Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 175(1): 186-199.e19, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30220457

RESUMEN

Mutations or aberrant upregulation of EZH2 occur frequently in human cancers, yet clinical benefits of EZH2 inhibitor (EZH2i) remain unsatisfactory and limited to certain hematological malignancies. We profile global posttranslational histone modification changes across a large panel of cancer cell lines with various sensitivities to EZH2i. We report here oncogenic transcriptional reprogramming mediated by MLL1's interaction with the p300/CBP complex, which directs H3K27me loss to reciprocal H3K27ac gain and restricts EZH2i response. Concurrent inhibition of H3K27me and H3K27ac results in transcriptional repression and MAPK pathway dependency in cancer subsets. In preclinical models encompassing a broad spectrum of EZH2-aberrant solid tumors, a combination of EZH2 and BRD4 inhibitors, or a triple-combination including MAPK inhibition display robust efficacy with very tolerable toxicity. Our results suggest an attractive precision treatment strategy for EZH2-aberrant tumors on the basis of tumor-intrinsic MLL1 expression and concurrent inhibition of epigenetic crosstalk and feedback MAPK activation.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2/antagonistas & inhibidores , Proteína Potenciadora del Homólogo Zeste 2/genética , N-Metiltransferasa de Histona-Lisina/fisiología , Proteína de la Leucemia Mieloide-Linfoide/fisiología , Animales , Carcinogénesis/genética , Proteínas de Ciclo Celular , Línea Celular Tumoral , Epigénesis Genética/genética , Epigenómica/métodos , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Código de Histonas/efectos de los fármacos , Código de Histonas/genética , N-Metiltransferasa de Histona-Lisina/genética , Histonas/genética , Histonas/fisiología , Humanos , Sistema de Señalización de MAP Quinasas , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones SCID , Mutación , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/fisiología , Complejo Represivo Polycomb 2/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología , Activación Transcripcional , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Factores de Transcripción p300-CBP/fisiología
2.
J Virol ; 98(1): e0155823, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38174926

RESUMEN

Enterovirus A71 (EV-A71) can induce severe neurological complications and even fatal encephalitis in children, and it has caused several large outbreaks in Taiwan since 1998. We previously generated VP1 codon-deoptimized (VP1-CD) reverse genetics (rg) EV-A71 viruses (rgEV-A71s) that harbor a high-fidelity (HF) 3D polymerase. These VP1-CD-HF rgEV-A71s showed lower replication kinetics in vitro and decreased virulence in an Institute of Cancer Research (ICR) mouse model of EV-A71 infection, while still retaining their antigenicity in comparison to the wild-type virus. In this study, we aimed to further investigate the humoral and cellular immune responses elicited by VP1-CD-HF rgEV-A71s to assess the potential efficacy of these EV-A71 vaccine candidates. Following intraperitoneal (i.p.) injection of VP1-CD-HF rgEV-A71s in mice, we observed a robust induction of EV-A71-specific neutralizing IgG antibodies in the antisera after 21 days. Splenocytes isolated from VP1-CD-HF rgEV-A71s-immunized mice exhibited enhanced proliferative activities and cytokine production (IL-2, IFN-γ, IL-4, IL-6, and TNF-α) upon re-stimulation with VP1-CD-HF rgEV-A71, as compared to control mice treated with adjuvant only. Importantly, administration of antisera from VP1-CD-HF rgEV-A71s-immunized mice protected against lethal EV-A71 challenge in neonatal mice. These findings highlight that our generated VP1-CD-HF rgEV-A71 viruses are capable of inducing both cellular and humoral immune responses, supporting their potential as next-generation EV-A71 vaccines for combating EV-A71 infection.IMPORTANCEEV-A71 can cause severe neurological diseases and cause death in young children. Here, we report the development of synthetic rgEV-A71s with the combination of codon deoptimization and high-fidelity (HF) substitutions that generate genetically stable reverse genetics (rg) viruses as potential attenuated vaccine candidates. Our work provides insight into the development of low-virulence candidate vaccines through a series of viral genetic editing for maintaining antigenicity and genome stability and suggests a strategy for the development of an innovative next-generation vaccine against EV-A71.


Asunto(s)
Proteínas de la Cápside , Enterovirus Humano A , Infecciones por Enterovirus , ARN Polimerasa Dependiente del ARN , Animales , Ratones , Anticuerpos Antivirales/inmunología , Codón , Enterovirus Humano A/genética , Infecciones por Enterovirus/inmunología , Vacunas Atenuadas , Proteínas de la Cápside/genética , Inmunidad Humoral , Inmunidad Celular , Anticuerpos Neutralizantes/inmunología , Vacunas Virales , Ratones Endogámicos ICR , Ratones Endogámicos BALB C , ARN Polimerasa Dependiente del ARN/genética
3.
BMC Genomics ; 25(1): 174, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38350871

RESUMEN

Alfalfa, an essential forage crop known for its high yield, nutritional value, and strong adaptability, has been widely cultivated worldwide. The yield and quality of alfalfa are frequently jeopardized due to environmental degradation. Lignin, a constituent of the cell wall, enhances plant resistance to abiotic stress, which often causes osmotic stress in plant cells. However, how lignin responds to osmotic stress in leaves remains unclear. This study explored the effects of osmotic stress on lignin accumulation and the contents of intermediate metabolites involved in lignin synthesis in alfalfa leaves. Osmotic stress caused an increase in lignin accumulation and the alteration of core enzyme activities and gene expression in the phenylpropanoid pathway. We identified five hub genes (CSE, CCR, CADa, CADb, and POD) and thirty edge genes (including WRKYs, MYBs, and UBPs) by integrating transcriptome and metabolome analyses. In addition, ABA and ethylene signaling induced by osmotic stress regulated lignin biosynthesis in a contradictory way. These findings contribute to a new theoretical foundation for the breeding of high-quality and resistant alfalfa varieties.


Asunto(s)
Lignina , Medicago sativa , Medicago sativa/genética , Lignina/metabolismo , Presión Osmótica , Fitomejoramiento , Perfilación de la Expresión Génica , Hojas de la Planta/metabolismo , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas
4.
Anal Chem ; 96(22): 9200-9208, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38771984

RESUMEN

Asymmetric PCR is widely used to produce single-stranded amplicons (ss-amplicons) for various downstream applications. However, conventional asymmetric PCR schemes are susceptible to events that affect primer availability, which can be exacerbated by multiplex amplification. In this study, a new multiplex asymmetric PCR approach that combines the amplification refractory mutation system (ARMS) with the homo-Tag-assisted nondimer system (HANDS) is described. ARMS-HANDS (A-H) PCR utilizes equimolar-tailed forward and reverse primers and an excess Tag primer. The tailed primer pairs initiate exponential symmetric amplification, whereas the Tag primer drives linear asymmetric amplification along fully matched strands but not one-nucleotide mismatched strands, thereby generating excess ss-amplicons. The production of ss-amplicons is validated using agarose gel electrophoresis, sequencing, and melting curve analysis. Primer dimer alleviation is confirmed by both the reduced Loss function value and a 20-fold higher sensitivity in an 11-plex A-H PCR assay than in an 11-plex conventional asymmetric PCR assay. Moreover, A-H PCR demonstrates unbiased amplification by its allele quantitative ability in correct identification of all 31 trisomy 21 samples among 342 clinical samples. A-H PCR is a new generation of multiplex asymmetric amplification approach with various applications, especially when sensitive and quantitative detection is required.


Asunto(s)
Reacción en Cadena de la Polimerasa Multiplex , Mutación , Humanos , Reacción en Cadena de la Polimerasa Multiplex/métodos , Cartilla de ADN/química , Síndrome de Down/genética , Síndrome de Down/diagnóstico
5.
Biomacromolecules ; 25(2): 838-852, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38164823

RESUMEN

Nowadays, wearable devices derived from flexible conductive hydrogels have attracted enormous attention. Nevertheless, the utilization of conductive hydrogels in practical applications under extreme conditions remains a significant challenge. Herein, a series of inorganic salt-ion-enhanced conductive hydrogels (HPE-LiCl) consisting of hydroxyethyl cellulose, hydroxyethyl acrylate, lithium chloride, and ethylene glycol/water binary solvent were fabricated via a facile one-pot method. Apart from outstanding self-adhesion, high stretchability, and remarkable fatigue resistance, the HPE-LiCl hydrogels possessed especially excellent antifreezing and long-lasting moisture performances, which could maintain satisfactory flexibility and electric conductivity over extended periods of time, even in challenging conditions such as extremely low temperatures (as low as -40 °C) and high temperatures (as high as 80 °C). Consequently, the HPE-LiCl-based sensor could timely and accurately monitor various human motion signals even in adverse environments and after long-term storage. Hence, this work presents a facile strategy for the design of long-term reliable hydrogels as smart strain sensors, especially used in extreme environments.


Asunto(s)
Celulosa , Frío , Humanos , Conductividad Eléctrica , Hidrogeles , Iones
6.
J Org Chem ; 88(13): 8123-8132, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37235643

RESUMEN

The regioselective synthesis of multiple disulfide bonds in peptides has been a significant challenge in synthetic peptide chemistry. In this work, two disulfide bonds in peptides were regioselectively synthesized via an approach of MetSeO oxidation and deprotection reaction (SeODR), in which the first disulfide bond was constructed through oxidation of dithiol by MetSeO in a neutral buffer, and the second disulfide bond was then directly constructed through the deprotection of two Acm groups or one Acm group and one Thz group by MetSeO in acidic media. Synthesis of two disulfide bonds by the SeODR approach was achieved through a one-pot manner. Moreover, the SeODR approach is compatible with the synthesis of peptides containing methionine residues. Both H+ and Br- drastically promoted the reaction rate of SeODR. The mechanistic picture for the SeODR approach was delineated, in which the formation of a stable Se-X-S bridge as the transition state plays a critical role. The SeODR approach was also utilized to construct the three disulfide bonds in linaclotide, conferring a reasonable yield.


Asunto(s)
Disulfuros , Péptidos , Indicadores y Reactivos , Disulfuros/química , Péptidos/química , Metionina/química , Metionina/metabolismo , Oxidación-Reducción
7.
Acta Pharmacol Sin ; 44(7): 1475-1486, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36725884

RESUMEN

The KRASG12C mutant has emerged as an important therapeutic target in recent years. Covalent inhibitors have shown promising antitumor activity against KRASG12C-mutant cancers in the clinic. In this study, a structure-based and focused chemical library analysis was performed, which led to the identification of 143D as a novel, highly potent and selective KRASG12C inhibitor. The antitumor efficacy of 143D in vitro and in vivo was comparable with that of AMG510 and of MRTX849, two well-characterized KRASG12C inhibitors. At low nanomolar concentrations, 143D showed biochemical and cellular potency for inhibiting the effects of the KRASG12C mutation. 143D selectively inhibited cell proliferation and induced G1-phase cell cycle arrest and apoptosis by downregulating KRASG12C-dependent signal transduction. Compared with MRTX849, 143D exhibited a longer half-life and higher maximum concentration (Cmax) and area under the curve (AUC) values in mouse models, as determined by tissue distribution assays. Additionally, 143D crossed the blood‒brain barrier. Treatment with 143D led to the sustained inhibition of KRAS signaling and tumor regression in KRASG12C-mutant tumors. Moreover, 143D combined with EGFR/MEK/ERK signaling inhibitors showed enhanced antitumor activity both in vitro and in vivo. Taken together, our findings indicate that 143D may be a promising drug candidate with favorable pharmaceutical properties for the treatment of cancers harboring the KRASG12C mutation.


Asunto(s)
Proteínas Proto-Oncogénicas p21(ras) , Transducción de Señal , Animales , Ratones , Proteínas Proto-Oncogénicas p21(ras)/genética , Línea Celular Tumoral , Acetonitrilos/farmacología , Mutación
8.
Acta Pharmacol Sin ; 44(10): 2113-2124, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37225847

RESUMEN

EZH2 has been regarded as an efficient target for diffuse large B-cell lymphoma (DLBCL), but the clinical benefits of EZH2 inhibitors (EZH2i) are limited. To date, only EPZ-6438 has been approved by FDA for the treatment of follicular lymphoma and epithelioid sarcoma. We have discovered a novel EZH1/2 inhibitor HH2853 with a better antitumor effect than EPZ-6438 in preclinical studies. In this study we explored the molecular mechanism underlying the primary resistance to EZH2 inhibitors and sought for combination therapy strategy to overcome it. By analyzing EPZ-6438 and HH2853 response profiling, we found that EZH2 inhibition increased intracellular iron through upregulation of transferrin receptor 1 (TfR-1), ultimately triggered resistance to EZH2i in DLBCL cells. We demonstrated that H3K27ac gain by EZH2i enhanced c-Myc transcription, which contributed to TfR-1 overexpression in insensitive U-2932 and WILL-2 cells. On the other hand, EZH2i impaired the occurrence of ferroptosis by upregulating the heat shock protein family A (Hsp70) member 5 (HSPA5) and stabilizing glutathione peroxidase 4 (GPX4), a ferroptosis suppressor; co-treatment with ferroptosis inducer erastin effectively overrode the resistance of DLBCL to EZH2i in vitro and in vivo. Altogether, this study reveals iron-dependent resistance evoked by EZH2i in DLBCL cells, and suggests that combination with ferroptosis inducer may be a promising therapeutic strategy.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2 , Linfoma de Células B Grandes Difuso , Humanos , Benzamidas/farmacología , Benzamidas/uso terapéutico , Proteína Potenciadora del Homólogo Zeste 2/antagonistas & inhibidores , Proteína Potenciadora del Homólogo Zeste 2/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Homeostasis , Linfoma de Células B Grandes Difuso/metabolismo , Receptores de Transferrina/metabolismo , Hierro/metabolismo
9.
Ophthalmic Res ; 66(1): 1417-1432, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37989109

RESUMEN

INTRODUCTION: The aims of this study were to investigate the molecular alterations of cuproptosis-related genes and to construct the cuproptosis-related circular RNA (circRNA)-microRNA (miRNA)-mRNA networks in neovascular age-related macular degeneration (nAMD). METHODS: The transcriptional profiles of laser-induced choroid neovascularization (CNV) mouse models and nAMD patient samples were obtained from sequencing and from the GEO database (GSE146887), respectively. The expression levels of ten cuproptosis-related genes (FDX1, DLAT, LIAS, DLD, PDHB, MTF1, CDKN2A, GLS, LIPT1, and PDHA1) were extracted and verified in both mouse CNV models and patient peripheral blood mononuclear cells (PBMCs) samples. The cuproptosis-related circRNA-miRNA-mRNA network was further constructed based on miRNet database, the dataset GSE131646 of small RNA expression profile, and the dataset GSE140178 of circRNA expression profile in mouse CNV models. RESULTS: The significant upregulation of Cdkn2a and Mtf1 and the downregulation of other 5 cuproptosis-related genes were verified in the mouse CNV model, but only CDKN2A significantly upregulated in PBMCs of patients with nAMD. Four miRNAs were detected in the intersection between miRNet prediction and sequencing data: miR-129-5p, miR-129-2-3p, miR-182-5p, and miR-615-3p. There were 9 circRNAs at the intersection of hsa-miR-182-5p and hsa-miR-615-3p predictions, one circRNA predicted by hsa-miR-129-5p and GSE140178 (hsa-circASH1L), and one circRNA predicted by hsa-miR-182-5p and hsa-miR-615-3p (hsa-circNPEPPS). CONCLUSION: This study suggested the repression of cuproptosis in nAMD pathologies and constructed a cuproptosis-related network of 8 cuproptosis-related genes, 4 miRNAs, and 11 circRNAs.


Asunto(s)
Degeneración Macular , MicroARNs , Animales , Ratones , Humanos , MicroARNs/genética , ARN Circular/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Leucocitos Mononucleares/metabolismo , Degeneración Macular/genética
10.
Hum Mutat ; 43(12): 2279-2294, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36317469

RESUMEN

Retinitis pigmentosa (RP) is a monogenic disease characterized by irreversible degeneration of the retina. PRPF31, the second most common causative gene of autosomal dominant RP, frequently harbors copy number variations (CNVs), but the underlying mechanism is unclear. In this study, we summarized the phenotypic and genotypic characteristics of 18 RP families (F01-F18) with variants in PRPF31. The prevalence of PRPF31 variants in our cohort of Chinese RP families was 1.7% (18/1024). Seventeen different variants in PRPF31 were detected, including eight novel variants. Notably, four novel CNVs encompassing PRPF31, with a proportion of 22.2% (4/18), were validated to harbor gross deletions involving Alu/Alu-mediated rearrangements (AAMRs) in the same orientation. Among a total of 12 CNVs of PRPF31 with breakpoints mapped on nucleotide-resolution, 10 variants (83.3%) were presumably mediated by Alu elements. Furthermore, we described the correlation between the genotypes and phenotypes in PRPF31-related RP. Our findings expand the mutational spectrum of the PRPF31 gene and provide strong evidence that Alu elements of PRPF31 probably contribute to the susceptibility to genomic rearrangement in this locus.


Asunto(s)
Variaciones en el Número de Copia de ADN , Retinitis Pigmentosa , Humanos , Análisis Mutacional de ADN , Proteínas del Ojo/genética , Linaje , Retinitis Pigmentosa/genética , Mutación , Genes Dominantes
11.
J Biol Chem ; 297(1): 100904, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34157289

RESUMEN

Mitochondria are critical for regulation of the activation, differentiation, and survival of macrophages and other immune cells. In response to various extracellular signals, such as microbial or viral infection, changes to mitochondrial metabolism and physiology could underlie the corresponding state of macrophage activation. These changes include alterations of oxidative metabolism, mitochondrial membrane potential, and tricarboxylic acid (TCA) cycling, as well as the release of mitochondrial reactive oxygen species (mtROS) and mitochondrial DNA (mtDNA) and transformation of the mitochondrial ultrastructure. Here, we provide an updated review of how changes in mitochondrial metabolism and various metabolites such as fumarate, succinate, and itaconate coordinate to guide macrophage activation to distinct cellular states, thus clarifying the vital link between mitochondria metabolism and immunity. We also discuss how in disease settings, mitochondrial dysfunction and oxidative stress contribute to dysregulation of the inflammatory response. Therefore, mitochondria are a vital source of dynamic signals that regulate macrophage biology to fine-tune immune responses.


Asunto(s)
Activación de Macrófagos , Macrófagos/metabolismo , Mitocondrias/metabolismo , Animales , Humanos , Estrés Oxidativo
12.
FASEB J ; 35(9): e21859, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34418172

RESUMEN

Cyclic nucleotide-gated (CNG) channels are important mediators in the transduction pathways of rod and cone photoreceptors. Native CNG channels are heterotetramers composed of homologous A and B subunits. Biallelic mutations in CNGA1 or CNGB1 genes result in autosomal recessive retinitis pigmentosa (RP). To investigate the pathogenic mechanism of CNG channel-associated retinal degeneration, we developed a mouse model of CNGA1 knock-out using CRISPR/Cas9 technology. We observed progressive retinal thinning and a concomitant functional deficit in vivo as typical phenotypes for RP. Immunofluorescence and TUNEL staining showed progressive degeneration in rods and cones. Moreover, microglial activation and oxidative stress damage occurred in parallel. RNA-sequencing analysis of the retinae suggested down-regulated synaptic transmission and phototransduction as early as 9 days postnatal, possibly inducing later photoreceptor degeneration. In addition, the down-regulated PI3K-AKT-mTOR pathway indicated upregulation of autophagic process, and chaperone-mediated autophagy was further shown to coincide with the time course of photoreceptor death. Taken together, our studies add to a growing body of research exploring the mechanisms of photoreceptor death during RP progression and provide a novel CNGA1 knockout mouse model for potential development of therapies.


Asunto(s)
Canales Catiónicos Regulados por Nucleótidos Cíclicos/deficiencia , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Eliminación de Gen , Degeneración Retiniana/genética , Animales , Caspasas , Autofagia Mediada por Chaperones , Femenino , Luz , Ratones , Ratones Noqueados , Microglía , Neuroglía , Estrés Oxidativo/efectos de la radiación , Fenotipo , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patología , RNA-Seq , Degeneración Retiniana/patología , Epitelio Pigmentado de la Retina , Transcriptoma
13.
J Org Chem ; 87(2): 1470-1476, 2022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-34985274

RESUMEN

In this study, we developed an efficient approach for disulfide bond formation in peptides utilizing the Pt(IV) complex trans-[PtBr2(CN)4]2- to mediate Acm and Thz deprotections. [PtBr2(CN)4]2- can oxidatively deprotect two Acm groups or deprotect one Thz group and one Acm group to directly form an intramolecular disulfide bond in peptides. Several disulfide-containing peptides with excellent yields were achieved via the deprotection method in an aqueous medium under aerobic conditions. Kinetic studies indicated that the dominant path of the reaction is of first-order in both [Pt(IV)] and [peptide]; moreover, the deprotection rate increased dramatically with the addition of NaBr. A mechanism including a bromide-bridge-mediated electron transfer process was proposed. Apamin, α-conotoxin SI, and the parallel homodimer of oxytocin, all containing two disulfide bonds, were synthesized regioselectively through a one-pot method by the combined use of the above deprotection approach with oxidants l-methionine selenoxide and [PtBr2(CN)4]2-. All of the reactions were completed within 30 min to afford good yields for these peptides.


Asunto(s)
Cisteína , Péptidos , Disulfuros , Cinética , Tiazolidinas
14.
J Obstet Gynaecol Res ; 48(11): 2748-2755, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36319200

RESUMEN

BACKGROUND AND AIMS: 25-hydroxyvitamin D (25(OH)D) affects glucose metabolism by increasing insulin secretion and insulin receptor expression. However, whether 25(OH)D deficiency will increase the risk of gestational diabetes mellitus (GDM) has not been clearly reported. The purpose of this study is to assess the relationship between vitamin D levels in the second trimester of pregnancy and the risk of GDM. METHODS: According to the inclusion and exclusion criteria, 247 pregnant women came to the fourth hospital of Shijiazhuang (The affiliated obstetrics and gynecology hospital of Hebei Medical University) for obstetrics were investigated during the period of January 1, 2019 to December 31, 2020. The levels of 25(OH)D in the second trimester (16-20 weeks) and oral 75 g glucose tolerance test (OGTT) at 24-28 weeks of pregnancy were reviewed. The sociodemographic data were collected from questionnaire. Multivariate logistic regression was used to analyze the relationship between vitamin D levels and GDM. RESULTS: The incidence of GDM in the observation group (25(OH)D ≤ 26 ng/ml) was higher than that in the control group (25(OH)D > 26 ng/ml) (p = 0.039). Compared with control group, the observation group had significantly higher level of fasting plasma glucose (FPG) (4.7 [4.5-5.0] mmol/L vs. 4.6 [4.4-4.8] mmol/L, p = 0.012). In the whole study, the level of 25(OH)D was negatively correlated with FPG (r = - 0.164,p = 0.010). After adjusting for age, pre-pregnancy BMI, parity and adverse pregnancy history, compared with the observation group (25 (OH) D ≤ 26 ng/ml), the risk of developing GDM decreased by 50.9% in control group (25(OH)D > 26 ng/ml) (odds ratio [OR] = 0.491, 95% confidence interval [CI] = 0.243-0.989, p = 0.047). CONCLUSION: Adequate vitamin D levels during the second trimester of pregnancy may reduce the risk of GDM.


Asunto(s)
Diabetes Gestacional , Embarazo , Femenino , Humanos , Segundo Trimestre del Embarazo , Vitamina D , Calcifediol , Ayuno , Glucemia
15.
Front Zool ; 18(1): 24, 2021 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-34001190

RESUMEN

BACKGROUND: Interannual variation in resource abundance has become more unpredictable, and food shortages have increasingly occurred in the recent decades. However, compared to seasonal fluctuations in resource abundance, the influences of interannual variation in resource abundance on the dietary niches of consumers remain poorly understood. Poyang Lake, China, is a very important wintering ground for the globally endangered Siberian Crane (Leucogeranus leucogeranus), White-naped Crane (Grus vipio), and Hooded Crane (G. monacha), as well as the non-endangered Eurasian Crane (G. grus). Tubers of Vallisneria spp., the dominant submerged macrophytes at Poyang Lake, is an important food for cranes. Nevertheless, submerged macrophytes have experienced serious degradation recently. In this study, we used metabarcoding technology to explore the consequences of Vallisneria tuber collapse on the diet compositions, breadths, and overlaps of the four crane species based on fecal samples collected in winter 2017 (a year with tuber collapse) and winter 2018 (a year with high tuber abundance). RESULTS: Compared to previous studies, our study elucidates crane diets in an unprecedented level of detail. Vallisneria tubers was confirmed as an important food source of cranes. Surprisingly, the grassland plant Polygonum criopolitanum was also found to be an important food source in the feces of cranes. Agricultural fields were important foraging sites for Siberian Cranes, White-naped Cranes, and Hooded Cranes, providing foods that allowed them to survive in winters with natural food shortages. However, the three crane species preferred natural wetlands to agricultural fields when the abundance of natural foods was high. The abundance of Vallisneria tubers, and probably P. criopolitanum, greatly influenced the dietary compositions, breadths and overlap of cranes. During periods of preferred resource shortage, White-naped Cranes and Hooded Cranes widened their dietary niches, while Siberian Cranes maintained a stable niche width. The dietary niche overlap among crane species increased substantially under conditions of plentiful preferred food resources. CONCLUSIONS: Our study emphasizes the superior quality of natural wetlands compared to agricultural fields as foraging habitats for cranes. To provide safer and better foraging areas for cranes, it is urgent to restore the submerged plants at Poyang Lake. While high dietary niche overlap is often interpreted as intense interspecific competition, our study highlights the importance of taking food abundance into account.

16.
BMC Ophthalmol ; 21(1): 401, 2021 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-34800980

RESUMEN

BACKGROUND: Cone-rod dystrophy (CORD) is a group of inherited retinal dystrophies, characterized by decreased visual acuity, color vision defects, photophobia, and decreased sensitivity in the central visual field. Our study has identified a novel pathogenic variant associated with X-linked cone-rod dystrophy (XLCORD) in a Chinese family. METHODS: All six family members, including the proband, affected siblings, cousins and female carriers, have underwent thorough ophthalmic examinations. The whole exome sequencing was performed for the proband, followed by Sanger sequencing for spilt-sample validation. A mammalian expression vector (AAV-MCS) with mutated retinitis pigmentosa GTPase regulator (RPGR) sequence was expressed in HEK293 T cells. The mutated protein was verified by Western blotting and immunohistochemistry. RESULTS: A novel mutation in the RPGR gene (c.2383G > T, p.E795X) is identified to be responsible for CORD pathogenesis. CONCLUSIONS: Our findings have expanded the spectrum of CORD-associated mutations in RPGR gene and serve as a basis for genetic diagnosis for X-linked CORD.


Asunto(s)
Distrofias de Conos y Bastones , Retinitis Pigmentosa , Animales , China , Distrofias de Conos y Bastones/genética , Análisis Mutacional de ADN , Proteínas del Ojo/genética , Femenino , Células HEK293 , Humanos , Mutación , Linaje , Retinitis Pigmentosa/diagnóstico , Retinitis Pigmentosa/genética
17.
BMC Pulm Med ; 21(1): 90, 2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33731031

RESUMEN

BACKGROUND: Foreign body ingestion is a common emergence in gastroenterology. Foreign bodies are most likely to be embedded in the esophagus. The sharp ones may penetrate the esophageal wall and lead to serious complications. CASE PRESENTATION: A 72-year-old Chinese female was admitted to our hospital with a 4-day history of retrosternal pain and a growing cough after eating fish. Chest computed tomography scan indicated that a high-density foreign body (a fish bone) penetrated through the esophageal wall and inserted into the left main bronchus. First, we used a rigid esophagoscope to explore the esophagus under general anesthesia. However, the foreign body was invisible in the side of the esophagus. Then, the fiberoptic bronchoscopy was performed. We divided the fish bone, which traversed the left main bronchus, into two segments under holmium laser and removed the foreign body successfully. The operation time was short and there were no complications. The patient was discharged 1 week postoperatively and was symptom free even under a liquid diet. CONCLUSIONS: There are several challenges in the management of this rare condition. We applied the technique of interventional bronchoscopy to the management of esophageal foreign body flexibly in an emergency. A surgery was avoided, which was more invasive and costly.


Asunto(s)
Bronquios/lesiones , Esófago/lesiones , Cuerpos Extraños/diagnóstico , Anciano , Bronquios/cirugía , Broncoscopía , Esofagoscopios , Esófago/cirugía , Femenino , Cuerpos Extraños/cirugía , Humanos , Láseres de Estado Sólido , Tomografía Computarizada por Rayos X
18.
J Virol ; 93(13)2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30996087

RESUMEN

Enterovirus A71 (EV-A71) is a major pathogen that causes hand-foot-and-mouth disease (HFMD), which occasionally results in severe neurological complications. In this study, we developed four EV-A71 (rgEV-A71) strains by reverse genetics procedures as possible vaccine candidates. The four rgEV-A71 viruses contained various codon-deoptimized VP1 capsid proteins (VP1-CD) and showed replication rates and antigenicity similar to that of the wild-type virus, while a fifth virus, rg4643C4VP-CD, was unable to form plaques but was still able to be examined by median tissue culture infectious dose (TCID50) titers, which were similar to those of the others, indicating the effect of CD on plaque formation. However, the genome stability showed that there were some mutations which appeared during just one passage of the VP1-CD viruses. Thus, we further constructed VP1-CD rgEV-A71 containing high-fidelity determinants in 3D polymerase (CD-HF), and the number of mutations in CD-HF rgEV-A71 was shown to have decreased. The CD-HF viruses showed less virulence than the parental strain in a mouse infection model. After 14 days postimmunization, antibody titers had increased in mice infected with CD-HF viruses. The mouse antisera showed similar neutralizing antibody titers against various CD-HF viruses and different genotypes of EV-A71. The study demonstrates the proof of concept that VP1 codon deoptimization combined with high-fidelity 3D polymerase decreased EV-A71 mutations and virulence in mice but retained their antigenicity, indicating it is a good candidate for next-generation EV-A71 vaccine development.IMPORTANCE EV-A71 can cause severe neurological diseases with fatality in infants and young children, but there are still no effective drugs to date. Here, we developed a novel vaccine strategy with the combination of CD and HF substitutions to generate the genetically stable reverse genetics virus. We found that CD combined with HF polymerase decreased the virulence but maintained the antigenicity of the virus. This work demonstrated the simultaneous introduction of CD genome sequences and HF substitutions as a potential new strategy to develop attenuated vaccine seed virus. Our work provides insight into the development of a low-virulence candidate vaccine virus through a series of genetic editing of virus sequences while maintaining its antigenicity and genome stability, which will provide an additional strategy for next-generation vaccine development of EV-A71.


Asunto(s)
Proteínas de la Cápside/inmunología , Codón , Infecciones por Enterovirus/inmunología , Infecciones por Enterovirus/prevención & control , Enterovirus/inmunología , Inmunogenicidad Vacunal/inmunología , Vacunas Virales/inmunología , Animales , Anticuerpos Neutralizantes , Antígenos Virales/genética , Antígenos Virales/inmunología , Secuencia de Bases , Proteínas de la Cápside/genética , Enterovirus/genética , Enterovirus/crecimiento & desarrollo , Enterovirus Humano A/genética , Enterovirus Humano A/inmunología , Infecciones por Enterovirus/virología , Inestabilidad Genómica , Enfermedad de Boca, Mano y Pie/inmunología , Enfermedad de Boca, Mano y Pie/prevención & control , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Mutación , Virulencia , Replicación Viral
19.
New Phytol ; 226(6): 1796-1808, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32020611

RESUMEN

Recent studies mainly in Arabidopsis have renewed interest and discussion in some of the key issues in hydrotropism of roots, such as the site of water sensing and the involvement of auxin. We examined hydrotropism in maize (Zea mays) primary roots. We determined the site of water sensing along the root using a nonintrusive method. Kinematic analysis was conducted to investigate spatial root elongation during hydrotropic response. Indole-3-acetic acid (IAA) and other hormones were quantified using LC-MS/MS. The transcriptome was analyzed using RNA sequencing. Main results: The very tip of the root is the most sensitive to the hydrostimulant. Hydrotropic bending involves coordinated adjustment of spatial cell elongation and cell flux. IAA redistribution occurred in maize roots, preceding hydrotropic bending. The redistribution is caused by a reduction of IAA content on the side facing a hydrostimulant, resulting in a higher IAA content on the dry side. Transcriptomic analysis of the elongation zone prior to bending identified IAA response and lignin synthesis/wall cross-linking as some of the key processes occurring during the early stages of hydrotropic response. We conclude that maize roots differ from Arabidopsis in the location of hydrostimulant sensing and the involvement of IAA redistribution.


Asunto(s)
Raíces de Plantas , Zea mays , Cromatografía Liquida , Ácidos Indolacéticos , Espectrometría de Masas en Tándem , Tropismo , Zea mays/genética
20.
FASEB J ; 33(12): 13920-13934, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31648566

RESUMEN

VEGF is a critical driver of ocular neovascularization under disease conditions. Current therapeutic strategies rely on intraocular delivery of VEGF-antagonizing reagents, which results in sustained suppression of pathogenic vascularization. Although significant advancement has been achieved in VEGF antagonism, substantial adverse effects have been reported in retrospective clinical studies. To study mechanisms for VEGF antagonism-associated adverse effects in visual system, we intravitreally delivered recombinant adeno-associated virus-mediated expression of soluble Fms-related tyrosine kinase-1 (rAAV.sFLT-1), the extracellular domain of VEGF receptor, and analyzed the morphology and functions of retinal tissue. Here, we confirmed that intraocular VEGF antagonism induced retinal degeneration and gliosis. The functional deficit in retinal response to visual stimulation was also demonstrated in rAAV.sFLT-1-treated eyes by electroretinogram. Moreover, high-throughput RNA sequencing analysis suggests that VEGF antagonism activates retinal degeneration, inflammation, and other adverse effects. Taken together, our findings have shed light on pathogenic mechanisms for VEGF antagonism-associated adverse effects and potential therapeutic targets.-Xiao, M., Liu, Y., Wang, L., Liang, J., Wang, T., Zhai, Y., Wang, Y., Liu, S., Liu, W., Luo, X., Wang, F., Sun, X. Intraocular VEGF deprivation induces degeneration and fibrogenic response in retina.


Asunto(s)
Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Línea Celular , Neovascularización Coroidal/metabolismo , Dependovirus/metabolismo , Vectores Genéticos/metabolismo , Gliosis/metabolismo , Células HEK293 , Humanos , Inflamación/metabolismo , Ratones , Retina , Degeneración Retiniana/metabolismo , Estudios Retrospectivos , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA