Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 19(9): e1011195, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37683045

RESUMEN

Toxin-antitoxin (TA) systems are ubiquitous two-gene loci that bacteria use to regulate cellular processes such as phage defense. Here, we demonstrate the mechanism by which a novel type III TA system, avcID, is activated and confers resistance to phage infection. The toxin of the system (AvcD) is a deoxycytidylate deaminase that converts deoxycytidines (dC) to dexoyuridines (dU), while the RNA antitoxin (AvcI) inhibits AvcD activity. We have shown that AvcD deaminated dC nucleotides upon phage infection, but the molecular mechanism that activated AvcD was unknown. Here we show that the activation of AvcD arises from phage-induced inhibition of host transcription, leading to degradation of the labile AvcI. AvcD activation and nucleotide depletion not only decreases phage replication but also increases the formation of defective phage virions. Surprisingly, infection of phages such as T7 that are not inhibited by AvcID also lead to AvcI RNA antitoxin degradation and AvcD activation, suggesting that depletion of AvcI is not sufficient to confer protection against some phage. Rather, our results support that phage with a longer replication cycle like T5 are sensitive to AvcID-mediated protection while those with a shorter replication cycle like T7 are resistant.


Asunto(s)
Antitoxinas , Bacteriófagos , Citidina Desaminasa , Bacterias , Bacteriófagos/genética , Nucleótidos , ARN
2.
Am J Physiol Lung Cell Mol Physiol ; 326(3): L367-L376, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38252657

RESUMEN

Because of the importance of potassium efflux in inflammasome activation, we investigated the role of the two-pore potassium (K2P) channel TREK-1 in macrophage inflammasome activity. Using primary alveolar macrophages (AMs) and bone marrow-derived macrophages (BMDMs) from wild-type (wt) and TREK-1-/- mice, we measured responses to inflammasome priming [using lipopolysaccharide (LPS)] and activation (LPS + ATP). We measured IL-1ß, caspase-1, and NLRP3 via ELISA and Western blot. A membrane-permeable potassium indicator was used to measure potassium efflux during ATP exposure, and a fluorescence-based assay was used to assess changes in membrane potential. Inflammasome activation induced by LPS + ATP increased IL-1ß secretion in wt AMs, whereas activation was significantly reduced in TREK-1-/- AMs. Priming of BMDMs using LPS was not affected by either genetic deficiency or pharmacological inhibition of TREK-1 with Spadin. Cleavage of caspase-1 following LPS + ATP treatment was significantly reduced in TREK-1-/- BMDMs. The intracellular potassium concentration in LPS-primed wt BMDMs was significantly lower compared with TREK-1-/- BMDMs or wt BMDMs treated with Spadin. Conversely, activation of TREK-1 with BL1249 caused a decrease in intracellular potassium in wt BMDMs. Treatment of LPS-primed BMDMs with ATP caused a rapid reduction in intracellular potassium levels, with the largest change observed in TREK-1-/- BMDMs. Intracellular K+ changes were associated with changes in the plasma membrane potential (Em), as evidenced by a more depolarized Em in TREK-1-/- BMDMs compared with wt, and Em hyperpolarization upon TREK-1 channel opening with BL1249. These results suggest that TREK-1 is an important regulator of NLRP3 inflammasome activation in macrophages.NEW & NOTEWORTHY Because of the importance of potassium efflux in inflammasome activation, we investigated the role of the two-pore potassium (K2P) channel TREK-1 in macrophage inflammasome activity. Using primary alveolar macrophages and bone marrow-derived macrophages from wild-type and TREK-1-/- mice, we measured responses to inflammasome priming (using LPS) and activation (LPS + ATP). Our results suggest that TREK-1 is an important regulator of NLRP3 inflammasome activation in macrophages.


Asunto(s)
Inflamasomas , Canales de Potasio de Dominio Poro en Tándem , Tetrahidronaftalenos , Tetrazoles , Animales , Ratones , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Potasio/metabolismo , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Ratones Noqueados , Canales de Potasio de Dominio Poro en Tándem/genética , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Macrófagos/metabolismo , Caspasa 1/metabolismo , Adenosina Trifosfato/farmacología , Adenosina Trifosfato/metabolismo , Interleucina-1beta/metabolismo
3.
Artículo en Inglés | MEDLINE | ID: mdl-38772903

RESUMEN

Repair and regeneration of a diseased lung using stem cells or bioengineered tissues is an exciting therapeutic approach for a variety of lung diseases and critical illnesses. Over the past decade increasing evidence from preclinical models suggests that cells, which are not normally resident in the lung can be utilized to modulate immune responses after injury, but there have been challenges in translating these promising findings to the clinic. In parallel, there has been a surge in bioengineering studies investigating the use of artificial and acellular lung matrices as scaffolds for three-dimensional lung or airway regeneration, with some recent attempts of transplantation in large animal models. The combination of these studies with those involving stem cells, induced pluripotent stem cell derivatives, and/or cell therapies is a promising and rapidly developing research area. These studies have been further paralleled by significant increases in our understanding of the molecular and cellular events by which endogenous lung stem and/or progenitor cells arise during lung development and participate in normal and pathologic remodeling after lung injury. For the 2023 Stem Cells, Cell Therapies, and Bioengineering in Lung Biology and Diseases Conference, scientific symposia were chosen to reflect the most cutting-edge advances in these fields. Sessions focused on the integration of "-omics" technologies with function, the influence of immune cells on regeneration, and the role of the extracellular matrix in regeneration. The necessity for basic science studies to enhance fundamental understanding of lung regeneration and to design innovative translational studies was reinforced throughout the conference.

4.
Appl Environ Microbiol ; 90(4): e0231123, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38446071

RESUMEN

It has been nearly a century since the isolation and use of penicillin, heralding the discovery of a wide range of different antibiotics. In addition to clinical applications, such antibiotics have been essential laboratory tools, allowing for selection and maintenance of laboratory plasmids that encode cognate resistance genes. However, antibiotic resistance mechanisms can additionally function as public goods. For example, extracellular beta-lactamases produced by resistant cells that subsequently degrade penicillin and related antibiotics allow neighboring plasmid-free susceptible bacteria to survive antibiotic treatment. How such cooperative mechanisms impact selection of plasmids during experiments in laboratory conditions is poorly understood. Here, we show in multiple bacterial species that the use of plasmid-encoded beta-lactamases leads to significant curing of plasmids in surface-grown bacteria. Furthermore, such curing was also evident for aminoglycoside phosphotransferase and tetracycline antiporter resistance mechanisms. Alternatively, antibiotic selection in liquid growth led to more robust plasmid maintenance, although plasmid loss was still observed. The net outcome of such plasmid loss is the generation of a heterogenous population of plasmid-containing and plasmid-free cells, leading to experimental confounds that are not widely appreciated.IMPORTANCEPlasmids are routinely used in microbiology as readouts of cell biology or tools to manipulate cell function. Central to these studies is the assumption that all cells in an experiment contain the plasmid. Plasmid maintenance in a host cell typically depends on a plasmid-encoded antibiotic resistance marker, which provides a selective advantage when the plasmid-containing cell is grown in the presence of antibiotic. Here, we find that growth of plasmid-containing bacteria on a surface and to a lesser extent in liquid culture in the presence of three distinct antibiotic families leads to the evolution of a significant number of plasmid-free cells, which rely on the resistance mechanisms of the plasmid-containing cells. This process generates a heterogenous population of plasmid-free and plasmid-containing bacteria, an outcome which could confound further experimentation.


Asunto(s)
Antibacterianos , Bacterias , Humanos , Plásmidos/genética , Antibacterianos/farmacología , Bacterias/genética , beta-Lactamasas/genética , Penicilinas/farmacología
5.
Nucleic Acids Res ; 50(8): 4484-4499, 2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-35438787

RESUMEN

Vibrio cholerae biofilm formation/maintenance is controlled by myriad factors; chief among these are the regulator VpsR and cyclic di-guanosine monophosphate (c-di-GMP). VpsR has strong sequence similarity to enhancer binding proteins (EBPs) that activate RNA polymerase containing sigma factor σ54. However, we have previously shown that transcription from promoters within the biofilm biogenesis/maintenance pathways uses VpsR, c-di-GMP and RNA polymerase containing the primary sigma factor (σ70). Previous work suggested that phosphorylation of VpsR at a highly conserved aspartate, which is phosphorylated in other EBPs, might also contribute to activation. Using the biofilm biogenesis promoter PvpsL, we show that in the presence of c-di-GMP, either wild type or the phospho-mimic VpsR D59E activates PvpsL transcription, while the phospho-defective D59A variant does not. Furthermore, when c-di-GMP levels are low, acetyl phosphate (Ac∼P) is required for significant VpsR activity in vivo and in vitro. Although these findings argue that VpsR phosphorylation is needed for activation, we show that VpsR is not phosphorylated or acetylated by Ac∼P and either sodium phosphate or potassium phosphate, which are not phosphate donors, fully substitutes for Ac∼P. We conclude that VpsR is an unusual regulator that senses phosphate directly, rather than through phosphorylation, to aid in the decision to form/maintain biofilm.


Asunto(s)
Vibrio cholerae , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Proteínas de Unión al ADN/genética , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Regulación Bacteriana de la Expresión Génica , Fosfatos/metabolismo , Factor sigma/genética , Factor sigma/metabolismo , Vibrio cholerae/metabolismo
6.
Infect Immun ; 91(9): e0002623, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37594274

RESUMEN

In its natural aquatic environment, the bacterial pathogen Vibrio cholerae, the causative agent of the enteric disease cholera, is in constant competition with bacterial viruses known as phages. Following ICP3 infection, V. cholerae cultures that exhibited phage killing always recovered overnight, and clones isolated from these regrowth populations exhibited complete resistance to subsequent infections. Whole-genome sequencing of these resistant mutants revealed seven distinct mutations in genes encoding for enzymes involved in O1 antigen biosynthesis, demonstrating that the O1 antigen is a previously uncharacterized putative receptor of ICP3. To further elucidate the specificity of the resistance conferred by these mutations, they were challenged with the V. cholerae-specific phages ICP1 and ICP2. All seven O1 antigen mutants demonstrated pan-resistance to ICP1 but not ICP2, which utilizes the OmpU outer membrane protein as a receptor. We show that resistant mutations to ICP1 and ICP3 evolve at a significantly higher frequency than ICP2, but these mutations have a significant fitness tradeoff to V. cholerae and are unable to evolve in the presence of an antimicrobial that mimics host cell defensins.


Asunto(s)
Bacteriófagos , Cólera , Vibrio cholerae , Humanos , Vibrio cholerae/genética , Bacteriófagos/genética , Ambiente , Proteínas de la Membrana
7.
Am J Physiol Lung Cell Mol Physiol ; 324(1): L64-L75, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36410022

RESUMEN

Influenza-A virus (IAV) infects yearly an estimated one billion people worldwide, resulting in 300,000-650,000 deaths. Preventive vaccination programs and antiviral medications represent the mainstay of therapy, but with unacceptably high morbidity and mortality rates, new targeted therapeutic approaches are urgently needed. Since inflammatory processes are commonly associated with measurable changes in the cell membrane potential (Em), we investigated whether Em hyperpolarization via TREK-1 (K2P2.1) K+ channel activation can protect against influenza-A virus (IAV)-induced pneumonia. We infected mice with IAV, which after 5 days caused 10-15% weight loss and a decrease in spontaneous activity, representing a clinically relevant infection. We then started a 3-day intratracheal treatment course with the novel TREK-1 activating compounds BL1249 or ML335. We confirmed TREK-1 activation with both compounds in untreated and IAV-infected primary human alveolar epithelial cells (HAECs) using high-throughput fluorescent imaging plate reader (FLIPR) assays. In mice, TREK-1 activation with BL1249 and ML335 counteracted IAV-induced histological lung injury and decrease in lung compliance and improved BAL fluid total protein levels, cell counts, and inflammatory IL-6, IP-10/CXCL-10, MIP-1α, and TNF-α levels. To determine whether these anti-inflammatory effects were mediated by activation of alveolar epithelial TREK-1 channels, we studied the effects of BL1249 and ML335 in IAV-infected HAEC, and found that TREK-1 activation decreased IAV-induced inflammatory IL-6, IP-10/CXCL10, and CCL-2 secretion. Dissection of TREK-1 downstream signaling pathways and construction of protein-protein interaction (PPI) networks revealed NF-κB1 and retinoic acid-inducible gene-1 (RIG-1) cascades as the most likely targets for TREK-1 protection. Therefore, TREK-1 activation may represent a novel therapeutic approach against IAV-induced lung injury.


Asunto(s)
Lesión Pulmonar Aguda , Virus de la Influenza A , Gripe Humana , Infecciones por Orthomyxoviridae , Canales de Potasio de Dominio Poro en Tándem , Animales , Humanos , Ratones , Lesión Pulmonar Aguda/patología , Quimiocina CXCL10/metabolismo , Gripe Humana/patología , Interleucina-6/metabolismo , Pulmón/metabolismo , Infecciones por Orthomyxoviridae/patología , Canales de Potasio de Dominio Poro en Tándem/genética , Canales de Potasio de Dominio Poro en Tándem/metabolismo
8.
Adv Exp Med Biol ; 1404: 17-39, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36792869

RESUMEN

With the discovery that 48% of cholera infections in rural Bangladesh villages could be prevented by simple filtration of unpurified waters and the detection of Vibrio cholerae aggregates in stools from cholera patients it was realized V. cholerae biofilms had a central function in cholera pathogenesis. We are currently in the seventh cholera pandemic, caused by O1 serotypes of the El Tor biotypes strains, which initiated in 1961. It is estimated that V. cholerae annually causes millions of infections and over 100,000 deaths. Given the continued emergence of cholera in areas that lack access to clean water, such as Haiti after the 2010 earthquake or the ongoing Yemen civil war, increasing our understanding of cholera disease remains a worldwide public health priority. The surveillance and treatment of cholera is also affected as the world is impacted by the COVID-19 pandemic, raising significant concerns in Africa. In addition to the importance of biofilm formation in its life cycle, V. cholerae has become a key model system for understanding bacterial signal transduction networks that regulate biofilm formation and discovering fundamental principles about bacterial surface attachment and biofilm maturation. This chapter will highlight recent insights into V. cholerae biofilms including their structure, ecological role in environmental survival and infection, regulatory systems that control them, and biomechanical insights into the nature of V. cholerae biofilms.


Asunto(s)
COVID-19 , Cólera , Vibrio cholerae , Humanos , Cólera/epidemiología , Cólera/microbiología , Pandemias , Biopelículas
9.
Proc Natl Acad Sci U S A ; 117(30): 17984-17991, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32661164

RESUMEN

Cellular differentiation is a fundamental strategy used by cells to generate specialized functions at specific stages of development. The bacterium Caulobacter crescentus employs a specialized dimorphic life cycle consisting of two differentiated cell types. How environmental cues, including mechanical inputs such as contact with a surface, regulate this cell cycle remain unclear. Here, we find that surface sensing by the physical perturbation of retracting extracellular pilus filaments accelerates cell-cycle progression and cellular differentiation. We show that physical obstruction of dynamic pilus activity by chemical perturbation or by a mutation in the outer-membrane pilus secretin CpaC stimulates early initiation of chromosome replication. In addition, we find that surface contact stimulates cell-cycle progression by demonstrating that surface-stimulated cells initiate early chromosome replication to the same extent as planktonic cells with obstructed pilus activity. Finally, we show that obstruction of pilus retraction stimulates the synthesis of the cell-cycle regulator cyclic diguanylate monophosphate (c-di-GMP) through changes in the activity and localization of two key regulatory histidine kinases that control cell fate and differentiation. Together, these results demonstrate that surface contact and sensing by alterations in pilus activity stimulate C. crescentus to bypass its developmentally programmed temporal delay in cell differentiation to more quickly adapt to a surface-associated lifestyle.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Caulobacter crescentus/fisiología , Infecciones por Bacterias Gramnegativas/microbiología , Ciclo Celular , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Replicación del ADN , Fimbrias Bacterianas/fisiología , Modelos Biológicos , Mutación
10.
Proc Natl Acad Sci U S A ; 117(46): 29046-29054, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33139575

RESUMEN

The cell morphology of rod-shaped bacteria is determined by the rigid net of peptidoglycan forming the cell wall. Alterations to the rod shape, such as the curved rod, occur through manipulating the process of cell wall synthesis. The human pathogen Vibrio cholerae typically exists as a curved rod, but straight rods have been observed under certain conditions. While this appears to be a regulated process, the regulatory pathways controlling cell shape transitions in V. cholerae and the benefits of switching between rod and curved shape have not been determined. We demonstrate that cell shape in V. cholerae is regulated by the bacterial second messenger cyclic dimeric guanosine monophosphate (c-di-GMP) by posttranscriptionally repressing expression of crvA, a gene encoding an intermediate filament-like protein necessary for curvature formation in V. cholerae. This regulation is mediated by the transcriptional cascade that also induces production of biofilm matrix components, indicating that cell shape is coregulated with V. cholerae's induction of sessility. During microcolony formation, wild-type V. cholerae cells tended to exist as straight rods, while genetically engineering cells to maintain high curvature reduced microcolony formation and biofilm density. Conversely, straight V. cholerae mutants have reduced swimming speed when using flagellar motility in liquid. Our results demonstrate regulation of cell shape in bacteria is a mechanism to increase fitness in planktonic and biofilm lifestyles.


Asunto(s)
Forma de la Célula/fisiología , GMP Cíclico/metabolismo , Estilo de Vida , Vibrio cholerae/metabolismo , Proteínas Bacterianas/genética , Biopelículas , GMP Cíclico/análogos & derivados , Regulación Bacteriana de la Expresión Génica , Humanos , Sistemas de Mensajero Secundario , Vibrio cholerae/genética
11.
Proc Natl Acad Sci U S A ; 117(35): 21647-21657, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32817433

RESUMEN

Many bacteria cycle between sessile and motile forms in which they must sense and respond to internal and external signals to coordinate appropriate physiology. Maintaining fitness requires genetic networks that have been honed in variable environments to integrate these signals. The identity of the major regulators and how their control mechanisms evolved remain largely unknown in most organisms. During four different evolution experiments with the opportunist betaproteobacterium Burkholderia cenocepacia in a biofilm model, mutations were most frequently selected in the conserved gene rpfR RpfR uniquely integrates two major signaling systems-quorum sensing and the motile-sessile switch mediated by cyclic-di-GMP-by two domains that sense, respond to, and control the synthesis of the autoinducer cis-2-dodecenoic acid (BDSF). The BDSF response in turn regulates the activity of diguanylate cyclase and phosphodiesterase domains acting on cyclic-di-GMP. Parallel adaptive substitutions evolved in each of these domains to produce unique life history strategies by regulating cyclic-di-GMP levels, global transcriptional responses, biofilm production, and polysaccharide composition. These phenotypes translated into distinct ecology and biofilm structures that enabled mutants to coexist and produce more biomass than expected from their constituents grown alone. This study shows that when bacterial populations are selected in environments challenging the limits of their plasticity, the evolved mutations not only alter genes at the nexus of signaling networks but also reveal the scope of their regulatory functions.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Burkholderia cenocepacia/genética , Percepción de Quorum/genética , Proteínas Bacterianas/metabolismo , Burkholderia cenocepacia/crecimiento & desarrollo , GMP Cíclico/análogos & derivados , GMP Cíclico/genética , Evolución Molecular Dirigida/métodos , Regulación Bacteriana de la Expresión Génica/genética , Mutación/genética , Fenotipo , Transducción de Señal/genética , Virulencia/genética
12.
Int J Mol Sci ; 24(24)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38139330

RESUMEN

Serum amyloid A (SAA) is a family of proteins, the plasma levels of which may increase >1000-fold in acute inflammatory states. We investigated the role of SAA in sepsis using mice deficient in all three acute-phase SAA isoforms (SAA-TKO). SAA deficiency significantly increased mortality rates in the three experimental sepsis mouse models: cecal ligation and puncture (CLP), cecal slurry (CS) injection, and lipopolysaccharide (LPS) treatments. SAA-TKO mice had exacerbated lung pathology compared to wild-type (WT) mice after CLP. A bulk RNA sequencing performed on lung tissues excised 24 h after CLP indicated significant enrichment in the expression of genes associated with chemokine production, chemokine and cytokine-mediated signaling, neutrophil chemotaxis, and neutrophil migration in SAA-TKO compared to WT mice. Consistently, myeloperoxidase activity and neutrophil counts were significantly increased in the lungs of septic SAA-TKO mice compared to WT mice. The in vitro treatment of HL-60, neutrophil-like cells, with SAA or SAA bound to a high-density lipoprotein (SAA-HDL), significantly decreased cellular transmigration through laminin-coated membranes compared to untreated cells. Thus, SAA potentially prevents neutrophil transmigration into injured lungs, thus reducing exacerbated tissue injury and mortality. In conclusion, we demonstrate for the first time that endogenous SAA plays a protective role in sepsis, including ameliorating lung injury.


Asunto(s)
Lesión Pulmonar , Sepsis , Animales , Ratones , Lesión Pulmonar/patología , Proteína Amiloide A Sérica/genética , Sepsis/patología , Pulmón/patología , Quimiocinas , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
13.
J Bacteriol ; 204(6): e0013622, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35506693

RESUMEN

Michigan State University was honored to host in-person the 27th Annual Midwest Microbial Pathogenesis Conference from 17 to 19 September 2021 in East Lansing, MI. Here, we report the precautions that were used to host a safe, in-person meeting during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) pandemic and the research on microbial pathogenesis that was presented at the meeting. One of the most significant impacts of the SARS-CoV2 pandemic on the scientific community is the cancelation of many in-person scientific conferences. This has limited the ability of scientists, especially those who are early in their careers, to present their research and establish scientific networks and collaborations. Using a series of safety precautions, we describe here how we implemented a highly successful in-person meeting of 280 attendees in September 2021. Six of the research projects presented at this meeting are being published together in this issue of the Journal of Bacteriology.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/prevención & control , Humanos , Pandemias/prevención & control , ARN Viral , Universidades
14.
J Bacteriol ; 204(1): e0020621, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34662239

RESUMEN

Listeria monocytogenes produces both c-di-AMP and c-di-GMP to mediate many important cellular processes, but the levels of both nucleotides must be regulated. c-di-AMP accumulation attenuates virulence and diminishes stress response, and c-di-GMP accumulation impairs bacterial motility. An important regulatory mechanism to maintain c-di-AMP and c-di-GMP homeostasis is to hydrolyze them to the linear dinucleotides pApA and pGpG, respectively, but the fates of these hydrolytic products have not been examined in L. monocytogenes. We found that NrnA, a stand-alone DHH-DHHA1 phosphodiesterase, has a broad substrate range but with a strong preference for linear dinucleotides over cyclic dinucleotides. Although NrnA exhibited detectable cyclic dinucleotide hydrolytic activities in vitro, NrnA had negligible effects on their levels in the bacterial cell, even in the absence of the c-di-AMP phosphodiesterases PdeA and PgpH. The ΔnrnA mutant had a mammalian cell infection defect that was fully restored by Escherichia coli Orn. Together, our data indicate that L. monocytogenes NrnA is functionally orthologous to Orn, and its preferred physiological substrates are most likely linear dinucleotides. Furthermore, our findings revealed that, unlike some other c-di-AMP- and c-di-GMP-producing bacteria, L. monocytogenes does not employ their hydrolytic products to regulate their phosphodiesterases, at least at the pApA and pGpG levels in the ΔnrnA mutant. Finally, the ΔnrnA infection defect was overcome by constitutive activation of PrfA, the master virulence regulator, suggesting that accumulated linear dinucleotides inhibit the expression, stability, or function of PrfA-regulated virulence factors. IMPORTANCE Listeria monocytogenes produces both c-di-AMP and c-di-GMP and encodes specific phosphodiesterases that degrade them into pApA and pGpG, respectively, but the metabolism of these products has not been characterized in this bacterium. We found that L. monocytogenes NrnA degrades a broad range of nucleotides. Among the tested cyclic and linear substrates, it exhibits a strong biochemical and physiological preference for the linear dinucleotides pApA, pGpG, and pApG. Unlike in some other bacteria, these oligoribonucleotides do not appear to interfere with cyclic dinucleotide hydrolysis. The absence of NrnA is well tolerated by L. monocytogenes in broth cultures but impairs its ability to infect mammalian cells. These findings indicate a separation of cyclic dinucleotide signaling and oligoribonucleotide metabolism in L. monocytogenes.


Asunto(s)
Regulación Bacteriana de la Expresión Génica/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Listeria monocytogenes/enzimología , Nucleótidos Cíclicos/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Biopelículas , Mutación , Hidrolasas Diéster Fosfóricas/genética , Factores de Virulencia
15.
Am J Respir Cell Mol Biol ; 66(5): 484-496, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35148253

RESUMEN

Pulmonary fibrosis (PF) is an abnormal remodeling of cellular composition and extracellular matrix that results in histological and functional alterations in the lungs. Apoptosis signal-regulating kinase-1 (ASK1) is a member of the mitogen-activated protein (MAP) kinase family that is activated by oxidative stress and promotes inflammation and apoptosis. Here we show that bleomycin-induced PF is reduced in Ask1 knockout mice (Ask1-/-) compared with wild-type (WT) mice, with improved survival and histological and functional parameters restored to basal levels. In WT mice, bleomycin caused activation of ASK1, p38, and extracellular signal-regulated kinase 1/2 (ERK1/2) in lung tissue, as well as changes in redox indicators (thioredoxin and heme-oxygenase-1), collagen content, and epithelial-mesenchymal transition markers (EMTs). These changes were largely restored toward untreated WT control levels in bleomycin-treated Ask1-/- mice. We further investigated whether treatment of WT mice with an ASK1 inhibitor, selonsertib (GS-4997), during the fibrotic phase would attenuate the development of PF. We found that pharmacological inhibition of ASK1 reduced activation of ASK1, p38, and ERK1/2 and promoted the restoration of redox and EMT indicators, as well as improvements in histological parameters. Our results suggest that ASK1 plays a central role in the development of bleomycin-induced PF in mice via p38 and ERK1/2 signaling. Together, these data indicate a possible therapeutic target for PF that involves an ASK1/p38/ERK1/2 axis.


Asunto(s)
Bleomicina , Fibrosis Pulmonar , Animales , Apoptosis/fisiología , Bleomicina/efectos adversos , MAP Quinasa Quinasa Quinasa 5 , Ratones , Ratones Noqueados , Proteínas Quinasas Activadas por Mitógenos , Fibrosis Pulmonar/inducido químicamente , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
16.
PLoS Pathog ; 16(10): e1008529, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33125434

RESUMEN

Biofilm-based infections are difficult to treat due to their inherent resistance to antibiotic treatment. Discovering new approaches to enhance antibiotic efficacy in biofilms would be highly significant in treating many chronic infections. Exposure to aminoglycosides induces adaptive resistance in Pseudomonas aeruginosa biofilms. Adaptive resistance is primarily the result of active antibiotic export by RND-type efflux pumps, which use the proton motive force as an energy source. We show that the protonophore uncoupler triclosan depletes the membrane potential of biofilm growing P. aeruginosa, leading to decreased activity of RND-type efflux pumps. This disruption results in increased intracellular accumulation of tobramycin and enhanced antimicrobial activity in vitro. In addition, we show that triclosan enhances tobramycin effectiveness in vivo using a mouse wound model. Combining triclosan with tobramycin is a new anti-biofilm strategy that targets bacterial energetics, increasing the susceptibility of P. aeruginosa biofilms to aminoglycosides.


Asunto(s)
Aminoglicósidos/farmacología , Biopelículas/efectos de los fármacos , Farmacorresistencia Bacteriana/efectos de los fármacos , Potenciales de la Membrana/efectos de los fármacos , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa/efectos de los fármacos , Triclosán/farmacología , Animales , Antiinfecciosos Locales/farmacología , Biopelículas/crecimiento & desarrollo , Femenino , Masculino , Ratones , Ratones Pelados , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/crecimiento & desarrollo
17.
PLoS Biol ; 17(2): e3000123, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30716063

RESUMEN

The diffusible signal factors (DSFs) are a family of quorum-sensing autoinducers (AIs) produced and detected by numerous gram-negative bacteria. The DSF family AIs are fatty acids, differing in their acyl chain length, branching, and substitution but having in common a cis-2 double bond that is required for their activity. In both human and plant pathogens, DSFs regulate diverse phenotypes, including virulence factor expression, antibiotic resistance, and biofilm dispersal. Despite their widespread relevance to both human health and agriculture, the molecular basis of DSF recognition by their cellular receptors remained a mystery. Here, we report the first structure-function studies of the DSF receptor regulation of pathogenicity factor R (RpfR). We present the X-ray crystal structure of the RpfR DSF-binding domain in complex with the Burkholderia DSF (BDSF), which to our knowledge is the first structure of a DSF receptor in complex with its AI. To begin to understand the mechanistic role of the BDSF-RpfR contacts observed in the biologically important complex, we have also determined the X-ray crystal structure of the RpfR DSF-binding domain in complex with the inactive, saturated isomer of BDSF, dodecanoic acid (C12:0). In addition to these ligand-receptor complex structures, we report the discovery of a previously overlooked RpfR domain and show that it binds to and negatively regulates the DSF synthase regulation of pathogenicity factor F (RpfF). We have named this RpfR region the RpfF interaction (FI) domain, and we have determined its X-ray crystal structure alone and in complex with RpfF. These X-ray crystal structures, together with extensive complementary in vivo and in vitro functional studies, reveal the molecular basis of DSF recognition and the importance of the cis-2 double bond to DSF function. Finally, we show that throughout cellular growth, the production of BDSF by RpfF is post-translationally controlled by the RpfR N-terminal FI domain, affecting the cellular concentration of the bacterial second messenger bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP). Thus, in addition to describing the molecular basis for the binding and specificity of a DSF for its receptor, we describe a receptor-synthase interaction regulating bacterial quorum-sensing signaling and second messenger signal transduction.


Asunto(s)
Proteínas Bacterianas/metabolismo , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Proteínas Bacterianas/química , Burkholderia/metabolismo , Cristalización , Cristalografía por Rayos X , GMP Cíclico/biosíntesis , Ácidos Láuricos/química , Ácidos Láuricos/metabolismo , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Percepción de Quorum
18.
Proc Natl Acad Sci U S A ; 115(26): E6048-E6055, 2018 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-29891656

RESUMEN

Sensing and responding to environmental changes is essential for bacteria to adapt and thrive, and nucleotide-derived second messengers are central signaling systems in this process. The most recently identified bacterial cyclic dinucleotide second messenger, 3', 3'-cyclic GMP-AMP (cGAMP), was first discovered in the El Tor biotype of Vibrio cholerae The cGAMP synthase, DncV, is encoded on the VSP-1 pathogenicity island, which is found in all El Tor isolates that are responsible for the current seventh pandemic of cholera but not in the classical biotype. We determined that unregulated production of DncV inhibits growth in El Tor V. cholerae but has no effect on the classical biotype. This cGAMP-dependent phenotype can be suppressed by null mutations in vc0178 immediately 5' of dncV in VSP-1. VC0178 [renamed as cGAMP-activated phospholipase in Vibrio (CapV)] is predicted to be a patatin-like phospholipase, and coexpression of capV and dncV is sufficient to induce growth inhibition in classical V. cholerae and Escherichia coli Furthermore, cGAMP binds to CapV and directly activates its hydrolase activity in vitro. CapV activated by cGAMP in vivo degrades phospholipids in the cell membrane, releasing 16:1 and 18:1 free fatty acids. Together, we demonstrate that cGAMP activates CapV phospholipase activity to target the cell membrane and suggest that acquisition of this second messenger signaling pathway may contribute to the emergence of the El Tor biotype as the etiological agent behind the seventh cholera pandemic.


Asunto(s)
Proteínas Bacterianas/metabolismo , Membrana Celular/enzimología , Nucleótidos Cíclicos/metabolismo , Fosfolipasas/metabolismo , Sistemas de Mensajero Secundario/fisiología , Vibrio cholerae/enzimología , Proteínas Bacterianas/genética , Membrana Celular/genética , Nucleótidos Cíclicos/genética , Fosfolipasas/genética , Vibrio cholerae/genética
19.
J Bacteriol ; 202(18)2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32661076

RESUMEN

Vibrio cholerae biofilm biogenesis, which is important for survival, dissemination, and persistence, requires multiple genes in the Vibrio polysaccharides (vps) operons I and II as well as the cluster of ribomatrix (rbm) genes. Transcriptional control of these genes is a complex process that requires several activators/repressors and the ubiquitous signaling molecule, cyclic di-GMP (c-di-GMP). Previously, we demonstrated that VpsR directly activates RNA polymerase containing σ70 (σ70-RNAP) at the vpsL promoter (P vpsL ), which precedes the vps-II operon, in a c-di-GMP-dependent manner by stimulating formation of the transcriptionally active, open complex. Using in vitro transcription, electrophoretic mobility shift assays, and DNase I footprinting, we show here that VpsR also directly activates σ70-RNAP transcription from other promoters within the biofilm formation cluster, including P vpsU , at the beginning of the vps-I operon, P rbmA , at the start of the rbm cluster, and P rbmF , which lies upstream of the divergent rbmF and rbmE genes. In this capacity, we find that VpsR is able to behave both as a class II activator, which functions immediately adjacent/overlapping the core promoter sequence (P vpsL and P vpsU ), and as a class I activator, which functions farther upstream (P rbmA and P rbmF ). Because these promoters vary in VpsR-DNA binding affinity in the absence and presence of c-di-GMP, we speculate that VpsR's mechanism of activation is dependent on both the concentration of VpsR and the level of c-di-GMP to increase transcription, resulting in finely tuned regulation.IMPORTANCEVibrio cholerae, the bacterial pathogen that is responsible for the disease cholera, uses biofilms to aid in survival, dissemination, and persistence. VpsR, which directly senses the second messenger c-di-GMP, is a major regulator of this process. Together with c-di-GMP, VpsR directly activates transcription by RNA polymerase containing σ70 from the vpsL biofilm biogenesis promoter. Using biochemical methods, we demonstrate for the first time that VpsR/c-di-GMP directly activates σ70-RNA polymerase at the first genes of the vps and ribomatrix operons. In this regard, it functions as either a class I or class II activator. Our results broaden the mechanism of c-di-GMP-dependent transcription activation and the specific role of VpsR in biofilm formation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Biopelículas , GMP Cíclico/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Factor sigma/metabolismo , Vibrio cholerae/genética , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Operón , Regiones Promotoras Genéticas
20.
J Bacteriol ; 202(24)2020 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-32989088

RESUMEN

Azotobacter vinelandii produces the linear exopolysaccharide alginate, a compound of significant biotechnological importance. The biosynthesis of alginate in A. vinelandii and Pseudomonas aeruginosa has several similarities but is regulated somewhat differently in the two microbes. Here, we show that the second messenger cyclic dimeric GMP (c-di-GMP) regulates the production and the molecular mass of alginate in A. vinelandii The hybrid protein MucG, containing conserved GGDEF and EAL domains and N-terminal HAMP and PAS domains, behaved as a c-di-GMP phosphodiesterase (PDE). This activity was found to negatively affect the amount and molecular mass of the polysaccharide formed. On the other hand, among the diguanylate cyclases (DGCs) present in A. vinelandii, AvGReg, a globin-coupled sensor (GCS) DGC that directly binds to oxygen, was identified as the main c-di-GMP-synthesizing contributor to alginate production. Overproduction of AvGReg in the parental strain phenocopied a ΔmucG strain with regard to alginate production and the molecular mass of the polymer. MucG was previously shown to prevent the synthesis of high-molecular-mass alginates in response to reduced oxygen transfer rates (OTRs). In this work, we show that cultures exposed to reduced OTRs accumulated higher levels of c-di-GMP; this finding strongly suggests that at least one of the molecular mechanisms involved in modulation of alginate production and molecular mass by oxygen depends on a c-di-GMP signaling module that includes the PAS domain-containing PDE MucG and the GCS DGC AvGReg.IMPORTANCE c-di-GMP has been widely recognized for its essential role in the production of exopolysaccharides in bacteria, such as alginate produced by Pseudomonas and Azotobacter spp. This study reveals that the levels of c-di-GMP also affect the physical properties of alginate, favoring the production of high-molecular-mass alginates in response to lower OTRs. This finding opens up new alternatives for the design of tailor-made alginates for biotechnological applications.


Asunto(s)
Alginatos/metabolismo , Azotobacter vinelandii/metabolismo , GMP Cíclico/análogos & derivados , Polisacáridos Bacterianos/biosíntesis , Alginatos/química , Azotobacter vinelandii/enzimología , Azotobacter vinelandii/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Peso Molecular , Oxígeno/metabolismo , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Liasas de Fósforo-Oxígeno/genética , Liasas de Fósforo-Oxígeno/metabolismo , Polisacáridos Bacterianos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA