Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 625
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Nature ; 594(7864): 589-593, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34135509

RESUMEN

The metabotropic glutamate receptors (mGlus) are involved in the modulation of synaptic transmission and neuronal excitability in the central nervous system1. These receptors probably exist as both homo- and heterodimers that have unique pharmacological and functional properties2-4. Here we report four cryo-electron microscopy structures of the human mGlu subtypes mGlu2 and mGlu7, including inactive mGlu2 and mGlu7 homodimers; mGlu2 homodimer bound to an agonist and a positive allosteric modulator; and inactive mGlu2-mGlu7 heterodimer. We observed a subtype-dependent dimerization mode for these mGlus, as a unique dimer interface that is mediated by helix IV (and that is important for limiting receptor activity) exists only in the inactive mGlu2 structure. The structures provide molecular details of the inter- and intra-subunit conformational changes that are required for receptor activation, which distinguish class C G-protein-coupled receptors from those in classes A and B. Furthermore, our structure and functional studies of the mGlu2-mGlu7 heterodimer suggest that the mGlu7 subunit has a dominant role in controlling dimeric association and G-protein activation in the heterodimer. These insights into mGlu homo- and heterodimers highlight the complex landscape of mGlu dimerization and activation.


Asunto(s)
Receptores de Glutamato Metabotrópico/química , Microscopía por Crioelectrón , Humanos , Multimerización de Proteína , Estructura Terciaria de Proteína
2.
Nature ; 594(7864): 583-588, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34135510

RESUMEN

The metabotropic glutamate receptors (mGlus) have key roles in modulating cell excitability and synaptic transmission in response to glutamate (the main excitatory neurotransmitter in the central nervous system)1. It has previously been suggested that only one receptor subunit within an mGlu homodimer is responsible for coupling to G protein during receptor activation2. However, the molecular mechanism that underlies the asymmetric signalling of mGlus remains unknown. Here we report two cryo-electron microscopy structures of human mGlu2 and mGlu4 bound to heterotrimeric Gi protein. The structures reveal a G-protein-binding site formed by three intracellular loops and helices III and IV that is distinct from the corresponding binding site in all of the other G-protein-coupled receptor (GPCR) structures. Furthermore, we observed an asymmetric dimer interface of the transmembrane domain of the receptor in the two mGlu-Gi structures. We confirmed that the asymmetric dimerization is crucial for receptor activation, which was supported by functional data; this dimerization may provide a molecular basis for the asymmetric signal transduction of mGlus. These findings offer insights into receptor signalling of class C GPCRs.


Asunto(s)
Proteínas de Unión al GTP/química , Receptores de Glutamato Metabotrópico/química , Sitios de Unión , Microscopía por Crioelectrón , Humanos , Multimerización de Proteína , Estructura Terciaria de Proteína , Transducción de Señal
3.
Plant Physiol ; 2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38796833

RESUMEN

Recent global marine lipidomic analysis reveals a strong relationship between ocean temperature and phytoplanktonic abundance of omega-3 long-chain polyunsaturated fatty acids (LC-PUFAs), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which are essential for human nutrition and primarily sourced from phytoplankton in marine food webs. In phytoplanktonic organisms, EPA may play a major role in regulating the phase transition temperature of membranes, while the function of DHA remains unexplored. In the oleaginous diatom Phaeodactylum tricornutum, DHA is distributed mainly on extraplastidial phospholipids, which is very different from the EPA enriched in thylakoid lipids. Here, CRISPR/Cas9-mediated knockout of delta-5 elongase (ptELO5a), which encodes a delta-5 elongase (ELO5) catalyzing the elongation of EPA to synthesize DHA, led to a substantial interruption of DHA synthesis in P. tricornutum. The ptELO5a mutants showed some alterations in transcriptome and glycerolipidomes, including membrane lipids and triacylglycerols under normal temperature (22°C), and were more sensitive to elevated temperature (28°C) than wild type. We conclude that PtELO5a-mediated synthesis of small amounts of DHA has indispensable functions in regulating membrane lipids, indirectly contributing to storage lipid accumulation, and maintaining thermomorphogenesis in P. tricornutum. This study also highlights the significance of DHA synthesis and lipid composition for environmental adaptation of P. tricornutum.

4.
Genome Res ; 31(4): 592-606, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33687945

RESUMEN

The environment has constantly shaped plant genomes, but the genetic bases underlying how plants adapt to environmental influences remain largely unknown. We constructed a high-density genomic variation map of 263 geographically representative peach landraces and wild relatives. A combination of whole-genome selection scans and genome-wide environmental association studies (GWEAS) was performed to reveal the genomic bases of peach adaptation to diverse climates. A total of 2092 selective sweeps that underlie local adaptation to both mild and extreme climates were identified, including 339 sweeps conferring genomic pattern of adaptation to high altitudes. Using genome-wide environmental association studies (GWEAS), a total of 2755 genomic loci strongly associated with 51 specific environmental variables were detected. The molecular mechanism underlying adaptive evolution of high drought, strong UVB, cold hardiness, sugar content, flesh color, and bloom date were revealed. Finally, based on 30 yr of observation, a candidate gene associated with bloom date advance, representing peach responses to global warming, was identified. Collectively, our study provides insights into molecular bases of how environments have shaped peach genomes by natural selection and adds candidate genes for future studies on evolutionary genetics, adaptation to climate changes, and breeding.


Asunto(s)
Adaptación Fisiológica/genética , Cambio Climático , Genoma de Planta/genética , Genómica , Prunus persica/genética
5.
Small ; 20(7): e2306513, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37803425

RESUMEN

With the rapid development of performance and long-term stability, bismuth vanadate (BiVO4 ) has emerged as the preferred photoanode in photoelectrochemical tandem devices. Although state-of-the-art BiVO4 photoanodes realize a saturated photocurrent density approaching the theoretical maximum, the fill factor (FF) is still inferior, pulling down the half-cell applied bias photon-to-current efficiency (HC-ABPE). Among the major fundamental limitations are the Fermi level pinning and sluggish surface kinetics at the low applied potentials. This work demonstrates that the plasma-assisted atomic layer deposition technique is capable of addressing these issues by seamlessly installing an angstrom-scale FeNi-layer between BiVO4 and electrolyte. Not only this ultrathin FeNi layer serves as an efficient OER cocatalyst, more importantly, it also effectively passivates the surface states of BiVO4 , de-pins the surface Fermi level, and enlarges the built-in voltage, allowing the photoanode to make optimal use of the photogenerated holes for achieving high FF up to 44% and HC-ABPE to 2.2%. This study offers a new approach for enhancing the FF of photoanodes and provides guidelines for designing efficient unassisted solar fuel devices.

6.
J Med Virol ; 96(5): e29659, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38747016

RESUMEN

Hepatitis B virus (HBV) infection is a major global health burden with 820 000 deaths per year. In our previous study, we found that the knockdown of autophagy-related protein 5 (ATG5) significantly upregulated the interferon-stimulated genes (ISGs) expression to exert the anti-HCV effect. However, the regulation of ATG5 on HBV replication and its underlying mechanism remains unclear. In this study, we screened the altered expression of type I interferon (IFN-I) pathway genes using RT² Profiler™ PCR array following ATG5 knock-down and we found the bone marrow stromal cell antigen 2 (BST2) expression was significantly increased. We then verified the upregulation of BST2 by ATG5 knockdown using RT-qPCR and found that the knockdown of ATG5 activated the Janus kinase/signal transducer and activator of transcription (JAK-STAT) signaling pathway. ATG5 knockdown or BST2 overexpression decreased Hepatitis B core Antigen (HBcAg) protein, HBV DNA levels in cells and supernatants of HepAD38 and HBV-infected NTCP-HepG2. Knockdown of BST2 abrogated the anti-HBV effect of ATG5 knockdown. Furthermore, we found that ATG5 interacted with BST2, and further formed a ternary complex together with HBV-X (HBx). In conclusion, our finding indicates that ATG5 promotes HBV replication through decreasing BST2 expression and interacting with it directly to antagonize its antiviral function.


Asunto(s)
Antígenos CD , Proteína 5 Relacionada con la Autofagia , Antígeno 2 del Estroma de la Médula Ósea , Proteínas Ligadas a GPI , Virus de la Hepatitis B , Replicación Viral , Humanos , Antígenos CD/genética , Antígenos CD/metabolismo , Proteína 5 Relacionada con la Autofagia/genética , Proteína 5 Relacionada con la Autofagia/metabolismo , Técnicas de Silenciamiento del Gen , Proteínas Ligadas a GPI/metabolismo , Proteínas Ligadas a GPI/genética , Células Hep G2 , Hepatitis B/virología , Hepatitis B/genética , Virus de la Hepatitis B/fisiología , Virus de la Hepatitis B/genética , Interacciones Huésped-Patógeno , Transducción de Señal , Antígeno 2 del Estroma de la Médula Ósea/metabolismo
7.
Plant Physiol ; 193(1): 448-465, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37217835

RESUMEN

Bud dormancy is crucial for winter survival and is characterized by the inability of the bud meristem to respond to growth-promotive signals before the chilling requirement (CR) is met. However, our understanding of the genetic mechanism regulating CR and bud dormancy remains limited. This study identified PpDAM6 (DORMANCY-ASSOCIATED MADS-box) as a key gene for CR using a genome-wide association study analysis based on structural variations in 345 peach (Prunus persica (L.) Batsch) accessions. The function of PpDAM6 in CR regulation was demonstrated by transiently silencing the gene in peach buds and stably overexpressing the gene in transgenic apple (Malus × domestica) plants. The results showed an evolutionarily conserved function of PpDAM6 in regulating bud dormancy release, followed by vegetative growth and flowering, in peach and apple. The 30-bp deletion in the PpDAM6 promoter was substantially associated with reducing PpDAM6 expression in low-CR accessions. A PCR marker based on the 30-bp indel was developed to distinguish peach plants with non-low and low CR. Modification of the H3K27me3 marker at the PpDAM6 locus showed no apparent change across the dormancy process in low- and non-low- CR cultivars. Additionally, H3K27me3 modification occurred earlier in low-CR cultivars on a genome-wide scale. PpDAM6 could mediate cell-cell communication by inducing the expression of the downstream genes PpNCED1 (9-cis-epoxycarotenoid dioxygenase 1), encoding a key enzyme for ABA biosynthesis, and CALS (CALLOSE SYNTHASE), encoding callose synthase. We shed light on a gene regulatory network formed by PpDAM6-containing complexes that mediate CR underlying dormancy and bud break in peach. A better understanding of the genetic basis for natural variations of CR can help breeders develop cultivars with different CR for growing in different geographical regions.


Asunto(s)
Malus , Prunus persica , Prunus , Prunus persica/genética , Prunus persica/metabolismo , Prunus/genética , Prunus/metabolismo , Histonas/metabolismo , Estudio de Asociación del Genoma Completo , Malus/genética , Regulación de la Expresión Génica de las Plantas , Latencia en las Plantas/genética
8.
Respir Res ; 25(1): 40, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38238740

RESUMEN

BACKGROUND: Although EGFR-TKI resistance mechanisms in non-small cell lung cancer (NSCLC) have been extensively studied, certain patient subgroups remain with unclear mechanisms. This retrospective study analysed mutation data of NSCLC patients with EGFR-sensitive mutations and high programmed death-ligand 1 (PD-L1) expression or high TMB to identify primary resistance mechanisms. METHODS: Hybrid capture-based next-generation sequencing (NGS) was used to analyse mutations in 639 genes in tumor tissues and blood samples from 339 NSCLC patients. PD-L1 immunohistochemical staining was also performed on the same cell blocks. Molecular and pathway profiles were compared among patient subgroups. RESULTS: TMB was significantly higher in lung cancer patients with EGFR-sensitive mutations and high PD-L1 expression. Compared with the high-expression PD-L1 or high TMB and low-expression or TMB groups, the top 10 genes exhibited differences in both gene types and mutation rates. Pathway analysis revealed a significant mutations of the PI3K signaling pathway in the EGFR-sensitive mutation group with high PD-L1 expression (38% versus 12%, p < 0.001) and high TMB group (31% versus 13%, p < 0.05). Notably, PIK3CA and PTEN mutations emerged as the most important differentially mutated genes within the PI3K signaling pathway. CONCLUSIONS: Our findings reveal that the presence of PI3K signaling pathway mutations may be responsible for inducing primary resistance to EGFR-TKIs in NSCLC patients with EGFR-sensitive mutations along with high PD-L1 expression or high TMB. This finding is of great significance in guiding subsequent precision treatments in NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Antígeno B7-H1 , Estudios Retrospectivos , Fosfatidilinositol 3-Quinasas/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Mutación/genética , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico
9.
J Chem Phys ; 160(4)2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38258919

RESUMEN

Previous studies have shown that NaB6, KB6, and RbB6 adopting Pm3̄m are superconductors with a relatively high Tc under ambient conditions. In this paper, we conducted systematic structural and related properties research on CsB6 through a genetic evolution algorithm and total energy calculations based on density functional theory between 0 and 20 GPa. Our results reveal a cubic Pm3̄m CsB6, which is dynamically stable under the pressures we studied. We systematically calculated the formation enthalpies, electronic properties, and superconducting properties of Pm3̄m MB6 (M = Na, K, Rb, Cs). They all exhibit metallic features, and boron has high contributions to band structures, density of states, and electron-phonon coupling (EPC). The calculated results about the Helmholtz free energy difference of Pm3̄m CsB6 at 0, 10, and 20 GPa indicate that it is stable upon chemical decomposition (decomposition to simple substances Cs and B) from 0 to 400 K. The phonon density of states indicates that boron atoms occupy the high frequency area. The EPC results show that Pm3̄m CsB6 is a superconductor with Tc = 11.7 K at 0 GPa, close to NaB6 (13.1 K), KB6 (11.7 K), and RbB6 (11.3 K) at 0 GPa in our work, which indicates that boron atoms play an essential role in superconductivity: vibrations of B6 regular octagons lead to the high Tc of Pm3̄m MB6. Our work about Pm3̄m hexaborides provides a supplementary study on the borides of the group IA elements (without Fr and Li) and has an important guiding significance for the experimental synthesis of CsB6.

10.
Plant Cell Rep ; 43(5): 135, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38704787

RESUMEN

KEY MESSAGE: The disruption of the SWL1 gene leads to a significant down regulation of chloroplast and secondary metabolites gene expression in Arabidopsis thaliana. And finally results in a dysfunction of chloroplast and plant growth. Although the development of the chloroplast has been a consistent focus of research, the corresponding regulatory mechanisms remain unidentified. In this study, the CRISPR/Cas9 system was used to mutate the SWL1 gene, resulting in albino cotyledons and variegated true leaf phenotype. Confocal microscopy and western blot of chloroplast protein fractions revealed that SWL1 localized in the chloroplast stroma. Electron microscopy indicated chloroplasts in the cotyledons of swl1 lack well-defined grana and internal membrane structures, and similar structures have been detected in the albino region of variegated true leaves. Transcriptome analysis revealed that down regulation of chloroplast and nuclear gene expression related to chloroplast, including light harvesting complexes, porphyrin, chlorophyll metabolism and carbon metabolism in the swl1 compared to wild-type plant. In addition, proteomic analysis combined with western blot analysis, showed that a significant decrease in chloroplast proteins of swl1. Furthermore, the expression of genes associated with secondary metabolites and growth hormones was also reduced, which may be attributed to SWL1 associated with absorption and fixation of inorganic carbon during chloroplast development. Together, the above findings provide valuable information to elucidate the exact function of SWL1 in chloroplast biogenesis and development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Cloroplastos , Regulación de la Expresión Génica de las Plantas , Biogénesis de Organelos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Clorofila/metabolismo , Proteínas de Cloroplastos/metabolismo , Proteínas de Cloroplastos/genética , Cloroplastos/metabolismo , Cloroplastos/ultraestructura , Cotiledón/genética , Cotiledón/metabolismo , Cotiledón/crecimiento & desarrollo , Sistemas CRISPR-Cas , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/ultraestructura , Proteómica
11.
Biomed Chromatogr ; : e5902, 2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38922974

RESUMEN

Xiakucao Oral Liquid (XKCOL) has been widely used for treating mammary gland hyperplasia and goiter in China. However, its pharmacokinetic data have been missing to date. To conduct its pharmacokinetic study, we established an LC-tandem mass spectrometry method for the simultaneous determination of eight XKCOL-related compounds in rat plasma. Liquid-liquid extraction was used for the sampling process. Chromatographic separation was performed on a Phenomenon Luna C18 column with a mobile phase of methanol and 2 mM ammonium acetate, using gradient elution at a flow rate of 0.8 mL/min. Detection was performed in the multiple reaction monitoring mode using negative electrospray ionization (ESI-) with optimized MS parameters. Endogenous substances and carryover did not interfere in the detection of analytes. The calibration curves showed a good linear relationship within the linear ranges. The intra- and inter-batch accuracy and precision were 94.8%-110.0% and ≤11.2%, respectively. There was no significant matrix effect and the recovery was reproducible. The dilution of samples did not affect the accuracy and precision. The solution and plasma samples were stable under the various test conditions. The major components of XKCOL absorbed into the blood were salvianic acid A and rosmarinic acid. They demonstrated linear kinetics over the dose range used in this study.

12.
Mikrochim Acta ; 191(5): 256, 2024 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598148

RESUMEN

A dual-signal ratiometric electrochemical aptasensor has been developed  for AFB1 detection using thionine/Au/zeolitic imidazolate framework-8 (Thi/Au/ZIF-8) nanomaterials and catalytic hairpin assembly (CHA) reaction. Thi/Au/ZIF-8 combined with DNA hairpin 2 (H2) was used as a signal probe. [Fe(CN)6]3-/4- was served as another signal probe, and the IThi/Au/ZIF-8/I[Fe(CN)6]3-/4- ratio was for the first time utilized to quantify AFB1. AFB1-induced CHA was used to expand the ratio of electrical signals. In the presence of AFB1, H2/Thi/Au/ZIF-8 bound to the electrode via CHA, enhanced  the current signal of Thi/Au/ZIF-8. H2 contained the DNA phosphate backbone hindered [Fe(CN)6]3-/4- redox reaction and resulted in a lower [Fe(CN)6]3-/4- current signal. This aptasensor exhibited high specificity for AFB1, a linear range of 0.1 pg mL-1 to 100 ng mL-1, and a detection limit of 0.089 pg mL-1. It demonstrated favorable sensitivity, selectivity, stability, and repeatability. The aptasensor was suitable for detecting AFB1 in peanuts and black tea and holds potential for real sample applications.


Asunto(s)
Aflatoxina B1 , Fenotiazinas , Zeolitas , Arachis , Catálisis , ADN
13.
Sensors (Basel) ; 24(6)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38544235

RESUMEN

Seawater density is an important physical property in oceanography that affects the accuracy of calculations such as gravity fields and tidal potentials and the calibration of acoustic and optical oceanographic sensors. In related studies, constant density values are frequently used, which can introduce significant errors. Therefore, this study employs a basic convolutional neural network model to construct a comprehensive model showing the seawater density distribution across the globe. The model takes into account depth, latitude, longitude, and month as inputs. Numerous real seawater datasets were used to train the model, and it has been shown that the model has an absolute mean error and root mean square error of less than 1 kg/m3 in 99% of the test set samples. The model effectively demonstrates the influence of input parameters on the distribution of seawater density. In this paper, we present a newly developed global model for distributing seawater density which is both comprehensive and accurate, surpassing previous models. The utilization of the model presented in this paper for estimating seawater density can minimize errors in theoretical ocean models and serve as a foundation for designing and analyzing ocean exploration systems.

14.
Sensors (Basel) ; 24(7)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38610362

RESUMEN

Three-dimensional (3D) range-gated imaging can obtain high spatial resolution intensity images as well as pixel-wise depth information. Several algorithms have been developed to recover depth from gated images such as the range-intensity correlation algorithm and deep-learning-based algorithm. The traditional range-intensity correlation algorithm requires specific range-intensity profiles, which are hard to generate, while the existing deep-learning-based algorithm requires large number of real-scene training data. In this work, we propose a method of range-intensity-profile-guided gated light ranging and imaging to recover depth from gated images based on a convolutional neural network. In this method, the range-intensity profile (RIP) of a given gated light ranging and imaging system is obtained to generate synthetic training data from Grand Theft Auto V for our range-intensity ratio and semantic network (RIRS-net). The RIRS-net is mainly trained on synthetic data and fine-tuned with RIP data. The network learns both semantic depth cues and range-intensity depth cues in the synthetic data, and learns accurate range-intensity depth cues in the RIP data. In the evaluation experiments on both a real-scene and synthetic test dataset, our method shows a better result compared to other algorithms.

15.
Nano Lett ; 23(24): 11785-11792, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38078823

RESUMEN

Nanostructured bismuth vanadate (BiVO4) is at the forefront of emerging photoanodes in photoelectrochemical tandem devices for solar water splitting owing to the suitable band edge position and efficient charge separation capability. However, the (photo)chemical corrosion involving V5+ dissolution limits the long-term stability of BiVO4. Herein, guided by DFT calculations, we introduce an ALD-derived NiOx catalyst layer on BiVO4 to stabilize the surface Bi-O bonds, facilitate hole extraction, and thus suppress the V5+ dissolution. At the same time, the ALD NiOx catalyst layer could efficiently suppress the surface recombination and accelerate the surface OER kinetics, boosting the half-cell applied bias photon-to-current efficiency of BiVO4 to 2.05%, as well as a fill factor of 47.1%. By adding trace NaVO3 to the electrolyte, the NiOx/BiVO4 photoanode with an illumination area of 10.5 cm2 shows a record operational stability of more than 2100 h.

16.
J Headache Pain ; 25(1): 62, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654177

RESUMEN

BACKGROUND: The objective of this study was to investigate the trends and prescribing patterns of antimigraine medicines in China. METHODS: The prescription data of outpatients diagnosed with migraine between 2018 and 2022 were extracted from the Hospital Prescription Analysis Cooperative Project of China. The demographic characteristics of migraine patients, prescription trends, and corresponding expenditures on antimigraine medicines were analyzed. We also investigated prescribing patterns of combination therapy and medicine overuse. RESULTS: A total of 32,246 outpatients who were diagnosed with migraine at 103 hospitals were included in this study. There were no significant trend changes in total outpatient visits, migraine prescriptions, or corresponding expenditures during the study period. Of the patients who were prescribed therapeutic medicines, 70.23% received analgesics, and 26.41% received migraine-specific agents. Nonsteroidal anti-inflammatory drugs (NSAIDs; 28.03%), caffeine-containing agents (22.15%), and opioids (16.00%) were the most commonly prescribed analgesics, with corresponding cost proportions of 11.35%, 4.08%, and 19.61%, respectively. Oral triptans (26.12%) were the most commonly prescribed migraine-specific agents and accounted for 62.21% of the total therapeutic expenditures. The proportion of patients receiving analgesic prescriptions increased from 65.25% in 2018 to 75.68% in 2022, and the proportion of patients receiving concomitant triptans decreased from 29.54% in 2018 to 21.55% in 2022 (both P <  0.001). The most frequently prescribed preventive medication classes were calcium channel blockers (CCBs; 51.59%), followed by antidepressants (20.59%) and anticonvulsants (15.82%), which accounted for 21.90%, 34.18%, and 24.15%, respectively, of the total preventive expenditures. Flunarizine (51.41%) was the most commonly prescribed preventive drug. Flupentixol/melitracen (7.53%) was the most commonly prescribed antidepressant. The most commonly prescribed anticonvulsant was topiramate (9.33%), which increased from 6.26% to 12.75% (both P <  0.001). A total of 3.88% of the patients received combined therapy for acute migraine treatment, and 18.63% received combined therapy for prevention. The prescriptions for 69.21% of opioids, 38.53% of caffeine-containing agents, 26.61% of NSAIDs, 13.97% of acetaminophen, and 6.03% of triptans were considered written medicine overuse. CONCLUSIONS: Migraine treatment gradually converges toward evidence-based and guideline-recommended treatment. Attention should be given to opioid prescribing, weak evidence-based antidepressant use, and medication overuse in migraine treatment.


Asunto(s)
Analgésicos , Trastornos Migrañosos , Pautas de la Práctica en Medicina , Humanos , Trastornos Migrañosos/tratamiento farmacológico , Trastornos Migrañosos/economía , Femenino , Masculino , Pautas de la Práctica en Medicina/estadística & datos numéricos , Pautas de la Práctica en Medicina/tendencias , Estudios Retrospectivos , China/epidemiología , Adulto , Analgésicos/uso terapéutico , Analgésicos/economía , Persona de Mediana Edad , Prescripciones de Medicamentos/estadística & datos numéricos , Prescripciones de Medicamentos/economía , Antiinflamatorios no Esteroideos/uso terapéutico , Antiinflamatorios no Esteroideos/economía , Adulto Joven , Adolescente , Triptaminas/uso terapéutico , Triptaminas/economía
17.
Small ; 19(23): e2300125, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36879481

RESUMEN

The widespread preexisting immunity against virus-like particles (VLPs) seriously limits the applications of VLPs as vaccine vectors. Enabling technology for exogenous antigen display should not only ensure the assembly ability of VLPs and site-specific modification, but also consider the effect of preexisting immunity on the behavior of VLPs in vivo. Here, combining genetic code expansion technique and synthetic biology strategy, a site-specific modification method for hepatitis B core (HBc) VLPs via incorporating azido-phenylalanine into the desired positions is described. Through modification position screening, it is found that HBc VLPs incorporated with azido-phenylalanine at the main immune region can effectively assemble and rapidly conjugate with the dibenzocycolctyne-modified tumor-associated antigens, mucin-1 (MUC1). The site-specific modification of HBc VLPs not only improves the immunogenicity of MUC1 antigens but also shields the immunogenicity of HBc VLPs themselves, thereby activating a strong and persistent anti-MUC1 immune response even in the presence of preexisting anti-HBc immunity, which results in the efficient tumor elimination in a lung metastatic mouse model. Together, these results demonstrate the site-specific modification strategy enabled HBc VLPs behave as a potent antitumor vaccine and this strategy to manipulate immunogenicity of VLPs may be suitable for other VLP-based vaccine vectors.


Asunto(s)
Virus de la Hepatitis B , Vacunas de Partículas Similares a Virus , Animales , Ratones , Virus de la Hepatitis B/genética , Vacunas de Partículas Similares a Virus/genética , Antígenos de Neoplasias , Ratones Endogámicos BALB C
18.
Small ; 19(23): e2206160, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36890776

RESUMEN

Through inducing death receptor (DR) clustering to activate downstream signaling, tumor necrosis factor related apoptosis inducing ligand (TRAIL) trimers trigger apoptosis of tumor cells. However, the poor agonistic activity of current TRAIL-based therapeutics limits their antitumor efficiency. The nanoscale spatial organization of TRAIL trimers at different interligand distances is still challenging, which is essential for the understanding of interaction pattern between TRAIL and DR. In this study, a flat rectangular DNA origami is employed as display scaffold, and an "engraving-printing" strategy is developed to rapidly decorate three TRAIL monomers onto its surface to form DNA-TRAIL3 trimer (DNA origami with surface decoration of three TRAIL monomers). With the spatial addressability of DNA origami, the interligand distances are precisely controlled from 15 to 60 nm. Through comparing the receptor affinity, agonistic activity and cytotoxicity of these DNA-TRAIL3 trimers, it is found that ≈40 nm is the critical interligand distance of DNA-TRAIL3 trimers to induce death receptor clustering and the resulting apoptosis.Finally, a hypothetical "active unit" model is proposed for the DR5 clustering induced by DNA-TRAIL3 trimers.


Asunto(s)
Neoplasias , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF , Ligandos , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/genética , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/genética , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Apoptosis , Factor de Necrosis Tumoral alfa , Línea Celular Tumoral
19.
J Transl Med ; 21(1): 357, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37259122

RESUMEN

BACKGROUND: Osteoarthritis (OA) is one of the most prevalent musculoskeletal diseases and is the leading cause of pain and disability in the aged population. However, the underlying biological mechanism has not been fully understood. This study aims to reveal the causal effect of circulation metabolites on OA susceptibility. METHODS: A two-sample Mendelian Randomization (MR) analysis was performed to estimate the causality of GDMs on OA. A genome-wide association study (GWAS) of 486 metabolites was used as the exposure, whereas 8 different OA phenotypes, including any-site OA (All OA), knee and/or hip OA (knee/hip OA), knee OA, hip OA, spine OA, finger and/or thumb OA (hand OA), finger OA, thumb OA, were set the outcomes. Inverse-variance weighted (IVW) was used for calculating causal estimates. Methods including weight mode, weight median, MR-egger, and MR-PRESSO were used for the sensitive analysis. Furthermore, metabolic pathway analysis was performed via the web-based Metaconflict 4.0. All statistical analyses were performed in R software. RESULTS: In this MR analysis, a total of 235 causative associations between metabolites and different OA phenotypes were observed. After false discovery rate (FDR) correction and sensitive analysis, 9 robust causative associations between 7 metabolites (e.g., arginine, kynurenine, and isovalerylcarnitine) and 5 OA phenotypes were finally identified. Additionally, eleven significant metabolic pathways in 4 OA phenotypes were identified by metabolic pathway analysis. CONCLUSION: The finding of our study suggested that identified metabolites and metabolic pathways can be considered useful circulating metabolic biomarkers for OA screening and prevention in clinical practice, and can also serve as candidate molecules for future mechanism exploration and drug target selection.


Asunto(s)
Osteoartritis de la Cadera , Osteoartritis de la Rodilla , Humanos , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Osteoartritis de la Rodilla/genética , Redes y Vías Metabólicas/genética , Polimorfismo de Nucleótido Simple
20.
Appl Environ Microbiol ; 89(1): e0173222, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36533965

RESUMEN

Marine cyanobacteria contribute to approximately half of the ocean primary production, and their biomass is limited by low iron (Fe) bioavailability in many regions of the open seas. The mechanisms by which marine cyanobacteria overcome Fe limitation remain unclear. In this study, multiple Fe uptake pathways have been identified in a coastal strain of Synechococcus sp. strain PCC 7002. A total of 49 mutants were obtained by gene knockout methods, and 10 mutants were found to have significantly decreased growth rates compared to the wild type (WT). The genes related to active Fe transport pathways such as TonB-dependent transporters and the synthesis and secretion of siderophores are found to be essential for the adaptation of Fe limitation in Synechococcus sp. PCC 7002. By comparing the Fe uptake pathways of this coastal strain with other open-ocean cyanobacterial strains, it can be concluded that the Fe uptake strategies from different cyanobacteria have a strong relationship with the Fe bioavailability in their habitats. The evolution and adaptation of cyanobacterial iron acquisition strategies with the change of iron environments from ancient oceans to modern oceans are discussed. This study provides new insights into the diversified strategies of marine cyanobacteria in different habitats from temporal and spatial scales. IMPORTANCE Iron (Fe) is an important limiting factor of marine primary productivity. Cyanobacteria, the oldest photosynthetic oxygen-evolving organisms on the earth, play crucial roles in marine primary productivity, especially in the oligotrophic ocean. How they overcome Fe limitation during the long-term evolution process has not been fully revealed. Fe uptake mechanisms of cyanobacteria have been partially studied in freshwater cyanobacteria but are largely unknown in marine cyanobacterial species. In this paper, the characteristics of Fe uptake mechanisms in a coastal model cyanobacterium, Synechococcus sp. PCC 7002, were studied. Furthermore, the relationship between Fe uptake strategies and Fe environments of cyanobacterial habitats has been revealed from temporal and spatial scales, which provides a good case for marine microorganisms adapting to changes in the marine environment.


Asunto(s)
Hierro , Synechococcus , Hierro/metabolismo , Synechococcus/genética , Synechococcus/metabolismo , Transporte Biológico , Sideróforos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA