalized children with ARTI, the positive rate of IFV was 1.98% (1486/75128, 95% CI 1.88-2.01). Children aged 6-17 years had the highest positive rate of IFV (166/5504, 3.02%, 95% CI 2.58-3.50). The positive rate of IFV dropped to the lowest in 2015, then increased constantly and peaked in 2019. After the universal two-child policy implementation, the positive rate of IFV among all the hospitalized children increased from 0.40% during 2014-2015 to 2.70% during 2017-2019 (RR 6.72, 95% CI 4.94-9.13, P < 0.001), particularly children under one year shown a violent increasing trend from 0.20 to 2.01% (RR 10.26, 95% CI 5.47-19.23, P < 0.001). During the initial outbreak of COVID-19, the positive rate of IFV decreased sharply compared to that before COVID-19 (0.35% vs. 3.37%, RR 0.10, 95% CI 0.04-0.28, P < 0.001), and then rebounded to 0.91%, lower than the level before COVID-19 (RR 0.26, 95% CI 0.20-0.36, P < 0.001). CONCLUSION: IFV epidemiological pattern has changed after the implementation of the universal two-child policy. More attention should be emphasized to comprehend the health benefits generated by COVID-19 restrictions on IFV transmission in future.


Asunto(s)
COVID-19 , Orthomyxoviridae , Infecciones del Sistema Respiratorio , Niño , Humanos , Adolescente , Niño Hospitalizado , Pandemias , COVID-19/epidemiología , China/epidemiología , Infecciones del Sistema Respiratorio/epidemiología
18.
J Org Chem ; 88(3): 1836-1843, 2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36696583

RESUMEN

A new synthesis of functionalized 2H-pyran-2-ones has been developed through N-heterocyclic carbene-catalyzed formal [3 + 3] annulation of alkynyl esters with enolizable ketones. The key to the success of this protocol relies on the use of an NHC instead of a tertiary amine as the catalyst. This protocol also features a broad substrate scope and mild metal-free conditions, offering simple and rapid access to the target molecules in a highly regioselective manner.

19.
Exp Cell Res ; 414(1): 113095, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35259401

RESUMEN

Kinesin-14 KIFC1 regulates spindle assembly and centrosome clustering in diverse organisms during cell division. KIFC1 proteins are essential for spindle assembly and chromosome alignment in mitosis. However, the roles and mechanisms of KIFC1 proteins in male spermatocytes remain largely unknown. In this study, we reveal that KIFC1 proteins mainly accumulate at the centrosomes and central spindle in mouse spermatocytes both in vitro and in vivo. We utilize two KIFC1 specific inhibitors, AZ82 and CW069, for the inhibition of KIFC1 in mouse spermatogenic cells and cultured GC-2 spd(ts) cells. We find that KIFC1 inhibition results in the increase of spermatocytes with micronuclei, the disorganization of the meiotic spindles, and the formation of multiple centrosomes. Furthermore, we demonstrate that KIFC1 inhibition leads to spindle defects, chromosome misalignment and the formation of aneuploidy in cultured GC-2 spd(ts) cells. In this study, we reveal that KIFC1 proteins are critical for centrosome maintenance and chromosome stability in mouse spermatocytes.


Asunto(s)
Segregación Cromosómica , Cinesinas , beta Carioferinas/metabolismo , Animales , Centrosoma/metabolismo , Cinesinas/genética , Masculino , Meiosis , Ratones , Mitosis , Espermatocitos , Huso Acromático/metabolismo
20.
Ann Clin Microbiol Antimicrob ; 22(1): 8, 2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36658599

RESUMEN

BACKGROUND: Streptococcus agalactiae or group B Streptococcus (GBS) is a leading infectious cause of neonatal morbidity and mortality. It is essential to establish a robust method for the rapid and ultra-sensitive detection of GBS in pregnant women with premature rupture of membrane (PROM). METHODS: This study developed a CRISPR-GBS assay that combined the advantages of the recombinase polymerase amplification (RPA) and CRISPR/Cas12a system for GBS detection. The clinical performance of the CRISPR-GBS assay was assessed using vaginal or cervical swabs that were collected from 179 pregnant women with PROM, compared in parallel to culture-based matrix-assisted laser desorption ionization time-of-flight mass spectrometry (culture-MS) method and real-time quantitative polymerase chain reaction (qPCR) assay. RESULTS: The CRISPR-GBS assay can be completed within 35 min and the limit of detection was as low as 5 copies µL-1. Compared with the culture-MS, the CRISPR-GBS assay demonstrated a sensitivity of 96.64% (144/149, 95% confidence interval [CI] 92.39-98.56%) and a specificity of 100% (30/30, 95% CI 88.65-100%). It also had a high concordance rate of 98.88% with the qPCR assay. CONCLUSIONS: The established CRISPR-GBS platform can detect GBS in a rapid, accurate, easy-to-operate, and cost-efficient manner. It offered a promising tool for the intrapartum screening of GBS colonization.


Asunto(s)
Complicaciones Infecciosas del Embarazo , Infecciones Estreptocócicas , Recién Nacido , Embarazo , Femenino , Humanos , Mujeres Embarazadas , Streptococcus agalactiae/genética , Complicaciones Infecciosas del Embarazo/diagnóstico , Sistemas CRISPR-Cas , Infecciones Estreptocócicas/diagnóstico , Vagina , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA