Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Curr Microbiol ; 81(4): 93, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38334775

RESUMEN

The measles vaccine virus strain (MV-Edm) serves as a potential platform for the development of effective oncolytic vectors. Nevertheless, despite promising pre-clinical data, our comprehension of the factors influencing the efficacy of MV-Edm infection and intratumoral spread, as well as the interactions between oncolytic viruses and specific chemotherapeutics associated with viral infection, remains limited. Therefore, we investigated the potency of Forskolin in enhancing the antitumor effect of oncolytic MV-Edm by promoting the Rab27a-dependent vesicular transport system. After infecting cells with MV-Edm, we observed an increased accumulation of cytoplasmic vesicles. Our study demonstrated that MV-Edm infection and spread in tumors, which are indispensable processes for viral oncolysis, depend on the vesicular transport system of tumor cells. Although tumor cells displayed a responsive mechanism to restrain the MV-Edm spread by down-regulating the expression of Rab27a, a key member of the vesicle transport system, over-expression of Rab27a promoted the oncolytic efficacy of MV-Edm towards A549 tumor cells. Additionally, we found that Forskolin, a Rab27a agonist, was capable of promoting the oncolytic effect of MV-Edm in vitro. Our study revealed that the vesicle transporter Rab27a could facilitate the secretion of MV-Edm and the generation of syncytial bodies in MV-Edm infected cells during the MV-Edm-mediated oncolysis pathway. The results of the study demonstrate that a combination of Forskolin and MV-Edm exerts a synergistic anti-tumor effect in vitro, leading to elevated oncolysis. This finding holds promise for the clinical treatment of patients with tumors.


Asunto(s)
Viroterapia Oncolítica , Virus Oncolíticos , Humanos , Línea Celular Tumoral , Colforsina/farmacología , Virus del Sarampión/genética , Viroterapia Oncolítica/métodos , Virus Oncolíticos/genética
2.
Scand J Immunol ; 98(4): e13305, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38441377

RESUMEN

γδT cells are important innate immune cells that are involved in the occurrence and development of autoimmune diseases such as systemic lupus erythematosus (SLE). Lupus nephritis (LN) is a serious complication of SLE, characterized by the accumulation of immune cells (including γδT cells) in the target organs to participate in the disease process. Therefore, clarifying how γδT cells chemotactically migrate to target organs may be a key to developing therapeutic methods against LN. Enzyme-linked immunosorbent assay (ELISA) was used to detect serum levels of chemokines in LN patients and healthy controls. Real-time polymerase chain reaction (RT-PCR) and flow cytometry were used to measure the expression of chemokine receptors on the surface of γδT cells. The chemotactic migration ability of γδT cells was detected by Transwell assay. Signalling pathway activation of γδT cells was detected by Automated Capillary Electrophoresis Immunoassay and flow cytometry. The serum levels of chemokines, including monocyte chemoattractant protein-1 (MCP-1) in LN patients, were significantly increased. CCR2, the receptor of MCP-1, was also highly expressed on the surface of peripheral γδT cells in LN patients. In addition, the exogenous addition of MCP-1 can enhance chemotactic migration of γδT cells in LN patients. MCP-1 could activate STAT3 signalling in LN patients' peripheral γδT cells. γδT cells might participate in the pathogenesis of LN through MCP-1/CCR2 axis. This finding provides new opportunities for developing treatment methods against LN by targeting MCP-1/CCR2 axis.


Asunto(s)
Lupus Eritematoso Sistémico , Nefritis Lúpica , Humanos , Quimiocina CCL2 , Transducción de Señal , Ensayo de Inmunoadsorción Enzimática , Receptores CCR2
3.
Thromb Haemost ; 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38626899

RESUMEN

BACKGROUND: Hemophilia A (HA) is an inherited bleeding disorder caused by a deficiency or defect in factor VIII (FVIII). METHODS: We investigated the role of clot waveform analysis (CWA) of activated partial thromboplastin time in the diagnosis and therapeutic monitoring of HA. The changes in CWA parameters the maximum clotting velocity (|Min1|), maximum clotting acceleration (|Min2|), and maximum clotting deceleration (|Max2|) were detected among mild, moderate, and severe HA groups. RESULTS: As the severity of HA subtypes increased, the levels of |Min1|, |Min2|, and |Max2| progressively decreased (p < 0.05). Receiver operating characteristic curve analysis showed that |Max2| and |Min2| were more effective than |Min1| in distinguishing different types of HA patients, with higher diagnostic efficacy. The standard curves based on Actin FSL reagent for normal and low levels of FVIII:C-|Max2| were established, with R2 values of 0.98 and 0.99, respectively. These curves can be utilized for monitoring during replacement therapies involving full-length recombinant FVIII and B-domain-deleted FVIII. Thirty cases of HA patients utilized the FVIII-|Max2| standard curve to obtain individual pharmacokinetics characteristic parameters. The clearance, half-life (t1/2), time to FVIII:C of 1% above baseline (tt1%), and predicted dosage showed no statistically significant differences compared with one-stage assay (p > 0.05). CONCLUSION: CWA is an economical and practical tool, and its related parameters are associated with the severity of HA. It has promising clinical prospects in predicting FVIII:C levels and individualized treatment when HA patients undergo replacement therapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA