RESUMEN
Heteromorphic sex chromosomes (XY or ZW) present problems of gene dosage imbalance between sexes and with autosomes. A need for dosage compensation has long been thought to be critical in vertebrates. However, this was questioned by findings of unequal mRNA abundance measurements in monotreme mammals and birds. Here, we demonstrate unbalanced mRNA levels of X genes in platypus males and females and a correlation with differential loading of histone modifications. We also observed unbalanced transcripts of Z genes in chicken. Surprisingly, however, we found that protein abundance ratios were 1:1 between the sexes in both species, indicating a post-transcriptional layer of dosage compensation. We conclude that sex chromosome output is maintained in chicken and platypus (and perhaps many other non therian vertebrates) via a combination of transcriptional and post-transcriptional control, consistent with a critical importance of sex chromosome dosage compensation.
Asunto(s)
Pollos , Compensación de Dosificación (Genética) , Ornitorrinco , Cromosomas Sexuales , Animales , Pollos/genética , Cromosomas Sexuales/genética , Masculino , Femenino , Ornitorrinco/genética , Transcripción Genética , ARN Mensajero/genética , ARN Mensajero/metabolismoRESUMEN
Oxygen is a vital molecule involved in regulating development, homeostasis, and disease. The oxygen levels in tissue vary from 1 to 14% with deviations from homeostasis impacting regulation of various physiological processes. In this work, we developed an approach to encapsulate enzymes at high loading capacity, which precisely controls the oxygen content in cell culture. Here, a single microcapsule is able to locally perturb the oxygen balance, and varying the concentration and distribution of matrix-embedded microcapsules provides spatiotemporal control. We demonstrate attenuation of hypoxia signaling in populations of stem cells, cancer cells, endothelial cells, cancer spheroids, and intestinal organoids. Varying capsule placement, media formulation, and timing of replenishment yields tunable oxygen gradients, with concurrent spatial growth and morphogenesis in a single well. Capsule containing hydrogel films applied to chick chorioallantoic membranes encourages neovascularization, providing scope for topical treatments or hydrogel wound dressings. This platform can be used in a variety of formats, including deposition in hydrogels, as granular solids for 3D bioprinting, and as injectable biomaterials. Overall, this platform's simplicity and flexibility will prove useful for fundamental studies of oxygen-mediated processes in virtually any in vitro or in vivo format, with scope for inclusion in biomedical materials for treating injury or disease.
Asunto(s)
Células Endoteliales , Hipoxia , Humanos , Cápsulas , Células Endoteliales/metabolismo , Materiales Biocompatibles , Hidrogeles , Oxígeno/metabolismoRESUMEN
Localized and chronic hypoxia of airway mucosa is a common feature of progressive respiratory diseases, including cystic fibrosis (CF). However, the impact of prolonged hypoxia on airway stem cell function and differentiated epithelium is not well elucidated. Acute hypoxia alters the transcription and translation of many genes, including the CF transmembrane conductance regulator (CFTR). CFTR-targeted therapies (modulators) have not been investigated in vitro under chronic hypoxic conditions found in CF airways in vivo. Nasal epithelial cells (hNECs) derived from eight CF and three non-CF participants were expanded and differentiated at the air-liquid interface (26-30 days) at ambient and 2% oxygen tension (hypoxia). Morphology, global proteomics (LC-MS/MS) and function (barrier integrity, cilia motility and ion transport) of basal stem cells and differentiated cultures were assessed. hNECs expanded at chronic hypoxia, demonstrating epithelial cobblestone morphology and a similar proliferation rate to hNECs expanded at normoxia. Hypoxia-inducible proteins and pathways in stem cells and differentiated cultures were identified. Despite the stem cells' plasticity and adaptation to chronic hypoxia, the differentiated epithelium was significantly thinner with reduced barrier integrity. Stem cell lineage commitment shifted to a more secretory epithelial phenotype. Motile cilia abundance, length, beat frequency and coordination were significantly negatively modulated. Chronic hypoxia reduces the activity of epithelial sodium and CFTR ion channels. CFTR modulator drug response was diminished. Our findings shed light on the molecular pathophysiology of hypoxia and its implications in CF. Targeting hypoxia can be a strategy to augment mucosal function and may provide a means to enhance the efficacy of CFTR modulators.
Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Humanos , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Cromatografía Liquida , Células Cultivadas , Espectrometría de Masas en Tándem , Epitelio/metabolismo , Fibrosis Quística/genética , Células Epiteliales/metabolismo , Hipoxia/metabolismoRESUMEN
A significant challenge to making targeted cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapies accessible to all individuals with cystic fibrosis (CF) are many mutations in the CFTR gene that can cause CF, most of which remain uncharacterized. Here, we characterized the structural and functional defects of the rare CFTR mutation R352Q, with a potential role contributing to intrapore chloride ion permeation, in patient-derived cell models of the airway and gut. CFTR function in differentiated nasal epithelial cultures and matched intestinal organoids was assessed using an ion transport assay and forskolin-induced swelling assay, respectively. CFTR potentiators (VX-770, GLPG1837, and VX-445) and correctors (VX-809, VX-445, with or without VX-661) were tested. Data from R352Q-CFTR were compared with data of 20 participants with mutations with known impact on CFTR function. R352Q-CFTR has residual CFTR function that was restored to functional CFTR activity by CFTR potentiators but not the corrector. Molecular dynamics simulations of R352Q-CFTR were carried out, which indicated the presence of a chloride conductance defect, with little evidence supporting a gating defect. The combination approach of in vitro patient-derived cell models and in silico molecular dynamics simulations to characterize rare CFTR mutations can improve the specificity and sensitivity of modulator response predictions and aid in their translational use for CF precision medicine.
Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Aminofenoles/farmacología , Cloruros/metabolismo , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Humanos , Simulación de Dinámica Molecular , Mutación , Organoides/metabolismoRESUMEN
The global urgency to uncover medical countermeasures to combat the COVID-19 pandemic caused by the severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) has revealed an unmet need for robust tissue culture models that faithfully recapitulate key features of human tissues and disease. Infection of the nose is considered the dominant initial site for SARS-CoV-2 infection and models that replicate this entry portal offer the greatest potential for examining and demonstrating the effectiveness of countermeasures designed to prevent or manage this highly communicable disease. Here, we test an air-liquid-interface (ALI) differentiated human nasal epithelium (HNE) culture system as a model of authentic SARS-CoV-2 infection. Progenitor cells (basal cells) were isolated from nasal turbinate brushings, expanded under conditionally reprogrammed cell (CRC) culture conditions and differentiated at ALI. Differentiated cells were inoculated with different SARS-CoV-2 clinical isolates. Infectious virus release into apical washes was determined by TCID50, while infected cells were visualized by immunofluorescence and confocal microscopy. We demonstrate robust, reproducible SARS-CoV-2 infection of ALI-HNE established from different donors. Viral entry and release occurred from the apical surface, and infection was primarily observed in ciliated cells. In contrast to the ancestral clinical isolate, the Delta variant caused considerable cell damage. Successful establishment of ALI-HNE is donor dependent. ALI-HNE recapitulate key features of human SARS-CoV-2 infection of the nose and can serve as a pre-clinical model without the need for invasive collection of human respiratory tissue samples.
Asunto(s)
COVID-19/virología , Mucosa Nasal/citología , Mucosa Nasal/virología , Técnicas de Cultivo de Tejidos/métodos , Adolescente , Adulto , Enzima Convertidora de Angiotensina 2/metabolismo , Técnicas de Cultivo de Célula , Diferenciación Celular , Células Epiteliales/citología , Células Epiteliales/virología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Modelos Biológicos , SARS-CoV-2 , Internalización del VirusRESUMEN
RNA sequencing studies have identified hundreds of non-coding RNAs in bacteria, including regulatory small RNA (sRNA). However, our understanding of sRNA function has lagged behind their identification due to a lack of tools for the high-throughput analysis of RNA-RNA interactions in bacteria. Here we demonstrate that in vivo sRNA-mRNA duplexes can be recovered using UV-crosslinking, ligation and sequencing of hybrids (CLASH). Many sRNAs recruit the endoribonuclease, RNase E, to facilitate processing of mRNAs. We were able to recover base-paired sRNA-mRNA duplexes in association with RNase E, allowing proximity-dependent ligation and sequencing of cognate sRNA-mRNA pairs as chimeric reads. We verified that this approach captures bona fide sRNA-mRNA interactions. Clustering analyses identified novel sRNA seed regions and sets of potentially co-regulated target mRNAs. We identified multiple mRNA targets for the pathotype-specific sRNA Esr41, which was shown to regulate colicin sensitivity and iron transport in E. coli Numerous sRNA interactions were also identified with non-coding RNAs, including sRNAs and tRNAs, demonstrating the high complexity of the sRNA interactome.
Asunto(s)
Endorribonucleasas/metabolismo , Escherichia coli/química , Escherichia coli/enzimología , Regulación Bacteriana de la Expresión Génica , ARN Mensajero/análisis , ARN Pequeño no Traducido/análisis , Escherichia coli/genética , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/aislamiento & purificación , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/aislamiento & purificación , Análisis de Secuencia de ADNRESUMEN
The marsupial inactive X chromosome expresses a long noncoding RNA (lncRNA) called Rsx that has been proposed to be the functional analog of eutherian Xist Despite the possibility that Xist and Rsx encode related functions, the two lncRNAs harbor no linear sequence similarity. However, both lncRNAs harbor domains of tandemly repeated sequence. In Xist, these repeat domains are known to be critical for function. Using k-mer based comparison, we show that the repeat domains of Xist and Rsx unexpectedly partition into two major clusters that each harbor substantial levels of nonlinear sequence similarity. Xist Repeats B, C, and D were most similar to each other and to Rsx Repeat 1, whereas Xist Repeats A and E were most similar to each other and to Rsx Repeats 2, 3, and 4. Similarities at the level of k-mers corresponded to domain-specific enrichment of protein-binding motifs. Within individual domains, protein-binding motifs were often enriched to extreme levels. Our data support the hypothesis that Xist and Rsx encode similar functions through different spatial arrangements of functionally analogous protein-binding domains. We propose that the two clusters of repeat domains in Xist and Rsx function in part to cooperatively recruit PRC1 and PRC2 to chromatin. The physical manner in which these domains engage with protein cofactors may be just as critical to the function of the domains as the protein cofactors themselves. The general approaches we outline in this report should prove useful in the study of any set of RNAs.
Asunto(s)
Marsupiales/genética , ARN Largo no Codificante/química , ARN Largo no Codificante/genética , Animales , Análisis por Conglomerados , Humanos , Marsupiales/metabolismo , Proteínas del Grupo Polycomb/metabolismo , Dominios Proteicos , Homología de Secuencia de Ácido Nucleico , Secuencias Repetidas en Tándem , Inactivación del Cromosoma XRESUMEN
Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. The majority of CFTR mutations result in impaired chloride channel function as only a fraction of the mutated CFTR reaches the plasma membrane. The development of a therapeutic approach that facilitates increased cell-surface expression of CFTR could prove clinically relevant. Here, we evaluate and contrast two molecular approaches to activate CFTR expression. We find that an RNA-guided nuclease null Cas9 (dCas9) fused with a tripartite activator, VP64-p65-Rta can activate endogenous CFTR in cultured human nasal epithelial cells from CF patients. We also find that targeting BGas, a long non-coding RNA involved in transcriptionally modulating CFTR expression with a gapmer, induced both strong knockdown of BGas and concordant activation of CFTR. Notably, the gapmer can be delivered to target cells when generated as electrostatic particles with recombinant HIV-Tat cell penetrating peptide (CPP), when packaged into exosomes, or when loaded into lipid nanoparticles (LNPs). Treatment of patient-derived human nasal epithelial cells containing F508del with gapmer-CPP, gapmer-exosomes, or LNPs resulted in increased expression and function of CFTR. Collectively, these observations suggest that CRISPR/dCas-VPR (CRISPR) and BGas-gapmer approaches can target and specifically activate CFTR.
Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Fibrosis Quística/genética , Terapia Molecular Dirigida/métodos , Mucosa Nasal/metabolismo , Proteína 9 Asociada a CRISPR/metabolismo , Línea Celular , Membrana Celular/metabolismo , Péptidos de Penetración Celular/genética , Fibrosis Quística/metabolismo , Fibrosis Quística/terapia , Células Epiteliales/citología , Células Epiteliales/metabolismo , Humanos , Nanopartículas/química , Mucosa Nasal/citología , ARN Guía de Kinetoplastida/farmacología , ARN Largo no Codificante/genética , Activación Transcripcional , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genéticaRESUMEN
BACKGROUND: Hibernation is a physiological state exploited by many animals exposed to prolonged adverse environmental conditions associated with winter. Large changes in metabolism and cellular function occur, with many stress response pathways modulated to tolerate physiological challenges that might otherwise be lethal. Many studies have sought to elucidate the molecular mechanisms of mammalian hibernation, but detailed analyses are lacking in reptiles. Here we examine gene expression in the Australian central bearded dragon (Pogona vitticeps) using mRNA-seq and label-free quantitative mass spectrometry in matched brain, heart and skeletal muscle samples from animals at late hibernation, 2 days post-arousal and 2 months post-arousal. RESULTS: We identified differentially expressed genes in all tissues between hibernation and post-arousal time points; with 4264 differentially expressed genes in brain, 5340 differentially expressed genes in heart, and 5587 differentially expressed genes in skeletal muscle. Furthermore, we identified 2482 differentially expressed genes across all tissues. Proteomic analysis identified 743 proteins (58 differentially expressed) in brain, 535 (57 differentially expressed) in heart, and 337 (36 differentially expressed) in skeletal muscle. Tissue-specific analyses revealed enrichment of protective mechanisms in all tissues, including neuroprotective pathways in brain, cardiac hypertrophic processes in heart, and atrophy protective pathways in skeletal muscle. In all tissues stress response pathways were induced during hibernation, as well as evidence for gene expression regulation at transcription, translation and post-translation. CONCLUSIONS: These results reveal critical stress response pathways and protective mechanisms that allow for maintenance of both tissue-specific function, and survival during hibernation in the central bearded dragon. Furthermore, we provide evidence for multiple levels of gene expression regulation during hibernation, particularly enrichment of miRNA-mediated translational repression machinery; a process that would allow for rapid and energy efficient reactivation of translation from mature mRNA molecules at arousal. This study is the first molecular investigation of its kind in a hibernating reptile, and identifies strategies not yet observed in other hibernators to cope stress associated with this remarkable state of metabolic depression.
Asunto(s)
Hibernación/genética , Reptiles/genética , Adaptación Fisiológica , Animales , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Especificidad de Órganos , Estrés Oxidativo/genética , Reptiles/metabolismo , Reptiles/fisiología , Proteínas de Reptiles/genética , Proteínas de Reptiles/metabolismoRESUMEN
DNA methylation plays a key role in maintaining transcriptional silence on the inactive X chromosome of eutherian mammals. Beyond eutherians, there are limited genome wide data on DNA methylation from other vertebrates. Previous studies of X borne genes in various marsupial models revealed no differential DNA methylation of promoters between the sexes, leading to the conclusion that CpG methylation plays no role in marsupial X-inactivation. Using reduced representation bisulfite sequencing, we generated male and female CpG methylation profiles in four representative vertebrates (mouse, gray short-tailed opossum, platypus, and chicken). A variety of DNA methylation patterns were observed. Platypus and chicken displayed no large-scale differential DNA methylation between the sexes on the autosomes or the sex chromosomes. As expected, a metagene analysis revealed hypermethylation at transcription start sites (TSS) of genes subject to X-inactivation in female mice. This contrasted with the opossum, in which metagene analysis did not detect differential DNA methylation between the sexes at TSSs of genes subject to X-inactivation. However, regions flanking TSSs of these genes were hypomethylated. Our data are the first to demonstrate that, for genes subject to X-inactivation in both eutherian and marsupial mammals, there is a consistent difference between DNA methylation levels at TSSs and immediate flanking regions, which we propose has a silencing effect in both groups.
Asunto(s)
Metilación de ADN , Marsupiales/genética , Cromosomas Sexuales , Sitio de Iniciación de la Transcripción , Inactivación del Cromosoma X , Animales , Pollos , Femenino , Masculino , RatonesRESUMEN
The dinucleotide CpG is highly underrepresented in the genome of human immunodeficiency virus type 1 (HIV-1). To identify the source of CpG depletion in the HIV-1 genome, we investigated two biological mechanisms: (1) CpG methylation-induced transcriptional silencing and (2) CpG recognition by Toll-like receptors (TLRs). We hypothesized that HIV-1 has been under selective evolutionary pressure by these mechanisms leading to the reduction of CpG in its genome. A CpG depleted genome would enable HIV-1 to avoid methylation-induced transcriptional silencing and/or to avoid recognition by TLRs that identify foreign CpG sequences. We investigated these two hypotheses by determining the sequence context dependency of CpG depletion and comparing it with that of CpG methylation and TLR recognition. We found that in both human and HIV-1 genomes the CpG motifs flanked by T/A were depleted most and those flanked by C/G were depleted least. Similarly, our analyses of human methylome data revealed that the CpG motifs flanked by T/A were methylated most and those flanked by C/G were methylated least. Given that a similar CpG depletion pattern was observed for the human genome within which CpGs are not likely to be recognized by TLRs, we argue that the main source of CpG depletion in HIV-1 is likely host-induced methylation. Analyses of CpG motifs in over 100 viruses revealed that this unique CpG representation pattern is specific to the human and simian immunodeficiency viruses.
Asunto(s)
Islas de CpG , VIH-1/genética , Proteínas Represoras/genética , Secuencia de Bases , Evolución Biológica , Metilación de ADN , Bases de Datos de Ácidos Nucleicos , Fosfatos de Dinucleósidos/genética , Genoma Humano , Humanos , Modelos Estadísticos , Proteínas Represoras/metabolismo , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismoRESUMEN
X chromosome inactivation in eutherian mammals has been thought to be tightly controlled, as expected from a mechanism that compensates for the different dosage of X-borne genes in XX females and XY males. However, many X genes escape inactivation in humans, inactivation of the X in marsupials is partial, and the unrelated sex chromosomes of monotreme mammals have incomplete and gene-specific inactivation of X-linked genes. The bird ZW sex chromosome system represents a third independently evolved amniote sex chromosome system with dosage compensation, albeit partial and gene-specific, via an unknown mechanism (i.e. upregulation of the single Z in females, down regulation of one or both Zs in males, or a combination). We used RNA-fluorescent in situ hybridization (RNA-FISH) to demonstrate, on individual fibroblast cells, inactivation of 11 genes on the chicken Z and 28 genes on the X chromosomes of platypus. Each gene displayed a reproducible frequency of 1Z/1X-active and 2Z/2X-active cells in the homogametic sex. Our results indicate that the probability of inactivation is controlled on a gene-by-gene basis (or small domains) on the chicken Z and platypus X chromosomes. This regulatory mechanism must have been exapted independently to the non-homologous sex chromosomes in birds and mammals in response to an over-expressed Z or X in the homogametic sex, highlighting the universal importance that (at least partial) silencing plays in the evolution on amniote dosage compensation and, therefore, the differentiation of sex chromosomes.
Asunto(s)
Evolución Biológica , Pollos/genética , Ornitorrinco/genética , Cromosomas Sexuales/genética , Inactivación del Cromosoma X/genética , Animales , Pollos/fisiología , Compensación de Dosificación (Genética) , Femenino , Genes Ligados a X , Humanos , Masculino , Ornitorrinco/fisiología , Transcripción GenéticaRESUMEN
BACKGROUND: X chromosome inactivation is the transcriptional silencing of one X chromosome in the somatic cells of female mammals. In eutherian mammals (e.g. humans) one of the two X chromosomes is randomly chosen for silencing, with about 15% (usually in younger evolutionary strata of the X chromosome) of genes escaping this silencing. In contrast, in the distantly related marsupial mammals the paternally derived X is silenced, although not as completely as the eutherian X. A chromosome wide examination of X inactivation, using RNA-seq, was recently undertaken in grey short-tailed opossum (Monodelphis domestica) brain and extraembryonic tissues. However, no such study has been conduced in Australian marsupials, which diverged from their American cousins ~80 million years ago, leaving a large gap in our understanding of marsupial X inactivation. RESULTS: We used RNA-seq data from blood or liver of a family (mother, father and daughter) of tammar wallabies (Macropus eugenii), which in conjunction with available genome sequence from the mother and father, permitted genotyping of 42 expressed heterozygous SNPs on the daughter's X. These 42 SNPs represented 34 X loci, of which 68% (23 of the 34) were confirmed as inactivated on the paternally derived X in the daughter's liver; the remaining 11 X loci escaped inactivation. Seven of the wallaby loci sampled were part of the old X evolutionary stratum, of which three escaped inactivation. Three loci were classified as part of the newer X stratum, of which two escaped inactivation. A meta-analysis of previously published opossum X inactivation data revealed that 5 of 52 genes in the old X stratum escaped inactivation. CONCLUSIONS: We demonstrate that chromosome wide inactivation of the paternal X is common to an Australian marsupial representative, but that there is more escape from inactivation than reported for opossum (32% v 14%). We also provide evidence that, unlike the human X chromosome, the location of loci within the oldest evolutionary stratum on the marsupial X does not correlate with their probability of escape from inactivation.
Asunto(s)
Evolución Biológica , Cromosomas de los Mamíferos/genética , Macropodidae/genética , Mamíferos/genética , Monodelphis/genética , Inactivación del Cromosoma X , Cromosoma X/genética , Animales , Australia , Femenino , Humanos , Masculino , Mamíferos/clasificación , Monodelphis/clasificaciónRESUMEN
CF-related diabetes (CFRD) is a prevalent comorbidity in people with Cystic Fibrosis (CF), significantly impacting morbidity and mortality rates. This review article critically evaluates the current understanding of CFRD molecular mechanisms, including the role of CFTR protein, oxidative stress, unfolded protein response (UPR) and intracellular communication. CFRD manifests from a complex interplay between exocrine pancreatic damage and intrinsic endocrine dysfunction, further complicated by the deleterious effects of misfolded CFTR protein on insulin secretion and action. Studies indicate that ER stress and subsequent UPR activation play critical roles in both exocrine and endocrine pancreatic cell dysfunction, contributing to ß-cell loss and insulin insufficiency. Additionally, oxidative stress and altered calcium flux, exacerbated by CFTR dysfunction, impair ß-cell survival and function, highlighting the significance of antioxidant pathways in CFRD pathogenesis. Emerging evidence underscores the importance of exosomal microRNAs (miRNAs) in mediating inflammatory and stress responses, offering novel insights into CFRD's molecular landscape. Despite insulin therapy remaining the cornerstone of CFRD management, the variability in response to CFTR modulators underscores the need for personalized treatment approaches. The review advocates for further research into non-CFTR therapeutic targets, emphasizing the need to address the multifaceted pathophysiology of CFRD. Understanding the intricate mechanisms underlying CFRD will pave the way for innovative treatments, moving beyond insulin therapy to target the disease's root causes and improve the quality of life for individuals with CF.
Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Diabetes Mellitus , Estrés del Retículo Endoplásmico , Estrés Oxidativo , Humanos , Fibrosis Quística/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Diabetes Mellitus/metabolismo , Insulina/metabolismo , Respuesta de Proteína Desplegada/fisiología , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/fisiologíaRESUMEN
The marsupial specific RSX lncRNA is the functional analogue of the eutherian specific XIST, which coordinates X chromosome inactivation. We characterized the RSX interactome in a marsupial representative (the opossum Monodelphis domestica), identifying 135 proteins, of which 54 had orthologues in the XIST interactome. Both interactomes were enriched for biological pathways related to RNA processing, regulation of translation, and epigenetic transcriptional silencing. This represents a remarkable example showcasing the functional coherence of independently evolved lncRNAs in distantly related mammalian lineages.
Asunto(s)
ARN Largo no Codificante , Inactivación del Cromosoma X , Animales , ARN Largo no Codificante/metabolismo , ARN Largo no Codificante/genética , Monodelphis/genética , Monodelphis/metabolismoRESUMEN
Continuous assessment of the impact of SARS-CoV-2 on the host at the cell-type level is crucial for understanding key mechanisms involved in host defense responses to viral infection. We investigated host response to ancestral-strain and Alpha-variant SARS-CoV-2 infections within air-liquid-interface human nasal epithelial cells from younger adults (26-32 Y) and older children (12-14 Y) using single-cell RNA-sequencing. Ciliated and secretory-ciliated cells formed the majority of highly infected cell-types, with the latter derived from ciliated lineages. Strong innate immune responses were observed across lowly infected and uninfected bystander cells and heightened in Alpha-infection. Alpha highly infected cells showed increased expression of protein-refolding genes compared with ancestral-strain-infected cells in children. Furthermore, oxidative phosphorylation-related genes were down-regulated in bystander cells versus infected and mock-control cells, underscoring the importance of these biological functions for viral replication. Overall, this study highlights the complexity of cell-type-, age- and viral strain-dependent host epithelial responses to SARS-CoV-2.
RESUMEN
Primary nasal epithelial cells and culture models are used as important diagnostic, research and drug development tools for several airway diseases. Various instruments have been used for the collection of human nasal epithelial (HNE) cells but no global consensus yet exists regarding the optimal tool. This study compares the efficiency of two cytology brushes (Olympus (2 mm diameter) and Endoscan (8 mm diameter)) in collecting HNE cells. The study involved two phases, with phase one comparing the yield, morphology and cilia beat frequency (CBF) of cells collected from paediatric participants using each of the two brushes. Phase two compared nasal brushing under general anaesthetic and in the awake state, across a wide age range, via the retrospective audit of the use of the Endoscan brush in 145 participants. Results indicated no significant difference in CBF measurements between the two brushes, suggesting that the choice of brush does not compromise diagnostic accuracy. However, the Endoscan brush collected significantly more total and live cells than the Olympus brush, making it a more efficient option. Importantly, the Endoscan brush is more cost-effective, with a notable price difference between the two brushes.
RESUMEN
Soft materials in nature are formed through reversible supramolecular assembly of biological polymers into dynamic hierarchical networks. Rational design has led to self-assembling peptides with structural similarities to natural materials. However, recreating the dynamic functional properties inherent to natural systems remains challenging. Here we report the discovery of a short peptide based on the tryptophan zipper (trpzip) motif, that shows multiscale hierarchical ordering that leads to emergent dynamic properties. Trpzip hydrogels are antimicrobial and self-healing, with tunable viscoelasticity and unique yield-stress properties that allow immediate harvest of embedded cells through a flick of the wrist. This characteristic makes Trpzip hydrogels amenable to syringe extrusion, which we demonstrate with examples of cell delivery and bioprinting. Trpzip hydrogels display innate bioactivity, allowing propagation of human intestinal organoids with apical-basal polarization. Considering these extensive attributes, we anticipate the Trpzip motif will prove a versatile building block for supramolecular assembly of soft materials for biotechnology and medicine.
Asunto(s)
Hidrogeles , Triptófano , Humanos , Triptófano/química , Hidrogeles/química , Péptidos/química , Biotecnología , OrganoidesRESUMEN
Background: Cystic fibrosis (CF) is caused by a wide spectrum of mutations in the CF transmembrane conductance regulator (CFTR) gene, with some leading to non-classical clinical presentations. We present an integrated in vivo, in silico and in vitro investigation of an individual with CF carrying the rare Q1291H-CFTR allele and the common F508del allele. At age 56 years, the participant had obstructive lung disease and bronchiectasis, qualifying for Elexacaftor/Tezacaftor/Ivacaftor (ETI) CFTR modulator treatment due to their F508del allele. Q1291H CFTR incurs a splicing defect, producing both a normally spliced but mutant mRNA isoform and a misspliced isoform with a premature termination codon, causing nonsense mediated decay. The effectiveness of ETI in restoring Q1291H-CFTR is largely unknown. Methods: We collected clinical endpoint measurements, including forced expiratory volume in 1 s percent predicted (FEV1pp) and body mass index (BMI), and examined medical history. In silico simulations of the Q1291H-CFTR were compared to Q1291R, G551D, and wild-type (WT)-CFTR. We quantified relative Q1291H CFTR mRNA isoform abundance in patient-derived nasal epithelial cells. Differentiated pseudostratified airway epithelial cell models at air liquid interface were created and ETI treatment impact on CFTR was assessed by electrophysiology assays and Western blot. Results: The participant ceased ETI treatment after 3 months due to adverse events and no improvement in FEV1pp or BMI. In silico simulations of Q1291H-CFTR identified impairment of ATP binding similar to known gating mutants Q1291R and G551D-CFTR. Q1291H and F508del mRNA transcripts composed 32.91% and 67.09% of total mRNA respectively, indicating 50.94% of Q1291H mRNA was misspliced and degraded. Mature Q1291H-CFTR protein expression was reduced (3.18% ± 0.60% of WT/WT) and remained unchanged with ETI. Baseline CFTR activity was minimal (3.45 ± 0.25 µA/cm2) and not enhanced with ETI (5.73 ± 0.48 µA/cm2), aligning with the individual's clinical evaluation as a non-responder to ETI. Conclusion: The combination of in silico simulations and in vitro theratyping in patient-derived cell models can effectively assess CFTR modulator efficacy for individuals with non-classical CF manifestations or rare CFTR mutations, guiding personalized treatment strategies and optimizing clinical outcomes.
RESUMEN
The liver is a prime target for in vivo gene therapies using recombinant adeno-associated viral vectors. Multiple clinical trials have been undertaken for this target in the past 15 years; however, we are still to see market approval of the first liver-targeted adeno-associated virus (AAV)-based gene therapy. Inefficient expression of the therapeutic transgene, vector-induced liver toxicity and capsid, and/or transgene-mediated immune responses reported at high vector doses are the main challenges to date. One of the contributing factors to the insufficient clinical outcomes, despite highly encouraging preclinical data, is the lack of robust, biologically and clinically predictive preclinical models. To this end, this study reports findings of a functional evaluation of 6 AAV vectors in 12 preclinical models of the human liver, with the aim to uncover which combination of models is the most relevant for the identification of AAV capsid variant for safe and efficient transgene delivery to primary human hepatocytes. The results, generated by studies in models ranging from immortalized cells, iPSC-derived and primary hepatocytes, and primary human hepatic organoids to in vivo models, increased our understanding of the strengths and weaknesses of each system. This should allow the development of novel gene therapies targeting the human liver.