Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Microbiol Resour Announc ; 13(3): e0120523, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38376339

RESUMEN

Metagenome-assembled genomes were generated for two xenic cyanobacterial strains collected from aquatic sources in Kenya and sequenced by NovaSeq S4. Here, we report the classification and genome statistics of Microcystis panniformis WG22 and Limnospira fusiformis LS22.

2.
Sci Rep ; 14(1): 14485, 2024 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-38914648

RESUMEN

Hyperthermia induced by phenethylamines, such as 3,4-methylenedioxymethamphetamine (MDMA), can lead to life-threatening complications and death. Activation of the sympathetic nervous system and subsequent release of norepinephrine and activation of uncoupling proteins have been demonstrated to be the key mediators of phenethylamine-induced hyperthermia (PIH). Recently, the gut microbiome was shown to also play a contributing role in PIH. Here, the hypothesis that bile acids (BAs) produced by the gut microbiome are essential to PIH was tested. Changes in the serum concentrations of unconjugated primary BAs cholic acid (CA) and chenodeoxycholic acid (CDCA) and secondary BA deoxycholic acid (DCA) were measured following MDMA (20 mg/kg, sc) treatment in antibiotic treated and control rats. MDMA-induced a significant hyperthermic response and reduced the serum concentrations of three BAs 60 min post-treatment. Pretreatment with antibiotics (vancomycin, bacitracin and neomycin) in the drinking water for five days resulted in the depletion of BAs and a hypothermic response to MDMA. Gut bacterial communities in the antibiotic-treated group were distinct from the MDMA or saline treatment groups, with decreased microbiome diversity and alteration in taxa. Metagenomic functions inferred using the bioinformatic tool PICRUSt2 on 16S rRNA gene sequences indicated that bacterial genes associated to BA metabolism are less abundant in the antibiotic-MDMA treated group. Overall, these findings suggest that gut bacterial produced BAs might play an important role in MDMA-induced hyperthermia.


Asunto(s)
Ácidos y Sales Biliares , Microbioma Gastrointestinal , Hipertermia , N-Metil-3,4-metilenodioxianfetamina , Microbioma Gastrointestinal/efectos de los fármacos , N-Metil-3,4-metilenodioxianfetamina/farmacología , Animales , Ratas , Masculino , Ácidos y Sales Biliares/metabolismo , Antibacterianos/farmacología , Antibacterianos/efectos adversos , Ratas Sprague-Dawley , ARN Ribosómico 16S/genética , Ácido Desoxicólico/metabolismo
3.
Harmful Algae ; 136: 102656, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38876531

RESUMEN

Sandusky Bay is the drowned mouth of the Sandusky River in the southwestern portion of Lake Erie. The bay is a popular recreation location and a regional source for drinking water. Like the western basin of Lake Erie, Sandusky Bay is known for being host to summer cyanobacterial harmful algal blooms (cHABs) year after year, fueled by runoff from the predominantly agricultural watershed and internal loading of legacy nutrients (primarily phosphorus). Since at least 2003, Sandusky Bay has harbored a microcystin-producing bloom of Planktothrix agardhii, a species of filamentous cyanobacteria that thrives in low light conditions. Long-term sampling (2003-2018) of Sandusky Bay revealed regular Planktothrix-dominated blooms during the summer months, but in recent years (2019-2022), 16S rRNA gene community profiling revealed that Planktothrix has largely disappeared. From 2017-2022, microcystin decreased well below the World Health Organization (WHO) guidelines. Spring TN:TP ratios increased in years following dam removal, yet there were no statistically significant shifts in other physicochemical variables, such as water temperature and water clarity. With the exception of the high bloom of Planktothrix in 2018, there was no statistical difference in chlorophyll during all other years. Concurrent with the disappearance of Planktothrix, Cyanobium spp. have become the dominant cyanobacterial group. The appearance of other potential toxigenic genera (i.e., Aphanizomenon, Dolichospermum, Cylindrospermopsis) may motivate monitoring of new toxins of concern in Sandusky Bay. Here, we document the regime shift in the cyanobacterial community and propose evidence supporting the hypothesis that the decline in the Planktothrix bloom was linked to the removal of an upstream dam on the Sandusky River.


Asunto(s)
Bahías , Floraciones de Algas Nocivas , Fitoplancton , Planktothrix , Fitoplancton/fisiología , Fitoplancton/crecimiento & desarrollo , Bahías/microbiología , Microcistinas/metabolismo , Microcistinas/análisis , Monitoreo del Ambiente , Estaciones del Año , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/análisis , Cianobacterias/crecimiento & desarrollo , Cianobacterias/fisiología , Cianobacterias/genética
4.
Environ Microbiol Rep ; 16(3): e13297, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38885952

RESUMEN

The Winam Gulf (Kenya) is frequently impaired by cyanobacterial harmful algal blooms (cHABs) due to inadequate wastewater treatment and excess agricultural nutrient input. While phytoplankton in Lake Victoria have been characterized using morphological criteria, our aim is to identify potential toxin-producing cyanobacteria using molecular approaches. The Gulf was sampled over two successive summer seasons, and 16S and 18S ribosomal RNA gene sequencing was performed. Additionally, key genes involved in production of cyanotoxins were examined by quantitative PCR. Bacterial communities were spatially variable, forming distinct clusters in line with regions of the Gulf. Taxa associated with diazotrophy were dominant near Homa Bay. On the eastern side, samples exhibited elevated cyrA abundances, indicating genetic capability of cylindrospermopsin synthesis. Indeed, near the Nyando River mouth in 2022, cyrA exceeded 10 million copies L-1 where there were more than 6000 Cylindrospermopsis spp. cells mL-1. In contrast, the southwestern region had elevated mcyE gene (microcystin synthesis) detections near Homa Bay where Microcystis and Dolichospermum spp. were observed. These findings show that within a relatively small embayment, composition and toxin synthesis potential of cHABs can vary dramatically. This underscores the need for multifaceted management approaches and frequent cyanotoxin monitoring to reduce human health impacts.


Asunto(s)
Toxinas Bacterianas , Cianobacterias , Floraciones de Algas Nocivas , Lagos , Lagos/microbiología , Lagos/química , Kenia , Cianobacterias/genética , Cianobacterias/clasificación , Cianobacterias/aislamiento & purificación , Cianobacterias/metabolismo , Toxinas Bacterianas/genética , Microcistinas/genética , ARN Ribosómico 16S/genética , Microbiota , Fitoplancton/genética , Toxinas de Cianobacterias , Alcaloides/análisis , Alcaloides/metabolismo , ARN Ribosómico 18S/genética , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA