Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 156(6): 1179-1192, 2014 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-24630721

RESUMEN

The hexosamine biosynthetic pathway (HBP) generates uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) for glycan synthesis and O-linked GlcNAc (O-GlcNAc) protein modifications. Despite the established role of the HBP in metabolism and multiple diseases, regulation of the HBP remains largely undefined. Here, we show that spliced X-box binding protein 1 (Xbp1s), the most conserved signal transducer of the unfolded protein response (UPR), is a direct transcriptional activator of the HBP. We demonstrate that the UPR triggers HBP activation via Xbp1s-dependent transcription of genes coding for key, rate-limiting enzymes. We further establish that this previously unrecognized UPR-HBP axis is triggered in a variety of stress conditions. Finally, we demonstrate a physiologic role for the UPR-HBP axis by showing that acute stimulation of Xbp1s in heart by ischemia/reperfusion confers robust cardioprotection in part through induction of the HBP. Collectively, these studies reveal that Xbp1s couples the UPR to the HBP to protect cells under stress.


Asunto(s)
Vías Biosintéticas , Proteínas de Unión al ADN/metabolismo , Hexosaminas/metabolismo , Factores de Transcripción/metabolismo , Respuesta de Proteína Desplegada , Animales , Glutamina-Fructosa-6-Fosfato Transaminasa (Isomerizadora) , Humanos , Masculino , Ratones , Ratones Transgénicos , Isquemia Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Miocitos Cardíacos/metabolismo , Transferasas de Grupos Nitrogenados/genética , Factores de Transcripción del Factor Regulador X , Proteína 1 de Unión a la X-Box
2.
Circulation ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38836349

RESUMEN

BACKGROUND: Cardiomyocyte growth is coupled with active protein synthesis, which is one of the basic biological processes in living cells. However, it is unclear whether the unfolded protein response transducers and effectors directly take part in the control of protein synthesis. The connection between critical functions of the unfolded protein response in cellular physiology and requirements of multiple processes for cell growth prompted us to investigate the role of the unfolded protein response in cell growth and underlying molecular mechanisms. METHODS: Cardiomyocyte-specific inositol-requiring enzyme 1α (IRE1α) knockout and overexpression mouse models were generated to explore its function in vivo. Neonatal rat ventricular myocytes were isolated and cultured to evaluate the role of IRE1α in cardiomyocyte growth in vitro. Mass spectrometry was conducted to identify novel interacting proteins of IRE1α. Ribosome sequencing and polysome profiling were performed to determine the molecular basis for the function of IRE1α in translational control. RESULTS: We show that IRE1α is required for cell growth in neonatal rat ventricular myocytes under prohypertrophy treatment and in HEK293 cells in response to serum stimulation. At the molecular level, IRE1α directly interacts with eIF4G and eIF3, 2 critical components of the translation initiation complex. We demonstrate that IRE1α facilitates the formation of the translation initiation complex around the endoplasmic reticulum and preferentially initiates the translation of transcripts with 5' terminal oligopyrimidine motifs. We then reveal that IRE1α plays an important role in determining the selectivity and translation of these transcripts. We next show that IRE1α stimulates the translation of epidermal growth factor receptor through an unannotated terminal oligopyrimidine motif in its 5' untranslated region. We further demonstrate a physiological role of IRE1α-governed protein translation by showing that IRE1α is essential for cardiomyocyte growth and cardiac functional maintenance under hemodynamic stress in vivo. CONCLUSIONS: These studies suggest a noncanonical, essential role of IRE1α in orchestrating protein synthesis, which may have important implications in cardiac hypertrophy in response to pressure overload and general cell growth under other physiological and pathological conditions.

3.
Nature ; 568(7752): 351-356, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30971818

RESUMEN

Heart failure with preserved ejection fraction (HFpEF) is a common syndrome with high morbidity and mortality for which there are no evidence-based therapies. Here we report that concomitant metabolic and hypertensive stress in mice-elicited by a combination of high-fat diet and inhibition of constitutive nitric oxide synthase using Nω-nitro-L-arginine methyl ester (L-NAME)-recapitulates the numerous systemic and cardiovascular features of HFpEF in humans. Expression of one of the unfolded protein response effectors, the spliced form of X-box-binding protein 1 (XBP1s), was reduced in the myocardium of our rodent model and in humans with HFpEF. Mechanistically, the decrease in XBP1s resulted from increased activity of inducible nitric oxide synthase (iNOS) and S-nitrosylation of the endonuclease inositol-requiring protein 1α (IRE1α), culminating in defective XBP1 splicing. Pharmacological or genetic suppression of iNOS, or cardiomyocyte-restricted overexpression of XBP1s, each ameliorated the HFpEF phenotype. We report that iNOS-driven dysregulation of the IRE1α-XBP1 pathway is a crucial mechanism of cardiomyocyte dysfunction in HFpEF.


Asunto(s)
Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Estrés Nitrosativo , Volumen Sistólico , Animales , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Endorribonucleasas/metabolismo , Insuficiencia Cardíaca/prevención & control , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo II/deficiencia , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Fenotipo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Proteína 1 de Unión a la X-Box/genética , Proteína 1 de Unión a la X-Box/metabolismo
4.
Circ Res ; 131(1): 91-105, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35574856

RESUMEN

BACKGROUND: Cellular redox control is maintained by generation of reactive oxygen/nitrogen species balanced by activation of antioxidative pathways. Disruption of redox balance leads to oxidative stress, a central causative event in numerous diseases including heart failure. Redox control in the heart exposed to hemodynamic stress, however, remains to be fully elucidated. METHODS: Pressure overload was triggered by transverse aortic constriction in mice. Transcriptomic and metabolomic regulations were evaluated by RNA-sequencing and metabolomics, respectively. Stable isotope tracer labeling experiments were conducted to determine metabolic flux in vitro. Neonatal rat ventricular myocytes and H9c2 cells were used to examine molecular mechanisms. RESULTS: We show that production of cardiomyocyte NADPH, a key factor in redox regulation, is decreased in pressure overload-induced heart failure. As a consequence, the level of reduced glutathione is downregulated, a change associated with fibrosis and cardiomyopathy. We report that the pentose phosphate pathway and mitochondrial serine/glycine/folate metabolic signaling, 2 NADPH-generating pathways in the cytosol and mitochondria, respectively, are induced by transverse aortic constriction. We identify ATF4 (activating transcription factor 4) as an upstream transcription factor controlling the expression of multiple enzymes in these 2 pathways. Consistently, joint pathway analysis of transcriptomic and metabolomic data reveal that ATF4 preferably controls oxidative stress and redox-related pathways. Overexpression of ATF4 in neonatal rat ventricular myocytes increases NADPH-producing enzymes' whereas silencing of ATF4 decreases their expression. Further, stable isotope tracer experiments reveal that ATF4 overexpression augments metabolic flux within these 2 pathways. In vivo, cardiomyocyte-specific deletion of ATF4 exacerbates cardiomyopathy in the setting of transverse aortic constriction and accelerates heart failure development, attributable, at least in part, to an inability to increase the expression of NADPH-generating enzymes. CONCLUSIONS: Our findings reveal that ATF4 plays a critical role in the heart under conditions of hemodynamic stress by governing both cytosolic and mitochondrial production of NADPH.


Asunto(s)
Insuficiencia Cardíaca , Estrés Oxidativo , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Animales , Insuficiencia Cardíaca/metabolismo , Ratones , Miocitos Cardíacos/metabolismo , NADP/metabolismo , Estrés Oxidativo/fisiología , Ratas , Especies Reactivas de Oxígeno/metabolismo
5.
Circulation ; 145(22): 1663-1683, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35400201

RESUMEN

BACKGROUND: Transcriptional reconfiguration is central to heart failure, the most common cause of which is dilated cardiomyopathy (DCM). The effect of 3-dimensional chromatin topology on transcriptional dysregulation and pathogenesis in human DCM remains elusive. METHODS: We generated a compendium of 3-dimensional epigenome and transcriptome maps from 101 biobanked human DCM and nonfailing heart tissues through highly integrative chromatin immunoprecipitation (H3K27ac [acetylation of lysine 27 on histone H3]), in situ high-throughput chromosome conformation capture, chromatin immunoprecipitation sequencing, assay for transposase-accessible chromatin using sequencing, and RNA sequencing. We used human induced pluripotent stem cell-derived cardiomyocytes and mouse models to interrogate the key transcription factor implicated in 3-dimensional chromatin organization and transcriptional regulation in DCM pathogenesis. RESULTS: We discovered that the active regulatory elements (H3K27ac peaks) and their connectome (H3K27ac loops) were extensively reprogrammed in DCM hearts and contributed to transcriptional dysregulation implicated in DCM development. For example, we identified that nontranscribing NPPA-AS1 (natriuretic peptide A antisense RNA 1) promoter functions as an enhancer and physically interacts with the NPPA (natriuretic peptide A) and NPPB (natriuretic peptide B) promoters, leading to the cotranscription of NPPA and NPPB in DCM hearts. We revealed that DCM-enriched H3K27ac loops largely resided in conserved high-order chromatin architectures (compartments, topologically associating domains) and their anchors unexpectedly had equivalent chromatin accessibility. We discovered that the DCM-enriched H3K27ac loop anchors exhibited a strong enrichment for HAND1 (heart and neural crest derivatives expressed 1), a key transcription factor involved in early cardiogenesis. In line with this, its protein expression was upregulated in human DCM and mouse failing hearts. To further validate whether HAND1 is a causal driver for the reprogramming of enhancer-promoter connectome in DCM hearts, we performed comprehensive 3-dimensional epigenome mappings in human induced pluripotent stem cell-derived cardiomyocytes. We found that forced overexpression of HAND1 in human induced pluripotent stem cell-derived cardiomyocytes induced a distinct gain of enhancer-promoter connectivity and correspondingly increased the expression of their connected genes implicated in DCM pathogenesis, thus recapitulating the transcriptional signature in human DCM hearts. Electrophysiology analysis demonstrated that forced overexpression of HAND1 in human induced pluripotent stem cell-derived cardiomyocytes induced abnormal calcium handling. Furthermore, cardiomyocyte-specific overexpression of Hand1 in the mouse hearts resulted in dilated cardiac remodeling with impaired contractility/Ca2+ handling in cardiomyocytes, increased ratio of heart weight/body weight, and compromised cardiac function, which were ascribed to recapitulation of transcriptional reprogramming in DCM. CONCLUSIONS: This study provided novel chromatin topology insights into DCM pathogenesis and illustrated a model whereby a single transcription factor (HAND1) reprograms the genome-wide enhancer-promoter connectome to drive DCM pathogenesis.


Asunto(s)
Cardiomiopatía Dilatada , Células Madre Pluripotentes Inducidas , Animales , Cardiomiopatía Dilatada/metabolismo , Cromatina/genética , Cromatina/metabolismo , Histonas/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Factores de Transcripción/genética
6.
Circulation ; 144(18): 1500-1515, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34583519

RESUMEN

BACKGROUND: The integrated stress response (ISR) is an evolutionarily conserved process to cope with intracellular and extracellular disturbances. Myocardial infarction is a leading cause of death worldwide. Coronary artery reperfusion, the most effective means to mitigate cardiac damage of myocardial infarction, causes additional reperfusion injury. This study aimed to investigate the role of the ISR in myocardial ischemia/reperfusion (I/R). METHODS: Cardiac-specific gain- and loss-of-function approaches for the ISR were used in vivo. Myocardial I/R was achieved by ligation of the cardiac left anterior descending artery for 45 minutes followed by reperfusion for different times. Cardiac function was assessed by echocardiography. Cultured H9c2 cells, primary rat cardiomyocytes, and mouse embryonic fibroblasts were used to dissect underlying molecular mechanisms. Tandem mass tag labeling and mass spectrometry was conducted to identify protein targets of the ISR. Pharmacologic means were tested to manipulate the ISR for therapeutic exploration. RESULTS: We show that the PERK (PKR-like endoplasmic reticulum resident kinase)/eIF2α (α subunit of eukaryotic initiation factor 2) axis of the ISR is strongly induced by I/R in cardiomyocytes in vitro and in vivo. We further reveal a physiologic role of PERK/eIF2α signaling by showing that acute activation of PERK in the heart confers robust cardioprotection against reperfusion injury. In contrast, cardiac-specific deletion of PERK aggravates cardiac responses to reperfusion. Mechanistically, the ISR directly targets mitochondrial complexes through translational suppression. We identify NDUFAF2 (NADH:ubiquinone oxidoreductase complex assembly factor 2), an assembly factor of mitochondrial complex I, as a selective target of PERK. Overexpression of PERK suppresses the protein expression of NDUFAF2 and PERK inhibition causes an increase of NDUFAF2. Silencing of NDUFAF2 significantly rescues cardiac cell survival from PERK knockdown under I/R. We show that activation of PERK/eIF2α signaling reduces mitochondrial complex-derived reactive oxygen species and improves cardiac cell survival in response to I/R. Moreover, pharmacologic stimulation of the ISR protects the heart against reperfusion damage, even after the restoration of occluded coronary artery, highlighting clinical relevance for myocardial infarction treatment. CONCLUSIONS: These results suggest that the ISR improves cell survival and mitigates reperfusion damage by selectively suppressing mitochondrial protein synthesis and reducing oxidative stress in the heart.


Asunto(s)
Proteínas Mitocondriales/genética , Estrés Oxidativo/genética , Biosíntesis de Proteínas/fisiología , Animales , Humanos , Ratones , Ratones Noqueados
7.
Circulation ; 144(9): 712-727, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34102853

RESUMEN

BACKGROUND: Metabolic remodeling precedes most alterations during cardiac hypertrophic growth under hemodynamic stress. The elevation of glucose utilization has been recognized as a hallmark of metabolic remodeling. However, its role in cardiac hypertrophic growth and heart failure in response to pressure overload remains to be fully illustrated. Here, we aimed to dissect the role of cardiac PKM1 (pyruvate kinase muscle isozyme 1) in glucose metabolic regulation and cardiac response under pressure overload. METHODS: Cardiac-specific deletion of PKM1 was achieved by crossing the floxed PKM1 mouse model with the cardiomyocyte-specific Cre transgenic mouse. PKM1 transgenic mice were generated under the control of tetracycline response elements, and cardiac-specific overexpression of PKM1 was induced by doxycycline administration in adult mice. Pressure overload was triggered by transverse aortic constriction. Primary neonatal rat ventricular myocytes were used to dissect molecular mechanisms. Moreover, metabolomics and nuclear magnetic resonance spectroscopy analyses were conducted to determine cardiac metabolic flux in response to pressure overload. RESULTS: We found that PKM1 expression is reduced in failing human and mouse hearts. It is important to note that cardiomyocyte-specific deletion of PKM1 exacerbates cardiac dysfunction and fibrosis in response to pressure overload. Inducible overexpression of PKM1 in cardiomyocytes protects the heart against transverse aortic constriction-induced cardiomyopathy and heart failure. At the mechanistic level, PKM1 is required for the augmentation of glycolytic flux, mitochondrial respiration, and ATP production under pressure overload. Furthermore, deficiency of PKM1 causes a defect in cardiomyocyte growth and a decrease in pyruvate dehydrogenase complex activity at both in vitro and in vivo levels. CONCLUSIONS: These findings suggest that PKM1 plays an essential role in maintaining a homeostatic response in the heart under hemodynamic stress.


Asunto(s)
Proteínas Portadoras/genética , Susceptibilidad a Enfermedades , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/metabolismo , Proteínas de la Membrana/genética , Miocitos Cardíacos/metabolismo , Hormonas Tiroideas/genética , Remodelación Ventricular/genética , Animales , Biomarcadores , Proteínas Portadoras/metabolismo , Respiración de la Célula , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Activación Enzimática , Expresión Génica , Glucosa/metabolismo , Glucólisis , Insuficiencia Cardíaca/fisiopatología , Pruebas de Función Cardíaca , Humanos , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Mitocondrias/genética , Mitocondrias/metabolismo , Modelos Biológicos , Hormonas Tiroideas/metabolismo , Proteínas de Unión a Hormona Tiroide
8.
J Hepatol ; 75(2): 387-399, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33746082

RESUMEN

BACKGROUND & AIMS: We have previously reported that the mitochondrial dicarboxylate carrier (mDIC [SLC25A10]) is predominantly expressed in the white adipose tissue (WAT) and subject to regulation by metabolic cues. However, the specific physiological functions of mDIC and the reasons for its abundant presence in adipocytes are poorly understood. METHODS: To systemically investigate the impact of mDIC function in adipocytes in vivo, we generated loss- and gain-of-function mouse models, selectively eliminating or overexpressing mDIC in mature adipocytes, respectively. RESULTS: In in vitro differentiated white adipocytes, mDIC is responsible for succinate transport from the mitochondrial matrix to the cytosol, from where succinate can act on the succinate receptor SUCNR1 and inhibit lipolysis by dampening the cAMP- phosphorylated hormone-sensitive lipase (pHSL) pathway. We eliminated mDIC expression in adipocytes in a doxycycline (dox)-inducible manner (mDICiKO) and demonstrated that such a deletion results in enhanced adipocyte lipolysis and promotes high-fat diet (HFD)-induced adipocyte dysfunction, liver lipotoxicity, and systemic insulin resistance. Conversely, in a mouse model with dox-inducible, adipocyte-specific overexpression of mDIC (mDICiOE), we observed suppression of adipocyte lipolysis both in vivo and ex vivo. mDICiOE mice are potently protected from liver lipotoxicity upon HFD feeding. Furthermore, they show resistance to HFD-induced weight gain and adipose tissue expansion with concomitant improvements in glucose tolerance and insulin sensitivity. Beyond our data in rodents, we found that human WAT SLC25A10 mRNA levels are positively correlated with insulin sensitivity and negatively correlated with intrahepatic triglyceride levels, suggesting a critical role of mDIC in regulating overall metabolic homeostasis in humans as well. CONCLUSIONS: In summary, we highlight that mDIC plays an essential role in governing adipocyte lipolysis and preventing liver lipotoxicity in response to a HFD. LAY SUMMARY: Dysfunctional fat tissue plays an important role in the development of fatty liver disease and liver injury. Our present study identifies a mitochondrial transporter, mDIC, which tightly controls the release of free fatty acids from adipocytes to the liver through the export of succinate from mitochondria. We believe this mDIC-succinate axis could be targeted for the treatment of fatty liver disease.


Asunto(s)
Adipocitos/metabolismo , Mitocondrias Hepáticas/patología , Animales , Modelos Animales de Enfermedad , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias Hepáticas/metabolismo
9.
Circulation ; 140(7): 566-579, 2019 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-31177839

RESUMEN

BACKGROUND: The unfolded protein response plays versatile roles in physiology and pathophysiology. Its connection to cell growth, however, remains elusive. Here, we sought to define the role of unfolded protein response in the regulation of cardiomyocyte growth in the heart. METHODS: We used both gain- and loss-of-function approaches to genetically manipulate XBP1s (spliced X-box binding protein 1), the most conserved signaling branch of the unfolded protein response, in the heart. In addition, primary cardiomyocyte culture was used to address the role of XBP1s in cell growth in a cell-autonomous manner. RESULTS: We found that XBP1s expression is reduced in both human and rodent cardiac tissues under heart failure. Furthermore, deficiency of XBP1s leads to decompensation and exacerbation of heart failure progression under pressure overload. On the other hand, cardiac-restricted overexpression of XBP1s prevents the development of cardiac dysfunction. Mechanistically, we found that XBP1s stimulates adaptive cardiac growth through activation of the mechanistic target of rapamycin signaling, which is mediated via FKBP11 (FK506-binding protein 11), a novel transcriptional target of XBP1s. Moreover, silencing of FKBP11 significantly diminishes XBP1s-induced mechanistic target of rapamycin activation and adaptive cell growth. CONCLUSIONS: Our results reveal a critical role of the XBP1s-FKBP11-mechanistic target of rapamycin axis in coupling of the unfolded protein response and cardiac cell growth regulation.


Asunto(s)
Proliferación Celular/fisiología , ADN Recombinante/biosíntesis , Miocitos Cardíacos/metabolismo , Serina-Treonina Quinasas TOR/biosíntesis , Proteína 1 de Unión a la X-Box/biosíntesis , Adolescente , Adulto , Animales , Animales Recién Nacidos , Células Cultivadas , ADN Recombinante/genética , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Persona de Mediana Edad , Ratas , Ratas Sprague-Dawley , Serina-Treonina Quinasas TOR/genética , Proteína 1 de Unión a la X-Box/genética , Adulto Joven
10.
Circ Res ; 122(11): 1545-1554, 2018 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-29669712

RESUMEN

RATIONALE: Restoration of coronary artery blood flow is the most effective means of ameliorating myocardial damage triggered by ischemic heart disease. However, coronary reperfusion elicits an increment of additional injury to the myocardium. Accumulating evidence indicates that the unfolded protein response (UPR) in cardiomyocytes is activated by ischemia/reperfusion (I/R) injury. Xbp1s (spliced X-box binding protein 1), the most highly conserved branch of the unfolded protein response, is protective in response to cardiac I/R injury. GRP78 (78 kDa glucose-regulated protein), a master regulator of the UPR and an Xbp1s target, is upregulated after I/R. However, its role in the protective response of Xbp1s during I/R remains largely undefined. OBJECTIVE: To elucidate the role of GRP78 in the cardiomyocyte response to I/R using both in vitro and in vivo approaches. METHODS AND RESULTS: Simulated I/R injury to cultured neonatal rat ventricular myocytes induced apoptotic cell death and strong activation of the UPR and GRP78. Overexpression of GRP78 in neonatal rat ventricular myocytes significantly protected myocytes from I/R-induced cell death. Furthermore, cardiomyocyte-specific overexpression of GRP78 ameliorated I/R damage to the heart in vivo. Exploration of underlying mechanisms revealed that GRP78 mitigates cellular damage by suppressing the accumulation of reactive oxygen species. We go on to show that the GRP78-mediated cytoprotective response involves plasma membrane translocation of GRP78 and interaction with PI3 kinase, culminating in stimulation of Akt. This response is required as inhibition of the Akt pathway significantly blunted the antioxidant activity and cardioprotective effects of GRP78. CONCLUSIONS: I/R induction of GRP78 in cardiomyocytes stimulates Akt signaling and protects against oxidative stress, which together protect cells from I/R damage.


Asunto(s)
Proteínas de Choque Térmico/metabolismo , Isquemia Miocárdica/prevención & control , Daño por Reperfusión Miocárdica/prevención & control , Miocitos Cardíacos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Respuesta de Proteína Desplegada , Animales , Apoptosis , Células Cultivadas , Chaperón BiP del Retículo Endoplásmico , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Isquemia Miocárdica/complicaciones , Isquemia Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/etiología , Daño por Reperfusión Miocárdica/metabolismo , Estrés Oxidativo , Fosfatidilinositol 3-Quinasas/metabolismo , Ratas , Especies Reactivas de Oxígeno/metabolismo , Regulación hacia Arriba
11.
Proc Natl Acad Sci U S A ; 114(25): 6611-6616, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28584109

RESUMEN

Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a class of antidiabetic drug used for the treatment of diabetes. These drugs are thought to lower blood glucose by blocking reabsorption of glucose by SGLT2 in the proximal convoluted tubules of the kidney. To investigate the effect of inhibiting SGLT2 on pancreatic hormones, we treated perfused pancreata from rats with chemically induced diabetes with dapagliflozin and measured the response of glucagon secretion by alpha cells in response to elevated glucose. In these type 1 diabetic rats, glucose stimulated glucagon secretion by alpha cells; this was prevented by dapagliflozin. Two models of type 2 diabetes, severely diabetic Zucker rats and db/db mice fed dapagliflozin, showed significant improvement of blood glucose levels and glucose disposal, with reduced evidence of glucagon signaling in the liver, as exemplified by reduced phosphorylation of hepatic cAMP-responsive element binding protein, reduced expression of phosphoenolpyruvate carboxykinase 2, increased hepatic glycogen, and reduced hepatic glucose production. Plasma glucagon levels did not change significantly. However, dapagliflozin treatment reduced the expression of the liver glucagon receptor. Dapagliflozin in rodents appears to lower blood glucose levels in part by suppressing hepatic glucagon signaling through down-regulation of the hepatic glucagon receptor.


Asunto(s)
Compuestos de Bencidrilo/farmacología , Diabetes Mellitus Experimental/tratamiento farmacológico , Glucagón/metabolismo , Glucósidos/farmacología , Hipoglucemiantes/farmacología , Transducción de Señal/efectos de los fármacos , Animales , Glucemia/efectos de los fármacos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Células Secretoras de Glucagón/efectos de los fármacos , Células Secretoras de Glucagón/metabolismo , Glucosa/metabolismo , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/metabolismo , Masculino , Ratones , Ratas , Ratas Sprague-Dawley , Ratas Zucker , Roedores/metabolismo , Transportador 2 de Sodio-Glucosa/metabolismo
12.
J Mol Cell Cardiol ; 117: 19-25, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29470977

RESUMEN

Ischemic heart disease is a severe stress condition that causes extensive pathological alterations and triggers cardiac cell death. Accumulating evidence suggests that the unfolded protein response (UPR) is strongly induced by myocardial ischemia. The UPR is an evolutionarily conserved cellular response to cope with protein-folding stress, from yeast to mammals. Endoplasmic reticulum (ER) transmembrane sensors detect the accumulation of unfolded proteins and stimulate a signaling network to accommodate unfolded and misfolded proteins. Distinct mechanisms participate in the activation of three major signal pathways, viz. protein kinase RNA-like ER kinase, inositol-requiring protein 1, and activating transcription factor 6, to transiently suppress protein translation, enhance protein folding capacity of the ER, and augment ER-associated degradation to refold denatured proteins and restore cellular homeostasis. However, if the stress is severe and persistent, the UPR elicits inflammatory and apoptotic pathways to eliminate terminally affected cells. The ER is therefore recognized as a vitally important organelle that determines cell survival or death. Recent studies indicate the UPR plays critical roles in the pathophysiology of ischemic heart disease. The three signaling branches may elicit distinct but overlapping effects in cardiac response to ischemia. Here, we outline the findings and discuss the mechanisms of action and therapeutic potentials of the UPR in the treatment of ischemic heart disease.


Asunto(s)
Isquemia Miocárdica/metabolismo , Respuesta de Proteína Desplegada , Animales , Retículo Endoplásmico/metabolismo , Humanos , Modelos Biológicos , Chaperonas Moleculares/metabolismo , Transducción de Señal
13.
J Biol Chem ; 292(33): 13774-13783, 2017 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-28705935

RESUMEN

Autophagy has been shown to be important for normal homeostasis and adaptation to stress in the kidney. Yet, the molecular mechanisms regulating renal epithelial autophagy are not fully understood. Here, we explored the role of the stress-responsive transcription factor forkhead box O3 (FoxO3) in mediating injury-induced proximal tubular autophagy in mice with unilateral ureteral obstruction (UUO). We show that following UUO, FoxO3 is activated and displays nuclear expression in the hypoxic proximal tubules exhibiting high levels of autophagy. Activation of FoxO3 by mutating phosphorylation sites to enhance its nuclear expression induces profound autophagy in cultured renal epithelial cells. Conversely, deleting FoxO3 in mice results in fewer numbers of autophagic cells in the proximal tubules and reduced ratio of the autophagy-related protein LC3-II/I in the kidney post-UUO. Interestingly, autophagic cells deficient in FoxO3 contain lower numbers of autophagic vesicles per cell. Analyses of individual cells treated with autophagic inhibitors to sequentially block the autophagic flux suggest that FoxO3 stimulates the formation of autophagosomes to increase autophagic capacity but has no significant effect on autophagosome-lysosome fusion or autolysosomal clearance. Furthermore, in kidneys with persistent UUO for 7 days, FoxO3 activation increases the abundance of mRNA and protein levels of the core autophagy-related (Atg) proteins including Ulk1, Beclin-1, Atg9A, Atg4B, and Bnip3, suggesting that FoxO3 may function to maintain components of the autophagic machinery that would otherwise be consumed during prolonged autophagy. Taken together, our findings indicate that FoxO3 activation can both induce and maintain autophagic activities in renal epithelial cells in response to injury from urinary tract obstruction.


Asunto(s)
Autofagia , Núcleo Celular/metabolismo , Modelos Animales de Enfermedad , Proteína Forkhead Box O3/metabolismo , Regulación hacia Arriba , Obstrucción Ureteral/metabolismo , Transporte Activo de Núcleo Celular , Animales , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Biomarcadores/metabolismo , Hipoxia de la Célula , Núcleo Celular/patología , Células Cultivadas , Femenino , Proteína Forkhead Box O3/genética , Eliminación de Gen , Genes Reporteros , Túbulos Renales Proximales/citología , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/patología , Ratones Noqueados , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/metabolismo , Mutación , Fosforilación , Procesamiento Proteico-Postraduccional , Obstrucción Ureteral/patología
15.
Circulation ; 133(17): 1668-87, 2016 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-26984939

RESUMEN

BACKGROUND: The clinical use of doxorubicin is limited by cardiotoxicity. Histopathological changes include interstitial myocardial fibrosis and the appearance of vacuolated cardiomyocytes. Whereas dysregulation of autophagy in the myocardium has been implicated in a variety of cardiovascular diseases, the role of autophagy in doxorubicin cardiomyopathy remains poorly defined. METHODS AND RESULTS: Most models of doxorubicin cardiotoxicity involve intraperitoneal injection of high-dose drug, which elicits lethargy, anorexia, weight loss, and peritoneal fibrosis, all of which confound the interpretation of autophagy. Given this, we first established a model that provokes modest and progressive cardiotoxicity without constitutional symptoms, reminiscent of the effects seen in patients. We report that doxorubicin blocks cardiomyocyte autophagic flux in vivo and in cardiomyocytes in culture. This block was accompanied by robust accumulation of undegraded autolysosomes. We go on to localize the site of block as a defect in lysosome acidification. To test the functional relevance of doxorubicin-triggered autolysosome accumulation, we studied animals with diminished autophagic activity resulting from haploinsufficiency for Beclin 1. Beclin 1(+/-) mice exposed to doxorubicin were protected in terms of structural and functional changes within the myocardium. Conversely, animals overexpressing Beclin 1 manifested an amplified cardiotoxic response. CONCLUSIONS: Doxorubicin blocks autophagic flux in cardiomyocytes by impairing lysosome acidification and lysosomal function. Reducing autophagy initiation protects against doxorubicin cardiotoxicity.


Asunto(s)
Autofagia/efectos de los fármacos , Doxorrubicina/farmacología , Lisosomas/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Animales , Antibióticos Antineoplásicos , Autofagia/fisiología , Línea Celular , Células Cultivadas , Humanos , Concentración de Iones de Hidrógeno , Lisosomas/metabolismo , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Ratas , Ratas Sprague-Dawley
16.
Am J Physiol Heart Circ Physiol ; 313(6): H1119-H1129, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28822967

RESUMEN

Hypertension is one of the most important risk factors of heart failure. In response to high blood pressure, the left ventricle manifests hypertrophic growth to ameliorate wall stress, which may progress into decompensation and trigger pathological cardiac remodeling. Despite the clinical importance, the temporal dynamics of pathological cardiac growth remain elusive. Here, we took advantage of the puromycin labeling approach to measure the relative rates of protein synthesis as a way to delineate the temporal regulation of cardiac hypertrophic growth. We first identified the optimal treatment conditions for puromycin in neonatal rat ventricular myocyte culture. We went on to demonstrate that myocyte growth reached its peak rate after 8-10 h of growth stimulation. At the in vivo level, with the use of an acute surgical model of pressure-overload stress, we observed the maximal growth rate to occur at day 7 after surgery. Moreover, RNA sequencing analysis supports that the most profound transcriptomic changes occur during the early phase of hypertrophic growth. Our results therefore suggest that cardiac myocytes mount an immediate growth response in reply to pressure overload followed by a gradual return to basal levels of protein synthesis, highlighting the temporal dynamics of pathological cardiac hypertrophic growth.NEW & NOTEWORTHY We determined the optimal conditions of puromycin incorporation in cardiac myocyte culture. We took advantage of this approach to identify the growth dynamics of cardiac myocytes in vitro. We went further to discover the protein synthesis rate in vivo, which provides novel insights about cardiac temporal growth dynamics in response to pressure overload.


Asunto(s)
Aorta Torácica/fisiopatología , Presión Arterial , Cardiomegalia/patología , Proliferación Celular , Miocitos Cardíacos/patología , Animales , Animales Recién Nacidos , Aorta Torácica/cirugía , Cardiomegalia/etiología , Cardiomegalia/metabolismo , Cardiomegalia/fisiopatología , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Constricción , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Masculino , Ratones Endogámicos C57BL , Proteínas Musculares/biosíntesis , Proteínas Musculares/genética , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Biosíntesis de Proteínas , Puromicina/metabolismo , Ratas Sprague-Dawley , Factores de Tiempo
18.
J Cell Mol Med ; 20(12): 2249-2258, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27489081

RESUMEN

The liver X receptor (LXR) is a cholesterol-sensing nuclear receptor that has an established function in lipid metabolism; however, its role in inflammation is elusive. In this study, we showed that the LXR agonist GW3965 exhibited potent anti-inflammatory activity by suppressing the firm adhesion of monocytes to endothelial cells. To further address the mechanisms underlying the inhibition of inflammatory cell infiltration, we evaluated the effects of LXR agonist on interleukin-8 (IL-8) secretion and nuclear factor-kappa B (NF-κB) activation in human umbilical vein endothelial cells (HUVECs). The LXR agonist significantly inhibited lysophosphatidylcholine (LPC)-induced IL-8 production in a dose-dependent manner without appreciable cytotoxicity. Western blotting and the NF-κB transcription activity assay showed that the LXR agonist inhibited p65 binding to the IL-8 promoter in LPC-stimulated HUVECs. Interestingly, knockdown of the indispensable small ubiquitin-like modifier (SUMO) ligases Ubc9 and Histone deacetylase 4 (HDAC4) reversed the increase in IL-8 induced by LPC. Furthermore, the LPC-induced degradation of inhibitory κBα was delayed under the conditions of deficient SUMOylation or the treatment of LXR agonist. After enhancing SUMOylation by knockdown SUMO-specific protease Sentrin-specific protease 1 (SENP1), the inhibition of GW3965 was rescued on LPC-mediated IL-8 expression. These findings indicate that LXR-mediated inflammatory gene repression correlates to the suppression of NF-κB pathway and SUMOylation. Our results suggest that LXR agonist exerts the anti-atherosclerotic role by attenuation of the NF-κB pathway in endothelial cells.


Asunto(s)
Células Endoteliales de la Vena Umbilical Humana/metabolismo , Interleucina-8/metabolismo , Receptores X del Hígado/metabolismo , Lisofosfatidilcolinas/farmacología , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos , Sumoilación/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Línea Celular , Humanos , Interleucina-8/biosíntesis , Receptores X del Hígado/agonistas , Monocitos/citología , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos
19.
J Physiol ; 593(17): 3773-88, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26173176

RESUMEN

In recent decades, robust successes have been achieved in conquering the acutely lethal manifestations of heart disease. Nevertheless, the prevalence of heart disease, especially heart failure, continues to rise. Among the precipitating aetiologies, ischaemic disease is a leading cause of heart failure. In the context of ischaemia, the myocardium is deprived of oxygen and nutrients, which elicits a cascade of events that provokes cell death. This ischaemic insult is typically coupled with reperfusion, either spontaneous or therapeutically imposed, wherein blood supply is restored to the previously ischaemic tissue. While this intervention limits ischaemic injury, it triggers a new cascade of events that is also harmful, viz. reperfusion injury. In recent years, novel insights have emerged regarding mechanisms of ischaemia-reperfusion injury, and some hold promise as targets of therapeutic relevance. Here, we review a select number of these pathways, focusing on recent discoveries and highlighting prospects for therapeutic manipulation for clinical benefit.


Asunto(s)
Daño por Reperfusión Miocárdica/terapia , Animales , Calcio/metabolismo , Humanos , Daño por Reperfusión Miocárdica/metabolismo
20.
J Biol Chem ; 289(9): 6311-22, 2014 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-24425864

RESUMEN

Increased adiposity due to energy imbalance is a critical factor of the epidemic crisis of obesity and type II diabetes. In addition to the obvious role in energy storage, regulatory factors are secreted from adipose depots to control appetite and cellular homeostasis. Complex signaling cross-talks within adipocyte are also evident due to the metabolic and immune nature of adipose depots. Here, we uncover a role of extracellular signal-regulated kinase 5 (ERK5) in adipocyte signaling. We find that deletion of ERK5 in adipose depots (adipo-ERK5(-/-)) increases adiposity, in part, due to increased food intake. Dysregulated secretion of adipokines, leptin resistance, and impaired glucose handling are also found in adipo-ERK5(-/-) mice. Mechanistically, we show that ERK5 impinges on transcription factor NFATc4. Decreased phosphorylation at the conserved gate-keeping Ser residues and increased nuclear localization of NFATc4 are found in adipo-ERK5(-/-) mice. We also find attenuated PKA activation in adipo-ERK5(-/-) mice. In response to stimulation of ß-adrenergic G-protein-coupled receptor, we find decreased NFATc4 phosphorylation and impaired PKA activation in adipo-ERK5(-/-) mice. Reduced cAMP accumulation and increased phosphodiesterase activity are also found. Together, these results demonstrate integration of ERK5 with NFATc4 nucleo-cytoplasmic shuttling and PKA activation in adipocyte signaling.


Asunto(s)
Adipocitos/enzimología , Sistema de Señalización de MAP Quinasas/fisiología , Proteína Quinasa 7 Activada por Mitógenos/metabolismo , Factores de Transcripción NFATC/metabolismo , Adipocitos/citología , Adipoquinas/genética , Adipoquinas/metabolismo , Adiposidad/fisiología , Animales , Células Cultivadas , AMP Cíclico/genética , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Ratones , Ratones Noqueados , Proteína Quinasa 7 Activada por Mitógenos/genética , Factores de Transcripción NFATC/genética , Fosforilación/fisiología , Receptores Adrenérgicos beta/genética , Receptores Adrenérgicos beta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA