Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Dev Biol ; 485: 1-8, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35196518

RESUMEN

Comparing the developmental mechanisms of segmentation among insects with different modes of embryogenesis provides insights on how the function of segmentation genes evolved. Functional analysis of eve by genetic mutants shows that the Drosophila pair-rule gene, even-skipped (eve), contributes to initial segmental patterning. However, eve orthologs tends to have diverse functions in other insects. To compare the evolutionary functional divergence of this gene, we evaluated eve function in a phylogenetically basal insect, the cricket Gryllus bimaculatus. To investigate the phenotypic effects of eve gene knock-out, we generated CRISPR/Cas9 system-mediated mutant strains of the cricket. CRISPR/Cas9 mutagenesis of multiple independent sites in the eve coding region revealed that eve null mutant embryos were defective in forming the gnathal, thoracic, and abdominal segments, consequently shortening the anterior-posterior axis. In contrast, the structures of the anterior and posterior ends (e.g., antenna, labrum, and cercus) formed normally. Hox gene expression in the gnathal, thoracic, and abdominal segments was detected in the mutant embryos. Overall, this study showed that Gryllus eve plays an important role in embryonic elongation and the formation of segmental boundaries in the gnathal to abdominal region of crickets. In the light of studies on other species, the eve function shown in Gryllus might be ancestral in insects.


Asunto(s)
Proteínas de Drosophila , Gryllidae , Secuencia de Aminoácidos , Animales , Tipificación del Cuerpo/genética , Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Gryllidae/genética , Gryllidae/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Insectos/genética , Insectos/metabolismo , Interferencia de ARN , Factores de Transcripción/metabolismo
2.
Dev Growth Differ ; 65(6): 348-359, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37310211

RESUMEN

The acquisition of wings was a key event in insect evolution. As hemimetabolous insects were the first group to acquire functional wings, establishing the mechanisms of wing formation in this group could provide useful insights into their evolution. In this study, we aimed to elucidate the expression and function of the gene scalloped (sd), which is involved in wing formation in Drosophila melanogaster, and in Gryllus bimaculatus mainly during postembryonic development. Expression analysis showed that sd is expressed in the tergal edge, legs, antennae, labrum, and cerci during embryogenesis and in the distal margin of the wing pads from at least the sixth instar in the mid to late stages. Because sd knockout caused early lethality, nymphal RNA interference experiments were performed. Malformations were observed in the wings, ovipositor, and antennae. By analyzing the effects on wing morphology, it was revealed that sd is mainly involved in the formation of the margin, possibly through the regulation of cell proliferation. In conclusion, sd might regulate the local growth of wing pads and influence wing margin morphology in Gryllus.


Asunto(s)
Desarrollo Embrionario , Gryllidae , Proteínas de Insectos , Factores de Transcripción , Alas de Animales , Animales , Ciclo Celular , Proliferación Celular , Desarrollo Embrionario/genética , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Alas de Animales/embriología , Alas de Animales/metabolismo , Gryllidae/embriología , Gryllidae/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Chemistry ; 25(59): 13491-13495, 2019 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-31437315

RESUMEN

Reaction of N-heterocyclic carbene (NHC)-stabilized PGeP-type germylene Ge{o-(PiPr2 )C6 H4 }2 ⋅Me IiPr (1) (Me IiPr=1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene) with Ni(cod)2 gave pincer germylene complex Ni[Ge{o-(PiPr2 )C6 H4 }2 ](Me IiPr) (2), in which the Ge center of 2 is significantly pyramidalized. Theoretical calculation on 2 predicted the ambiphilicity of the germanium center, which was confirmed by reactivity studies. Thus, complex 2 reacted with both Lewis base Me IMe (Me IMe=1,3,4,5-tetramethylimidazol-2-ylidene) and Lewis acid BH3 ⋅SMe2 at the germanium center to afford the adducts Ni[Ge{o-(PiPr2 )C6 H4 }2 ⋅Me IMe](Me IiPr) (3) and Ni[Ge{o-(PiPr2 )C6 H4 }2 ⋅BH3 ](Me IiPr) (4), respectively. Furthermore, the former was slowly converted to dinuclear complex Ni2 [Ge{o-(PiPr2 )C6 H4 }2 ]2 (Me IMe)2 (5) at room temperature. Complex 5 can be regarded as a dimer of the Me IMe analog of 2 with a Ni-Ge-Ge-Ni linkage.

4.
Proc Natl Acad Sci U S A ; 113(20): 5634-9, 2016 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-27140602

RESUMEN

Although butterflies undergo a dramatic morphological transformation from larva to adult via a pupal stage (holometamorphosis), crickets undergo a metamorphosis from nymph to adult without formation of a pupa (hemimetamorphosis). Despite these differences, both processes are regulated by common mechanisms that involve 20-hydroxyecdysone (20E) and juvenile hormone (JH). JH regulates many aspects of insect physiology, such as development, reproduction, diapause, and metamorphosis. Consequently, strict regulation of JH levels is crucial throughout an insect's life cycle. However, it remains unclear how JH synthesis is regulated. Here, we report that in the corpora allata of the cricket, Gryllus bimaculatus, Myoglianin (Gb'Myo), a homolog of Drosophila Myoglianin/vertebrate GDF8/11, is involved in the down-regulation of JH production by suppressing the expression of a gene encoding JH acid O-methyltransferase, Gb'jhamt In contrast, JH production is up-regulated by Decapentaplegic (Gb'Dpp) and Glass-bottom boat/60A (Gb'Gbb) signaling that occurs as part of the transcriptional activation of Gb'jhamt Gb'Myo defines the nature of each developmental transition by regulating JH titer and the interactions between JH and 20E. When Gb'myo expression is suppressed, the activation of Gb'jhamt expression and secretion of 20E induce molting, thereby leading to the next instar before the last nymphal instar. Conversely, high Gb'myo expression induces metamorphosis during the last nymphal instar through the cessation of JH synthesis. Gb'myo also regulates final insect size. Because Myo/GDF8/11 and Dpp/bone morphogenetic protein (BMP)2/4-Gbb/BMP5-8 are conserved in both invertebrates and vertebrates, the present findings provide common regulatory mechanisms for endocrine control of animal development.


Asunto(s)
Gryllidae/crecimiento & desarrollo , Proteínas de Insectos/fisiología , Hormonas Juveniles/biosíntesis , Metamorfosis Biológica , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta/fisiología , Secuencia de Aminoácidos , Animales , Proteínas de Drosophila/fisiología , Interferencia de ARN , ARN Mensajero/análisis , Factor de Crecimiento Transformador beta/química , Factor de Crecimiento Transformador beta/genética
5.
Int J Syst Evol Microbiol ; 68(5): 1429-1435, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29595413

RESUMEN

Strain KF707T was isolated from a biphenyl-contaminated site in Kitakyushu, Japan. Analysis of 16S rRNA gene sequences, retrieved from the whole-genome sequence, revealed that the isolate was closely related to members of the genus Pseudomonas, sharing the highest sequence similarities with Pseudomonas balearica strain SP1402T (DSM 6083) (97.8 %). The DNA G+C chromosome and plasmid content of strain KF707T were 65.5 and 60.5 mol%. The major cellular fatty acids were iso-C15 :  0 and C16 : 1ω7c/C16 : 1ω6c. Polyphasic analysis indicated that strain KF707T represents a novel species of the genus Pseudomonas, for which the name Pseudomonas furukawaii sp. nov. is proposed. The type strain is KF707T (=DSM 10086T=NBRC 110670T).


Asunto(s)
Contaminación Ambiental , Filogenia , Bifenilos Policlorados/metabolismo , Pseudomonas/clasificación , Microbiología del Suelo , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Japón , Hibridación de Ácido Nucleico , Pseudomonas/genética , Pseudomonas/aislamiento & purificación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
6.
J Am Chem Soc ; 137(37): 11935-7, 2015 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-26340724

RESUMEN

A cationic germylene containing tungsten and N-heterocyclic carbene units reacted with H2 in fluorobenzene at 60 °C, resulting in its insertion into the H-H bond. It also activated the Si-H bond of ethyldimethylsilane and the B-H bond of pinacolborane at ambient temperature to give the insertion products. The latter insertion reactions against hydrosilane and hydroborane were found to be reversible.

7.
Methods ; 69(1): 17-21, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24874787

RESUMEN

Hemimetabolous, or incompletely metamorphosing, insects are phylogenetically basal. These insects include many deleterious species. The cricket, Gryllus bimaculatus, is an emerging model for hemimetabolous insects, based on the success of RNA interference (RNAi)-based gene-functional analyses and transgenic technology. Taking advantage of genome-editing technologies in this species would greatly promote functional genomics studies. Genome editing using transcription activator-like effector nucleases (TALENs) has proven to be an effective method for site-specific genome manipulation in various species. TALENs are artificial nucleases that are capable of inducing DNA double-strand breaks into specified target sequences. Here, we describe a protocol for TALEN-based gene knockout in G. bimaculatus, including a mutant selection scheme via mutation detection assays, for generating homozygous knockout organisms.


Asunto(s)
Técnicas de Inactivación de Genes , Gryllidae/genética , Animales , Desoxirribonucleasas/química , Homocigoto , Mutagénesis Sitio-Dirigida
8.
Proc Natl Acad Sci U S A ; 109(14): 5458-63, 2012 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-22434909

RESUMEN

Efficient lignin depolymerization is unique to the wood decay basidiomycetes, collectively referred to as white rot fungi. Phanerochaete chrysosporium simultaneously degrades lignin and cellulose, whereas the closely related species, Ceriporiopsis subvermispora, also depolymerizes lignin but may do so with relatively little cellulose degradation. To investigate the basis for selective ligninolysis, we conducted comparative genome analysis of C. subvermispora and P. chrysosporium. Genes encoding manganese peroxidase numbered 13 and five in C. subvermispora and P. chrysosporium, respectively. In addition, the C. subvermispora genome contains at least seven genes predicted to encode laccases, whereas the P. chrysosporium genome contains none. We also observed expansion of the number of C. subvermispora desaturase-encoding genes putatively involved in lipid metabolism. Microarray-based transcriptome analysis showed substantial up-regulation of several desaturase and MnP genes in wood-containing medium. MS identified MnP proteins in C. subvermispora culture filtrates, but none in P. chrysosporium cultures. These results support the importance of MnP and a lignin degradation mechanism whereby cleavage of the dominant nonphenolic structures is mediated by lipid peroxidation products. Two C. subvermispora genes were predicted to encode peroxidases structurally similar to P. chrysosporium lignin peroxidase and, following heterologous expression in Escherichia coli, the enzymes were shown to oxidize high redox potential substrates, but not Mn(2+). Apart from oxidative lignin degradation, we also examined cellulolytic and hemicellulolytic systems in both fungi. In summary, the C. subvermispora genetic inventory and expression patterns exhibit increased oxidoreductase potential and diminished cellulolytic capability relative to P. chrysosporium.


Asunto(s)
Basidiomycota/genética , Genómica , Lignina/metabolismo , Basidiomycota/clasificación , Hidrólisis , Datos de Secuencia Molecular , Oxidación-Reducción , Filogenia , Especificidad de la Especie
9.
J Am Chem Soc ; 136(41): 14341-4, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25250541

RESUMEN

Reaction of NHC-stabilized dichlorogermylenes (NHC = N-heterocyclic carbene) with an anionic tungsten complex produced NHC-stabilized chlorometallogermylenes. Subsequent chloride abstraction from the products with NaBAr4 (Ar = 3,5-(CF3)2C6H3) gave a cationic metallogermylene or dicationic dimetallodigermenes.

10.
PLoS One ; 18(5): e0285934, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37200362

RESUMEN

Insect body colors and patterns change markedly during development in some species as they adapt to their surroundings. The contribution of melanin and sclerotin pigments, both of which are synthesized from dopamine, to cuticle tanning has been well studied. Nevertheless, little is known about how insects alter their body color patterns. To investigate this mechanism, the cricket Gryllus bimaculatus, whose body color patterns change during postembryonic development, was used as a model in this study. We focused on the ebony and tan genes, which encode enzymes that catalyze the synthesis and degradation, respectively, of the precursor of yellow sclerotin N-ß-alanyl dopamine (NBAD). Expression of the G. bimaculatus (Gb) ebony and tan transcripts tended to be elevated just after hatching and the molting period. We found that dynamic alterations in the combined expression levels of Gb'ebony and Gb'tan correlated with the body color transition from the nymphal stages to the adult. The body color of Gb'ebony knockout mutants generated by CRISPR/Cas9 systemically darkened. Meanwhile, Gb'tan knockout mutants displayed a yellow color in certain areas and stages. The phenotypes of the Gb'ebony and Gb'tan mutants probably result from an over-production of melanin and yellow sclerotin NBAD, respectively. Overall, stage-specific body color patterns in the postembryonic stages of the cricket are governed by the combinatorial expression of Gb'ebony and Gb'tan. Our findings provide insights into the mechanism by which insects evolve adaptive body coloration at each developmental stage.


Asunto(s)
Gryllidae , Melaninas , Animales , Melaninas/genética , Melaninas/metabolismo , Gryllidae/genética , Gryllidae/metabolismo , Ninfa/metabolismo , Dopamina/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo
11.
Curr Top Dev Biol ; 147: 291-306, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35337452

RESUMEN

Many researchers are using crickets to conduct research on various topics related to development and regeneration in addition to brain function, behavior, and biological clocks, using advanced functional and perturbational technologies such as genome editing. Recently, crickets have also been attracting attention as a food source for the next generation of humans. In addition, crickets are increasingly being used as disease models and biological factories for pharmaceuticals. Cricket research has thus evolved over the last century from use primarily in highly important basic research, to use in a variety of applications and practical uses. These insects are now a state-of-the-art model animal that can be obtained and maintained in large quantities at low cost. We therefore suggest that crickets are useful as a third domesticated insect for scientific research, after honeybees and silkworms, contributing to the achievement of global sustainable development goals.


Asunto(s)
Gryllidae , Animales , Abejas , Gryllidae/genética , Insectos
12.
Org Biomol Chem ; 9(7): 2481-91, 2011 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-21327224

RESUMEN

Lignin degradation by white-rot fungi proceeds via free radical reaction catalyzed by oxidative enzymes and metabolites. Basidiomycetes called selective white-rot fungi degrade both phenolic and non-phenolic lignin substructures without penetration of extracellular enzymes into the cell wall. Extracellular lipid peroxidation has been proposed as a possible ligninolytic mechanism, and radical species degrading the recalcitrant non-phenolic lignin substructures have been discussed. Reactions between the non-phenolic lignin model compounds and radicals produced from azo compounds in air have previously been analysed, and peroxyl radical (PR) is postulated to be responsible for lignin degradation (Kapich et al., FEBS Lett., 1999, 461, 115-119). However, because the thermolysis of azo compounds in air generates both a carbon-centred radical (CR) and a peroxyl radical (PR), we re-examined the reactivity of the three radicals alkoxyl radical (AR), CR and PR towards non-phenolic monomeric and dimeric lignin model compounds. The dimeric lignin model compound is degraded by CR produced by reaction of 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH), which under N(2) atmosphere cleaves the α-ß bond in 1-(4-ethoxy-3-methoxyphenyl)-2-(2-methoxyphenoxy)-1,3-propanediol to yield 4-ethoxy-3-methoxybenzaldehyde. However, it is not degraded by the PR produced by reaction of Ce(4+)/tert-BuOOH. In addition, it is degraded by AR produced by reaction of Ti(3+)/tert-BuOOH. PR and AR are generated in the presence and absence of veratryl alcohol, respectively. Rapid-flow ESR analysis of the radical species demonstrates that AR but not PR reacts with the lignin model compound. Thus, AR and CR are primary agents for the degradation of non-phenolic lignin substructures.


Asunto(s)
Alcoholes/química , Carbono/química , Lignina/química , Radicales Libres/química , Estructura Molecular , Peróxidos/química , Fenoles/química
13.
Chem Commun (Camb) ; 57(44): 5378-5381, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33978001

RESUMEN

A peptide-type covalent binder for a target protein was obtained by direct and stringent screening of a warhead-modified peptide library on the robust T7 phage. The aryl fluorosulfate (fosylate) warhead was activated only in a matchmaking microenvironment created between the target protein and an appropriate peptide during the reactivity/affinity-based co-selection process of extended phage display.

14.
Microorganisms ; 9(12)2021 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-34946064

RESUMEN

Integrative and conjugative elements (ICEs) are chromosomally integrated self-transmissible mobile genetic elements. Although some ICEs are known to carry genes for the degradation of aromatic compounds, information on their genetic features is limited. We identified a new member of the ICEclc family carrying biphenyl catabolic bph genes and salicylic acid catabolic sal genes from the PCB-degrading strain Pseudomonas stutzeri KF716. The 117-kb ICEbph-salKF716 contains common core regions exhibiting homology with those of degradative ICEclc from P. knackmussii B13 and ICEXTD from Azoarcus sp. CIB. A comparison of the gene loci collected from the public database revealed that several putative ICEs from P. putida B6-2, P, alcaliphila JAB1, P. stutzeri AN10, and P. stutzeri 2A20 had highly conserved core regions with those of ICEbph-salKF716, along with the variable region that encodes the catabolic genes for biphenyl, naphthalene, toluene, or phenol. These data indicate that this type of ICE subfamily is ubiquitously distributed within aromatic compound-degrading bacteria. ICEbph-salKF716 was transferred from P. stutzeri KF716 to P. aeruginosa PAO1 via a circular extrachromosomal intermediate form. In this study, we describe the structure and genetic features of ICEbph-salKF716 compared to other catabolic ICEs.

15.
Commun Biol ; 4(1): 733, 2021 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-34127782

RESUMEN

Most of our knowledge of insect genomes comes from Holometabolous species, which undergo complete metamorphosis and have genomes typically under 2 Gb with little signs of DNA methylation. In contrast, Hemimetabolous insects undergo the presumed ancestral process of incomplete metamorphosis, and have larger genomes with high levels of DNA methylation. Hemimetabolous species from the Orthopteran order (grasshoppers and crickets) have some of the largest known insect genomes. What drives the evolution of these unusual insect genome sizes, remains unknown. Here we report the sequencing, assembly and annotation of the 1.66-Gb genome of the Mediterranean field cricket Gryllus bimaculatus, and the annotation of the 1.60-Gb genome of the Hawaiian cricket Laupala kohalensis. We compare these two cricket genomes with those of 14 additional insects and find evidence that hemimetabolous genomes expanded due to transposable element activity. Based on the ratio of observed to expected CpG sites, we find higher conservation and stronger purifying selection of methylated genes than non-methylated genes. Finally, our analysis suggests an expansion of the pickpocket class V gene family in crickets, which we speculate might play a role in the evolution of cricket courtship, including their characteristic chirping.


Asunto(s)
Evolución Molecular , Genoma de los Insectos/genética , Gryllidae/genética , Insectos/genética , Animales , Metilación de ADN , Elementos Transponibles de ADN/genética , Femenino , Genes de Insecto/genética , Masculino , Filogenia , Secuencias Repetitivas de Ácidos Nucleicos/genética , Análisis de Secuencia de ADN
16.
Biotechnol Bioeng ; 105(3): 499-508, 2010 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-19777599

RESUMEN

In enzymatic saccharification of lignocellulosics, the access of the enzymes to exposed cellulose surfaces is a key initial step in triggering hydrolysis. However, knowledge of the structure-hydrolyzability relationship of the pretreated biomass is still limited. Here we used fluorescent-labeled recombinant carbohydrate-binding modules (CBMs) from Clostridium josui as specific markers for crystalline cellulose (CjCBM3) and non-crystalline cellulose (CjCBM28) to analyze the complex surfaces of wood tissues pretreated with NaOH, NaOH-Na(2)S (kraft pulping), hydrothermolysis, ball-milling, and organosolvolysis. Japanese cedar wood, one of the most recalcitrant softwood species was selected for the analysis. The binding analysis clarified the linear dependency of the exposure of crystalline and non-crystalline cellulose surfaces for enzymatic saccharification yield by the organosolv and kraft delignification processes. Ball-milling for 5-30 min increased saccharification yield up to 77%, but adsorption by the CjCBM-cyan fluorescent proteins (CFPs) was below 5%. Adsorption of CjCBM-CFPs on the hydrothermolysis pulp were less than half of those for organosolvolysis pulp, in coincidence with low saccharification yields. For all the pretreated wood, crystallinity index was not directly correlated with the overall saccharification yield. Fluorescent microscopy revealed that CjCBM3-CFP and CjCBM28-CFP were site-specifically adsorbed on external fibrous structures and ruptured or distorted fiber surfaces. The assay system with CBM-CFPs is a powerful measure to estimate the initiation sites of hydrolysis and saccharification yields from chemically delignified wood pulps.


Asunto(s)
Proteínas Bacterianas/metabolismo , Celulosa/análisis , Cryptomeria/química , Proteínas Fluorescentes Verdes/metabolismo , Microscopía Fluorescente/métodos , Coloración y Etiquetado/métodos , Madera/química , Proteínas Bacterianas/genética , Biotecnología/métodos , Clostridium/genética , Proteínas Fluorescentes Verdes/genética , Unión Proteica , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
17.
Appl Microbiol Biotechnol ; 87(1): 215-24, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20155356

RESUMEN

Ceriporiopsis subvermispora, a white-rot fungus, is characterized as one of the best biopulping fungi because it can degrade lignin selectively without serious damage to cellulose. We previously demonstrated that during the early stage of wood decay, this fungus produces large amounts of linoleic acid (18:2n-6) and degrades lignin by manganese peroxidase-catalyzed lipid peroxidation. In this study, we cloned a Delta12-fatty acid desaturase gene absolutely essential for the biosynthesis of linoleic acid as the main substrate for lipid peroxidation. This gene designated Cs-fad2 encodes a protein with three histidine-rich domains and four membrane-spanning domains characteristic of other Delta12-fatty acid desaturases. Moreover, we heterologously expressed Cs-fad2 in Saccharomyces cerevisiae lacking Delta12-fatty acid desaturase, and detected the de novo biosynthesis of linoleic acid by gas chromatography-mass spectrometry analysis. We also investigated transcription of Cs-fad2 under various conditions. The transcription was activated and repressed in the presence of a lignin fragment and exogenous fatty acids, respectively. These results may shed light on the molecular relationship between fatty acid metabolism and selective lignin degradation in C. subvermispora.


Asunto(s)
Coriolaceae/enzimología , Ácido Graso Desaturasas/genética , Proteínas Fúngicas/genética , Lignina/metabolismo , Clonación Molecular , Coriolaceae/química , Coriolaceae/genética , Ácido Graso Desaturasas/química , Ácido Graso Desaturasas/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Datos de Secuencia Molecular , Estructura Terciaria de Proteína
18.
Sci Rep ; 10(1): 16776, 2020 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-33009418

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

19.
J Am Chem Soc ; 131(10): 3474-5, 2009 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-19243097

RESUMEN

A ditantalum hydride complex undergoes head-to-head C-C coupling of six CO molecules under mild conditions to produce an octaanionic C(6)O(6) unit. During the reaction, eight-electron reduction of six CO molecules takes place. In the product, the C(6)O(6) unit is coordinated to four tantalum metals through six oxygen and two carbon atoms. The geometrical parameters within the Ta(4)C(6)O(6) core indicate significant contribution from a hexatriene-hexaolate form.

20.
Philos Trans R Soc Lond B Biol Sci ; 374(1783): 20190225, 2019 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-31438810

RESUMEN

Juvenile hormones and the genetic interaction between the transcription factors Krüppel homologue 1 (Kr-h1) and Broad (Br) regulate the transformation of insects from immature to adult forms in both types of metamorphosis (holometaboly with a pupal stage versus hemimetaboly with no pupal stage); however, knowledge about the exact instar in which this occurs is limited. Using the hemimetabolous cricket Gryllus bimaculatus (Gb), we demonstrate that a genetic interaction occurs among Gb'Kr-h1, Gb'Br and the adult-specifier transcription factor Gb'E93 from the sixth to final (eighth) nymphal instar. Gb'Kr-h1 and Gb'Br mRNAs were strongly expressed in the abdominal tissues of sixth instar nymphs, with precocious adult moults being induced by Gb'Kr-h1 or Gb'Br knockdown in the sixth instar. The depletion of Gb'Kr-h1 or Gb'Br upregulates Gb'E93 in the sixth instar. By contrast, Gb'E93 knockdown at the sixth instar prevents nymphs transitioning to adults, instead producing supernumerary nymphs. Gb'E93 also represses Gb'Kr-h1 and Gb'Br expression in the penultimate nymphal instar, demonstrating its important role in adult differentiation. Our results suggest that the regulatory mechanisms underlying the pupal transition in holometabolous insects are evolutionarily conserved in hemimetabolous G. bimaculatus, with the penultimate and final nymphal periods being equivalent to the pupal stage. This article is part of the theme issue 'The evolution of complete metamorphosis'.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Gryllidae/crecimiento & desarrollo , Proteínas de Insectos/genética , Metamorfosis Biológica , Factores de Transcripción/genética , Animales , Gryllidae/genética , Proteínas de Insectos/metabolismo , Ninfa/genética , Ninfa/crecimiento & desarrollo , Pupa/genética , Pupa/crecimiento & desarrollo , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA