Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(7): e2311049121, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38319973

RESUMEN

Intrathecal synthesis of central nervous system (CNS)-reactive autoantibodies is observed across patients with autoimmune encephalitis (AE), who show multiple residual neurobehavioral deficits and relapses despite immunotherapies. We leveraged two common forms of AE, mediated by leucine-rich glioma inactivated-1 (LGI1) and contactin-associated protein-like 2 (CASPR2) antibodies, as human models to comprehensively reconstruct and profile cerebrospinal fluid (CSF) B cell receptor (BCR) characteristics. We hypothesized that the resultant observations would both inform the observed therapeutic gap and determine the contribution of intrathecal maturation to pathogenic B cell lineages. From the CSF of three patients, 381 cognate-paired IgG BCRs were isolated by cell sorting and scRNA-seq, and 166 expressed as monoclonal antibodies (mAbs). Sixty-two percent of mAbs from singleton BCRs reacted with either LGI1 or CASPR2 and, strikingly, this rose to 100% of cells in clonal groups with ≥4 members. These autoantigen-reactivities were more concentrated within antibody-secreting cells (ASCs) versus B cells (P < 0.0001), and both these cell types were more differentiated than LGI1- and CASPR2-unreactive counterparts. Despite greater differentiation, autoantigen-reactive cells had acquired few mutations intrathecally and showed minimal variation in autoantigen affinities within clonal expansions. Also, limited CSF T cell receptor clonality was observed. In contrast, a comparison of germline-encoded BCRs versus the founder intrathecal clone revealed marked gains in both affinity and mutational distances (P = 0.004 and P < 0.0001, respectively). Taken together, in patients with LGI1 and CASPR2 antibody encephalitis, our results identify CSF as a compartment with a remarkably high frequency of clonally expanded autoantigen-reactive ASCs whose BCR maturity appears dominantly acquired outside the CNS.


Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso , Encefalitis , Glioma , Enfermedad de Hashimoto , Humanos , Leucina , Péptidos y Proteínas de Señalización Intracelular , Recurrencia Local de Neoplasia , Autoanticuerpos , Autoantígenos
2.
Ann Neurol ; 95(4): 700-705, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38411340

RESUMEN

Reported rates of Epstein-Barr virus (EBV) seropositivity in children meeting multiple sclerosis (MS) diagnostic criteria are considerably lower than those reported in adult-onset MS, putting in question a requisite role for EBV in MS development. As prior work preceded recognition of myelin oligodendrocyte glycoprotein-associated disease (MOGAD), we assessed viral serologies in 251 children with incident demyelination and prospectively ascertained diagnoses. When MOGAD was serologically accounted for, the prevalence of EBV infection among MS children exceeded 90%, whereas remote EBV infection was not associated with MOGAD risk. Together, these findings substantiate EBV's role across the MS spectrum, and support distinct pathobiological mechanisms in MS versus MOGAD. ANN NEUROL 2024;95:700-705.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Esclerosis Múltiple , Adulto , Niño , Humanos , Autoanticuerpos , Infecciones por Virus de Epstein-Barr/complicaciones , Herpesvirus Humano 4 , Glicoproteína Mielina-Oligodendrócito
3.
Handb Clin Neurol ; 200: 113-130, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38494273

RESUMEN

An adaptive immune response in less than 1% of people who develop cancer produces antibodies against neuronal proteins. These antibodies can be associated with paraneoplastic syndromes, and their accurate detection should instigate a search for a specific cancer. Over the years, multiple systems, from indirect immunofluorescence to live cell-based assays, have been developed to identify these antibodies. As the specific antigens were identified, high throughput, multi-antigen substrates such as line blots and ELISAs were developed for clinical laboratories. However, the evolution of assays required to identify antibodies to membrane targets has shone a light on the importance of antigen conformation for antibody detection. This chapter discusses the early antibody assays used to detect antibodies to nuclear and cytosolic targets and how new approaches are required to detect antibodies to membrane targets. The chapter presents recent data that support international recommendations against the sole use of line blots for antibody detection and highlights a new antigen-specific approach that appears promising for the detection of submembrane targets.


Asunto(s)
Autoanticuerpos , Neoplasias , Humanos , Ensayo de Inmunoadsorción Enzimática/métodos
4.
Artículo en Inglés | MEDLINE | ID: mdl-37977848

RESUMEN

BACKGROUND AND OBJECTIVES: Myelin oligodendrocyte glycoprotein (MOG) antibody-associated disease (MOGAD) is a recently identified autoimmune demyelinating disorder of the CNS affecting both adults and children. Diagnostic criteria for MOGAD have recently been published. We aimed to validate the 2023 MOGAD diagnostic criteria in a real-world cohort of patients with atypical CNS inflammation. METHODS: All patients referred to the National neuromyelitis optica spectrum disorder (NMOSD) specialized service at The Walton Center NHS Foundation Trust between 2012 and 2023 with an atypical demyelinating syndrome were evaluated. We systematically applied the 2023 MOGAD diagnostic criteria and previous 2018 International Diagnostic Recommendations for MOG encephalomyelitis to our retrospective cohort. RESULTS: 474 patients were screened and 66 were excluded for lack of clinical information. Preexisting diagnoses within our cohort included the following: MOGAD, n = 127; AQP4-IgG NMOSD, n = 125; seronegative NMOSD, n = 33; multiple sclerosis (MS), n = 10; and other diagnoses, n = 113. Of patients with preexisting MOGAD, 97% (123/127) fulfilled the 2023 MOGAD diagnostic criteria. Three patients with a low-positive MOG-IgG did not meet supportive features though 2/3 had insufficient investigations. Alternative diagnoses could not be excluded in 1 patient with MS-MOGAD overlap. No patients with a non-MOGAD diagnosis were found to fulfill the 2023 diagnostic criteria. The sensitivity and specificity of the 2023 MOGAD diagnostic criteria were 97% and 100% with no false positives, improving on 2018 International Diagnostic Recommendations for MOG encephalomyelitis. Low-positive MOG-IgG results were more often associated with a longer time from disease onset to sampling (p < 0.001). In addition, in patients with a MOG-IgG1 test within 6 months of clinical onset, approximately 25% can become low positive by 6 months. Of patients with preexisting MOGAD, 9% (12/127) had insufficient investigations and examinations to fully evaluate additional supportive features. However, in those who were completely evaluated, supportive features were fulfilled in 97% (111/115). DISCUSSION: The 2023 MOGAD diagnostic criteria were highly sensitive and specific and closely align with historically established cases of MOGAD. However, because additional supportive features are stipulated for patients with a low-positive MOG-IgG result, missed diagnoses may occur due to delayed testing or insufficient investigations.


Asunto(s)
Encefalomielitis , Esclerosis Múltiple , Neuromielitis Óptica , Adulto , Niño , Humanos , Glicoproteína Mielina-Oligodendrócito , Estudios Retrospectivos , Autoanticuerpos , Neuromielitis Óptica/diagnóstico , Esclerosis Múltiple/diagnóstico , Inmunoglobulina G
5.
Front Immunol ; 15: 1320094, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38576611

RESUMEN

Background: Myelin oligodendrocyte glycoprotein antibody (MOG) immunoglobulin G (IgG)-associated disease (MOGAD) has clinical and pathophysiological features that are similar to but distinct from those of aquaporin-4 antibody (AQP4-IgG)-positive neuromyelitis optica spectrum disorders (AQP4-NMOSD). MOG-IgG and AQP4-IgG, mostly of the IgG1 subtype, can both activate the complement system. Therefore, we investigated whether the levels of serum complement components, regulators, and activation products differ between MOGAD and AQP4-NMOSD, and if complement analytes can be utilized to differentiate between these diseases. Methods: The sera of patients with MOGAD (from during an attack and remission; N=19 and N=9, respectively) and AQP4-NMOSD (N=35 and N=17), and healthy controls (N=38) were analyzed for C1q-binding circulating immune complex (CIC-C1q), C1 inhibitor (C1-INH), factor H (FH), C3, iC3b, and soluble terminal complement complex (sC5b-9). Results: In attack samples, the levels of C1-INH, FH, and iC3b were higher in the MOGAD group than in the NMOSD group (all, p<0.001), while the level of sC5b-9 was increased only in the NMOSD group. In MOGAD, there were no differences in the concentrations of complement analytes based on disease status. However, within AQP4-NMOSD, remission samples indicated a higher C1-INH level than attack samples (p=0.003). Notably, AQP4-NMOSD patients on medications during attack showed lower levels of iC3b (p<0.001) and higher levels of C3 (p=0.008), C1-INH (p=0.004), and sC5b-9 (p<0.001) compared to those not on medication. Among patients not on medication at the time of attack sampling, serum MOG-IgG cell-based assay (CBA) score had a positive correlation with iC3b and C1-INH levels (rho=0.764 and p=0.010, and rho=0.629 and p=0.049, respectively), and AQP4-IgG CBA score had a positive correlation with C1-INH level (rho=0.836, p=0.003). Conclusions: This study indicates a higher prominence of complement pathway activation and subsequent C3 degradation in MOGAD compared to AQP4-NMOSD. On the other hand, the production of terminal complement complexes (TCC) was found to be more substantial in AQP4-NMOSD than in MOGAD. These findings suggest a strong regulation of the complement system, implying its potential involvement in the pathogenesis of MOGAD through mechanisms that extend beyond TCC formation.


Asunto(s)
Neuromielitis Óptica , Humanos , Acuaporina 4 , Complemento C1q , Complemento C3b , Proteínas del Sistema Complemento , Inmunoglobulina G , Glicoproteína Mielina-Oligodendrócito
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA