Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 77(4): 709-722.e7, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-31932165

RESUMEN

Bacteria are continually challenged by foreign invaders, including bacteriophages, and have evolved a variety of defenses against these invaders. Here, we describe the structural and biochemical mechanisms of a bacteriophage immunity pathway found in a broad array of bacteria, including E. coli and Pseudomonas aeruginosa. This pathway uses eukaryotic-like HORMA domain proteins that recognize specific peptides, then bind and activate a cGAS/DncV-like nucleotidyltransferase (CD-NTase) to generate a cyclic triadenylate (cAAA) second messenger; cAAA in turn activates an endonuclease effector, NucC. Signaling is attenuated by a homolog of the AAA+ ATPase Pch2/TRIP13, which binds and disassembles the active HORMA-CD-NTase complex. When expressed in non-pathogenic E. coli, this pathway confers immunity against bacteriophage λ through an abortive infection mechanism. Our findings reveal the molecular mechanisms of a bacterial defense pathway integrating a cGAS-like nucleotidyltransferase with HORMA domain proteins for threat sensing through protein detection and negative regulation by a Trip13 ATPase.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas Bacterianas/metabolismo , Escherichia coli/virología , Nucleotidiltransferasas/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/química , Proteínas Bacterianas/química , Bacteriófago lambda/fisiología , Desoxirribonucleasa I/metabolismo , Escherichia coli/inmunología , Escherichia coli/metabolismo , Nucleotidiltransferasas/química , Péptidos/metabolismo , Sistemas de Mensajero Secundario
2.
Mol Cell ; 77(4): 723-733.e6, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-31932164

RESUMEN

Bacteria possess an array of defenses against foreign invaders, including a broadly distributed bacteriophage defense system termed CBASS (cyclic oligonucleotide-based anti-phage signaling system). In CBASS systems, a cGAS/DncV-like nucleotidyltransferase synthesizes cyclic di- or tri-nucleotide second messengers in response to infection, and these molecules activate diverse effectors to mediate bacteriophage immunity via abortive infection. Here, we show that the CBASS effector NucC is related to restriction enzymes but uniquely assembles into a homotrimer. Binding of NucC trimers to a cyclic tri-adenylate second messenger promotes assembly of a NucC homohexamer competent for non-specific double-strand DNA cleavage. In infected cells, NucC activation leads to complete destruction of the bacterial chromosome, causing cell death prior to completion of phage replication. In addition to CBASS systems, we identify NucC homologs in over 30 type III CRISPR/Cas systems, where they likely function as accessory nucleases activated by cyclic oligoadenylate second messengers synthesized by these systems' effector complexes.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Desoxirribonucleasa I/química , Desoxirribonucleasa I/metabolismo , Escherichia coli/virología , Regulación Alostérica , Bacteriófago lambda/genética , Bacteriófago lambda/fisiología , Sistemas CRISPR-Cas , División del ADN , Enzimas de Restricción del ADN/química , Escherichia coli/enzimología , Escherichia coli/inmunología , Genoma Viral , Multimerización de Proteína , Sistemas de Mensajero Secundario
3.
Arterioscler Thromb Vasc Biol ; 44(7): e196-e206, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38841856

RESUMEN

BACKGROUND: Statin effects extend beyond low-density lipoprotein cholesterol reduction, potentially modulating the metabolism of bioactive lipids (BALs), crucial for biological signaling and inflammation. These bioactive metabolites may serve as metabolic footprints, helping uncover underlying processes linked to pleiotropic effects of statins and yielding a better understanding of their cardioprotective properties. This study aimed to investigate the impact of high-intensity statin therapy versus placebo on plasma BALs in the JUPITER trial (Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin; NCT00239681), a randomized primary prevention trial involving individuals with low-density lipoprotein cholesterol <130 mg/dL and high-sensitivity C-reactive protein ≥2 mg/L. METHODS: Using a nontargeted mass spectrometry approach, over 11 000 lipid features were assayed from baseline and 1-year plasma samples from cardiovascular disease noncases from 2 nonoverlapping nested substudies: JUPITERdiscovery (n=589) and JUPITERvalidation (n=409). The effect of randomized allocation of rosuvastatin 20 mg versus placebo on BALs was examined by fitting a linear regression with delta values (∆=year 1-baseline) adjusted for age and baseline levels of each feature. Significant associations in discovery were analyzed in the validation cohort. Multiple comparisons were adjusted using 2-stage overall false discovery rate. RESULTS: We identified 610 lipid features associated with statin randomization with significant replication (overall false discovery rate, <0.05), including 26 with annotations. Statin therapy significantly increased levels of 276 features, including BALs with anti-inflammatory activity and arterial vasodilation properties. Concurrently, 334 features were significantly lowered by statin therapy, including arachidonic acid and proinflammatory and proplatelet aggregation BALs. By contrast, statin therapy reduced an eicosapentaenoic acid-derived hydroxyeicosapentaenoic acid metabolite, which may be related to impaired glucose metabolism. Additionally, we observed sex-related differences in 6 lipid metabolites and 6 unknown features. CONCLUSIONS: Statin allocation was significantly associated with upregulation of BALs with anti-inflammatory, antiplatelet aggregation and antioxidant properties and downregulation of BALs with proinflammatory and proplatelet aggregation activity, supporting the pleiotropic effects of statins beyond low-density lipoprotein cholesterol reduction.


Asunto(s)
Biomarcadores , Enfermedades Cardiovasculares , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Prevención Primaria , Rosuvastatina Cálcica , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Rosuvastatina Cálcica/uso terapéutico , Masculino , Femenino , Persona de Mediana Edad , Anciano , Enfermedades Cardiovasculares/prevención & control , Enfermedades Cardiovasculares/sangre , Biomarcadores/sangre , Prevención Primaria/métodos , Factores de Tiempo , Resultado del Tratamiento , LDL-Colesterol/sangre , Lípidos/sangre , Dislipidemias/tratamiento farmacológico , Dislipidemias/sangre , Dislipidemias/diagnóstico , Lipidómica
4.
Nucleic Acids Res ; 51(9): 4178-4190, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37070603

RESUMEN

The human gut microbiome has been linked to health and disease. Investigation of the human microbiome has largely employed 16S amplicon sequencing, with limited ability to distinguish microbes at the species level. Herein, we describe the development of Reference-based Exact Mapping (RExMap) of microbial amplicon variants that enables mapping of microbial species from standard 16S sequencing data. RExMap analysis of 16S data captures ∼75% of microbial species identified by whole-genome shotgun sequencing, despite hundreds-fold less sequencing depth. RExMap re-analysis of existing 16S data from 29,349 individuals across 16 regions from around the world reveals a detailed landscape of gut microbial species across populations and geography. Moreover, RExMap identifies a core set of fifteen gut microbes shared by humans. Core microbes are established soon after birth and closely associate with BMI across multiple independent studies. RExMap and the human microbiome dataset are presented as resources with which to explore the role of the human microbiome.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos , Bacterias/clasificación , Microbioma Gastrointestinal/genética , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
5.
Circ Res ; 131(4): e84-e99, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35862024

RESUMEN

BACKGROUND: To clarify the mechanisms underlying physical activity (PA)-related cardioprotection, we examined the association of PA with plasma bioactive lipids (BALs) and cardiovascular disease (CVD) events. We additionally performed genome-wide associations. METHODS: PA-bioactive lipid associations were examined in VITAL (VITamin D and OmegA-3 TriaL)-clinical translational science center (REGISTRATION: URL: https://www. CLINICALTRIALS: gov; Unique identifier: NCT01169259; N=1032) and validated in JUPITER (Justification for the Use of statins in Prevention: an Intervention Trial Evaluating Rosuvastatin)-NC (REGISTRATION: URL: https://www. CLINICALTRIALS: gov; Unique identifier: NCT00239681; N=589), using linear models adjusted for age, sex, race, low-density lipoprotein-cholesterol, total-C, and smoking. Significant BALs were carried over to examine associations with incident CVD in 2 nested CVD case-control studies: VITAL-CVD (741 case-control pairs) and JUPITER-CVD (415 case-control pairs; validation). RESULTS: We detected 145 PA-bioactive lipid validated associations (false discovery rate <0.1). Annotations were found for 6 of these BALs: 12,13-diHOME, 9,10-diHOME, lysoPC(15:0), oxymorphone-3b-D-glucuronide, cortisone, and oleoyl-glycerol. Genetic analysis within JUPITER-NC showed associations of 32 PA-related BALs with 22 single-nucleotide polymorphisms. From PA-related BALs, 12 are associated with CVD. CONCLUSIONS: We identified a PA-related bioactive lipidome profile out of which 12 BALs also had opposite associations with incident CVD events.


Asunto(s)
Enfermedades Cardiovasculares , Ejercicio Físico , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/genética , LDL-Colesterol , Humanos , Factores de Riesgo , Rosuvastatina Cálcica
6.
N Engl J Med ; 383(8): 721-732, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32813948

RESUMEN

BACKGROUND: Some studies have suggested that in people with type 2 diabetes, Roux-en-Y gastric bypass has therapeutic effects on metabolic function that are independent of weight loss. METHODS: We evaluated metabolic regulators of glucose homeostasis before and after matched (approximately 18%) weight loss induced by gastric bypass (surgery group) or diet alone (diet group) in 22 patients with obesity and diabetes. The primary outcome was the change in hepatic insulin sensitivity, assessed by infusion of insulin at low rates (stages 1 and 2 of a 3-stage hyperinsulinemic euglycemic pancreatic clamp). Secondary outcomes were changes in muscle insulin sensitivity, beta-cell function, and 24-hour plasma glucose and insulin profiles. RESULTS: Weight loss was associated with increases in mean suppression of glucose production from baseline, by 7.04 µmol per kilogram of fat-free mass per minute (95% confidence interval [CI], 4.74 to 9.33) in the diet group and by 7.02 µmol per kilogram of fat-free mass per minute (95% CI, 3.21 to 10.84) in the surgery group during clamp stage 1, and by 5.39 (95% CI, 2.44 to 8.34) and 5.37 (95% CI, 2.41 to 8.33) µmol per kilogram of fat-free mass per minute in the two groups, respectively, during clamp stage 2; there were no significant differences between the groups. Weight loss was associated with increased insulin-stimulated glucose disposal, from 30.5±15.9 to 61.6±13.0 µmol per kilogram of fat-free mass per minute in the diet group and from 29.4±12.6 to 54.5±10.4 µmol per kilogram of fat-free mass per minute in the surgery group; there was no significant difference between the groups. Weight loss increased beta-cell function (insulin secretion relative to insulin sensitivity) by 1.83 units (95% CI, 1.22 to 2.44) in the diet group and by 1.11 units (95% CI, 0.08 to 2.15) in the surgery group, with no significant difference between the groups, and it decreased the areas under the curve for 24-hour plasma glucose and insulin levels in both groups, with no significant difference between the groups. No major complications occurred in either group. CONCLUSIONS: In this study involving patients with obesity and type 2 diabetes, the metabolic benefits of gastric bypass surgery and diet were similar and were apparently related to weight loss itself, with no evident clinically important effects independent of weight loss. (Funded by the National Institutes of Health and others; ClinicalTrials.gov number, NCT02207777.).


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Derivación Gástrica , Obesidad/dietoterapia , Obesidad/cirugía , Pérdida de Peso/fisiología , Adulto , Glucemia/análisis , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/dietoterapia , Diabetes Mellitus Tipo 2/cirugía , Femenino , Técnica de Clampeo de la Glucosa , Humanos , Insulina/metabolismo , Resistencia a la Insulina/fisiología , Masculino , Persona de Mediana Edad , Obesidad/complicaciones , Estudios Prospectivos , Inducción de Remisión
7.
Metabolomics ; 16(12): 125, 2020 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-33249526

RESUMEN

INTRODUCTION: Choline is an essential human nutrient that is particular important for proliferating cells, and altered choline metabolism has been associated with cancer transformation. Yet, the various metabolic fates of choline in proliferating cells have not been investigated systematically. OBJECTIVES: This study aims to map the metabolic products of choline in normal and cancerous proliferating cells. METHODS: We performed 13C-choline tracing followed by liquid chromatography-high resolution mass spectrometry (LC-HRMS) analysis of metabolic products in normal and in vitro-transformed (tumor-forming) epithelial cells, and also in tumor-derived cancer cell lines. Selected metabolites were quantified by internal standards. RESULTS: Untargeted analysis revealed 121 LCMS peaks that were 13C-labeled from choline, including various phospholipid species, but also previously unknown products such as monomethyl- and dimethyl-ethanolamines. Interestingly, we observed formation of betaine from choline specifically in tumor-derived cells. Expression of choline dehydrogenase (CHDH), which catalyzes the first step of betaine synthesis, correlated with betaine synthesis across the cell lines studied. RNAi silencing of CHDH did not affect cell proliferation, although we observed an increased fraction of G2M phase cells with some RNAi sequences, suggesting that CHDH and its product betaine may play a role in cell cycle progression. Betaine cell concentration was around 10 µM, arguing against an osmotic function, and was not used as a methyl donor. The function of betaine in these tumor-derived cells is presently unknown. CONCLUSION: This study identifies novel metabolites of choline in cancer and normal cell lines, and reveals altered choline metabolism in cancer cells.


Asunto(s)
Colina/metabolismo , Redes y Vías Metabólicas , Metabolómica , Catálisis , Línea Celular Tumoral , Cromatografía Liquida , Técnicas de Silenciamiento del Gen , Humanos , Espectrometría de Masas , Metabolómica/métodos , Metilación
8.
Anal Chem ; 91(19): 12407-12413, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31483992

RESUMEN

Liquid chromatography-mass spectrometry (LC-MS)-based metabolomics has emerged as a valuable tool for biological discovery, capable of assaying thousands of diverse chemical entities in a single biospecimen. Processing of nontargeted LC-MS spectral data requires identification and isolation of true spectral features from the random, false noise peaks that comprise a significant portion of total signals, using inexact peak selection algorithms and time-consuming visual inspection of data. To increase the fidelity and speed of data processing, herein we establish, optimize, and evaluate a machine learning pipeline employing deep neural networks as well as a simpler multiple logistic regression model for classification of spectral features from nontargeted LC-MS metabolomics data. Machine learning-based approaches were found to remove up to 90% of false peaks from complex nontargeted LC-MS data sets without reducing true positive signals and exhibit excellent reproducibility across multiple data sets. Application of machine learning for nontargeted LC-MS-based peak selection provides for robust and scalable peak classification and data filtering, enabling handling and processing of large scale, complex metabolomics data sets.


Asunto(s)
Cromatografía Liquida , Análisis de Datos , Aprendizaje Profundo , Espectrometría de Masas , Metabolómica
10.
Proc Natl Acad Sci U S A ; 112(10): 3086-91, 2015 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-25713360

RESUMEN

Bacteria have evolved the ability to produce a wide range of structurally complex natural products historically called "secondary" metabolites. Although some of these compounds have been identified as bacterial communication cues, more frequently natural products are scrutinized for antibiotic activities that are relevant to human health. However, there has been little regard for how these compounds might otherwise impact the physiology of neighboring microbes present in complex communities. Bacillus cereus secretes molecules that activate expression of biofilm genes in Bacillus subtilis. Here, we use imaging mass spectrometry to identify the thiocillins, a group of thiazolyl peptide antibiotics, as biofilm matrix-inducing compounds produced by B. cereus. We found that thiocillin increased the population of matrix-producing B. subtilis cells and that this activity could be abolished by multiple structural alterations. Importantly, a mutation that eliminated thiocillin's antibiotic activity did not affect its ability to induce biofilm gene expression in B. subtilis. We go on to show that biofilm induction appears to be a general phenomenon of multiple structurally diverse thiazolyl peptides and use this activity to confirm the presence of thiazolyl peptide gene clusters in other bacterial species. Our results indicate that the roles of secondary metabolites initially identified as antibiotics may have more complex effects--acting not only as killing agents, but also as specific modulators of microbial cellular phenotypes.


Asunto(s)
Antibacterianos/farmacología , Bacillus subtilis/efectos de los fármacos , Biopelículas , Péptidos/farmacología , Secuencia de Aminoácidos , Antibacterianos/química , Bacillus subtilis/fisiología , Espectrometría de Masas , Datos de Secuencia Molecular , Péptidos/química
11.
Anal Chem ; 89(11): 5713-5718, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28514166

RESUMEN

Analyzing mass spectrometry-based metabolomics data presents a major challenge to metabolism researchers, as it requires downloading and processing large data volumes through complex "pipelines", even in cases where only a single metabolite or peak is of interest. This presents a significant hurdle for data sharing, reanalysis, or meta-analysis of existing data sets, whether locally stored or available from public repositories. Here we introduce mzAccess, a software system that provides interactive, online access to primary mass spectrometry data in real-time via a Web service protocol, circumventing the need for bulk data processing. mzAccess allows querying instrument data for spectra, chromatograms, or two-dimensional MZ-RT areas in either profile or centroid modes through a simple, uniform interface that is independent of vendor or instrument type. Using a cache mechanism, mzAccess achieves response times in the millisecond range for typical liquid chromatography-mass spectrometry (LC-MS) peaks, enabling real-time browsing of large data sets with hundreds or even thousands of samples. By simplifying access to metabolite data, we hope that this system will help enable data sharing and reanalysis in the metabolomics field.


Asunto(s)
Análisis de Datos , Difusión de la Información , Internet , Metabolómica , Programas Informáticos , Cromatografía Liquida , Conjuntos de Datos como Asunto , Espectrometría de Masas
12.
Anal Chem ; 89(3): 1399-1404, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28208263

RESUMEN

Untargeted liquid-chromatography-mass spectrometry (LC-MS)-based metabolomics analysis of human biospecimens has become among the most promising strategies for probing the underpinnings of human health and disease. Analysis of spectral data across population scale cohorts, however, is precluded by day-to-day nonlinear signal drifts in LC retention time or batch effects that complicate comparison of thousands of untargeted peaks. To date, there exists no efficient means of visualization and quantitative assessment of signal drift, correction of drift when present, and automated filtering of unstable spectral features, particularly across thousands of data files in population scale experiments. Herein, we report the development of a set of R-based scripts that allow for pre- and postprocessing of raw LC-MS data. These methods can be integrated with existing data analysis workflows by providing initial preprocessing bulk nonlinear retention time correction at the raw data level. Further, this approach provides postprocessing visualization and quantification of peak alignment accuracy, as well as peak-reliability-based parsing of processed data through hierarchical clustering of signal profiles. In a metabolomics data set derived from ∼3000 human plasma samples, we find that application of our alignment tools resulted in substantial improvement in peak alignment accuracy, automated data filtering, and ultimately statistical power for detection of metabolite correlates of clinical measures. These tools will enable metabolomics studies of population scale cohorts.


Asunto(s)
Metabolómica/métodos , Cromatografía Líquida de Alta Presión/métodos , Análisis por Conglomerados , Humanos , Plasma/metabolismo , Espectrometría de Masas en Tándem/métodos
13.
Proc Natl Acad Sci U S A ; 110(28): E2611-20, 2013 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-23798442

RESUMEN

The ability to correlate the production of specialized metabolites to the genetic capacity of the organism that produces such molecules has become an invaluable tool in aiding the discovery of biotechnologically applicable molecules. Here, we accomplish this task by matching molecular families with gene cluster families, making these correlations to 60 microbes at one time instead of connecting one molecule to one organism at a time, such as how it is traditionally done. We can correlate these families through the use of nanospray desorption electrospray ionization MS/MS, an ambient pressure MS technique, in conjunction with MS/MS networking and peptidogenomics. We matched the molecular families of peptide natural products produced by 42 bacilli and 18 pseudomonads through the generation of amino acid sequence tags from MS/MS data of specific clusters found in the MS/MS network. These sequence tags were then linked to biosynthetic gene clusters in publicly accessible genomes, providing us with the ability to link particular molecules with the genes that produced them. As an example of its use, this approach was applied to two unsequenced Pseudoalteromonas species, leading to the discovery of the gene cluster for a molecular family, the bromoalterochromides, in the previously sequenced strain P. piscicida JCM 20779(T). The approach itself is not limited to 60 related strains, because spectral networking can be readily adopted to look at molecular family-gene cluster families of hundreds or more diverse organisms in one single MS/MS network.


Asunto(s)
Familia de Multigenes , Espectrometría de Masas en Tándem/métodos , Secuencia de Aminoácidos , Bacillus/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Datos de Secuencia Molecular , Péptidos/química , Péptidos/genética , Pseudomonas/genética
14.
Artículo en Inglés | MEDLINE | ID: mdl-39076001

RESUMEN

CONTEXT: Phenylacetylglutamine (PAGln) is a novel metabolite derived from gut microbial metabolism of dietary proteins, specifically phenylalanine, which may be linked to risks of adverse cardiovascular events. OBJECTIVE: We investigated whether higher plasma levels of PAGln were associated with a greater risk of incident coronary heart disease (CHD) and tested whether adherence to a plant-based diet, which characterizes habitual dietary patterns of animal and plant food intake, modified the associations. METHODS: We examined associations between plasma PAGln and risk of incident CHD over 11-16 years in a nested case-control study of 1520 women (760 incident cases and 760 controls) from the Nurses' Health Study. Separately, we analyzed relations between PAGln and dietary intakes measured through dietary records in the Women's Lifestyle Validation Study (n=725). RESULTS: Higher PAGln levels were related to a greater risk of CHD (p <0.05 for dose-response relationship). Higher PAGln was associated with greater red/processed meat intake and lower vegetable intake (p <0.05 for all). We found a significant interaction between PAGln and adherence to plant-based diet index (PDI) on CHD (Pinteraction=0.008); higher PAGln levels were associated with an increased risk of CHD (relative risk per 1 SD: 1.22 [95% CI: 1.05, 1.41]) among women with low PDI but not among those with high PDI. CONCLUSION: Higher PAGln was associated with higher risk of CHD, particularly in women with dietary patterns of eating more animal foods and fewer plant-based foods. Adherence to plant-based diets might attenuate unfavorable associations between a novel microbial metabolite and CHD risk.

15.
bioRxiv ; 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38328113

RESUMEN

Pulmonary arterial hypertension (PAH) is a rare and fatal vascular disease with heterogeneous clinical manifestations. To date, molecular determinants underlying the development of PAH and related outcomes remain poorly understood. Herein, we identify pulmonary primary oxysterol and bile acid synthesis (PPOBAS) as a previously unrecognized pathway central to PAH pathophysiology. Mass spectrometry analysis of 2,756 individuals across five independent studies revealed 51 distinct circulating metabolites that predicted PAH-related mortality and were enriched within the PPOBAS pathway. Across independent single-center PAH studies, PPOBAS pathway metabolites were also associated with multiple cardiopulmonary measures of PAH-specific pathophysiology. Furthermore, PPOBAS metabolites were found to be increased in human and rodent PAH lung tissue and specifically produced by pulmonary endothelial cells, consistent with pulmonary origin. Finally, a poly-metabolite risk score comprising 13 PPOBAS molecules was found to not only predict PAH-related mortality but also outperform current clinical risk scores. This work identifies PPOBAS as specifically altered within PAH and establishes needed prognostic biomarkers for guiding therapy in PAH.

16.
medRxiv ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39148854

RESUMEN

Immune related adverse events (irAEs) after immune checkpoint blockade (ICB) therapy occur in a significant proportion of cancer patients. To date, the circulating mediators of ICB-irAEs remain poorly understood. Using non-targeted mass spectrometry, here we identify the circulating bio-active lipid linoleoyl-lysophosphatidylcholine (LPC 18:2) as a modulator of ICB-irAEs. In three independent human studies of ICB treatment for solid tumor, loss of circulating LPC 18:2 preceded the development of severe irAEs across multiple organ systems. In both healthy humans and severe ICB-irAE patients, low LPC 18:2 was found to correlate with high blood neutrophilia. Reduced LPC 18:2 biosynthesis was confirmed in preclinical ICB-irAE models, and LPC 18:2 supplementation in vivo suppressed neutrophilia and tissue inflammation without impacting ICB anti-tumor response. Results indicate that circulating LPC 18:2 suppresses human ICB-irAEs, and LPC 18:2 supplementation may improve ICB outcomes by preventing severe inflammation while maintaining anti-tumor immunity.

17.
Metabolites ; 13(2)2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36837791

RESUMEN

Drug transporters and drug-metabolizing enzymes are primarily known for their role in the absorption, distribution, metabolism, and excretion (ADME) of small molecule drugs, but they also play a key role in handling endogenous metabolites. Recent cross-tissue co-expression network analyses have revealed a "Remote Sensing and Signaling Network" of multispecific, oligo-specific, and monospecific transporters and enzymes involved in endogenous metabolism. This includes many proteins from families involved in ADME (e.g., SLC22, SLCO, ABCC, CYP, UGT). Focusing on the gut-liver-kidney axis, we identified the endogenous metabolites potentially regulated by this network of ~1000 proteins by associating SNPs in these genes with the circulating levels of thousands of small, polar, bioactive metabolites, including free fatty acids, eicosanoids, bile acids, and other signaling metabolites that act in part via G-protein coupled receptors (GPCRs), nuclear receptors, and kinases. We identified 77 genomic loci associated with 7236 unique metabolites. This included metabolites that were associated with multiple, distinct loci, indicating coordinated regulation between multiple genes (including drug transporters and drug-metabolizing enzymes) of specific metabolites. We analyzed existing pharmacogenomic data and noted SNPs implicated in endogenous metabolite handling (e.g., rs4149056 in SLCO1B1) also affecting drug ADME. The overall results support the existence of close relationships, via interactions with signaling metabolites, between drug transporters and drug-metabolizing enzymes that are part of the Remote Sensing and Signaling Network, and with GPCRs and nuclear receptors. These analyses highlight the potential for drug-metabolite interactions at the interfaces of the Remote Sensing and Signaling Network and the ADME protein network.

18.
JCI Insight ; 8(12)2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-37159276

RESUMEN

BACKGROUNDThere is considerable heterogeneity in the effect of weight loss on metabolic function in people with obesity.METHODSWe evaluated muscle and liver insulin sensitivity, body composition, and circulating factors associated with insulin action before and after approximately 20% weight loss in women identified as "Responders" (n = 11) or "Non-responders" (n = 11), defined as the top (>75% increase) and bottom (<5% increase) quartiles of the weight loss-induced increase in glucose disposal rate (GDR) during a hyperinsulinemic-euglycemic clamp procedure, among 43 women with obesity (BMI: 44.1 ± 7.9 kg/m2).RESULTSAt baseline, GDR, which provides an index of muscle insulin sensitivity, and the hepatic insulin sensitivity index were more than 50% lower in Responders than Non-responders, but both increased much more after weight loss in Responders than Non-responders, which eliminated the differences between groups. Weight loss also caused greater decreases in intrahepatic triglyceride content and plasma adiponectin and PAI-1 concentrations in Responders than Non-responders and greater insulin-mediated suppression of plasma free fatty acids, branched-chain amino acids, and C3/C5 acylcarnitines in Non-responders than Responders, so that differences between groups at baseline were no longer present after weight loss. The effect of weight loss on total body fat mass, intra-abdominal adipose tissue volume, adipocyte size, and circulating inflammatory markers were not different between groups.CONCLUSIONThe results from our study demonstrate that the heterogeneity in the effects of marked weight loss on muscle and hepatic insulin sensitivity in people with obesity is determined by baseline insulin action, and reaches a ceiling when "normal" insulin action is achieved.TRIAL REGISTRATIONNCT00981500, NCT01299519, NCT02207777.FUNDINGNIH grants P30 DK056341, P30 DK020579, P30 DK052574, UL1 TR002345, and T32 HL13035, the American Diabetes Association (1-18-ICTS-119), the Longer Life Foundation (2019-011), and the Atkins Philanthropic Trust.


Asunto(s)
Resistencia a la Insulina , Humanos , Femenino , Resistencia a la Insulina/fisiología , Glucemia/metabolismo , Obesidad/metabolismo , Insulina/metabolismo , Pérdida de Peso/fisiología , Glucosa
19.
Chest ; 163(1): 204-215, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36087794

RESUMEN

BACKGROUND: The prognosis and therapeutic responses are worse for pulmonary arterial hypertension associated with systemic sclerosis (SSc-PAH) compared with idiopathic pulmonary arterial hypertension (IPAH). This discrepancy could be driven by divergence in underlying metabolic determinants of disease. RESEARCH QUESTION: Are circulating bioactive metabolites differentially altered in SSc-PAH vs IPAH, and can this alteration explain clinical disparity between these PAH subgroups? STUDY DESIGN AND METHODS: Plasma biosamples from 400 patients with SSc-PAH and 1,082 patients with IPAH were included in the study. Another cohort of 100 patients with scleroderma with no PH and 44 patients with scleroderma with PH was included for external validation. More than 700 bioactive lipid metabolites, representing a range of vasoactive and immune-inflammatory pathways, were assayed in plasma samples from independent discovery and validation cohorts using liquid chromatography/high-resolution mass spectrometry-based approaches. Regression analyses were used to identify metabolites that exhibited differential levels between SSc-PAH and IPAH and associated with disease severity. RESULTS: From hundreds of circulating bioactive lipid molecules, five metabolites were found to distinguish between SSc-PAH and IPAH, as well as associate with markers of disease severity. Relative to IPAH, patients with SSc-PAH carried increased levels of fatty acid metabolites, including lignoceric acid and nervonic acid, as well as eicosanoids/oxylipins and sex hormone metabolites. INTERPRETATION: Patients with SSc-PAH are characterized by an unfavorable bioactive metabolic profile that may explain the poor and limited response to therapy. These data provide important metabolic insights into the molecular heterogeneity underlying differences between subgroups of PAH.


Asunto(s)
Hipertensión Pulmonar , Esclerodermia Sistémica , Humanos , Hipertensión Pulmonar Primaria Familiar , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/complicaciones , Esclerodermia Sistémica/tratamiento farmacológico , Pronóstico , Lípidos/uso terapéutico
20.
Front Cardiovasc Med ; 10: 1229130, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37680562

RESUMEN

Introduction: Long-chain omega-3 polyunsaturated fatty acids (OM3 PUFA) are commonly used for cardiovascular disease prevention. High-dose eicosapentaenoic acid (EPA) is reported to reduce major adverse cardiovascular events (MACE); however, a combined EPA and docosahexaenoic acid (DHA) supplementation has not been proven to do so. This study aimed to evaluate the potential interaction between EPA and DHA levels on long-term MACE. Methods: We studied a cohort of 987 randomly selected subjects enrolled in the INSPIRE biobank registry who underwent coronary angiography. We used rapid throughput liquid chromatography-mass spectrometry to quantify the EPA and DHA plasma levels and examined their impact unadjusted, adjusted for one another, and fully adjusted for comorbidities, EPA + DHA, and the EPA/DHA ratio on long-term (10-year) MACE (all-cause death, myocardial infarction, stroke, heart failure hospitalization). Results: The average subject age was 61.5 ± 12.2 years, 57% were male, 41% were obese, 42% had severe coronary artery disease (CAD), and 311 (31.5%) had a MACE. The 10-year MACE unadjusted hazard ratio (HR) for the highest (fourth) vs. lowest (first) quartile (Q) of EPA was HR = 0.48 (95% CI: 0.35, 0.67). The adjustment for DHA changed the HR to 0.30 (CI: 0.19, 0.49), and an additional adjustment for baseline differences changed the HR to 0.36 (CI: 0.22, 0.58). Conversely, unadjusted DHA did not significantly predict MACE, but adjustment for EPA resulted in a 1.81-fold higher risk of MACE (CI: 1.14, 2.90) for Q4 vs. Q1. However, after the adjustment for baseline differences, the risk of MACE was not significant for DHA (HR = 1.37; CI: 0.85, 2.20). An EPA/DHA ratio ≥1 resulted in a lower rate of 10-year MACE outcomes (27% vs. 37%, adjusted p-value = 0.013). Conclusions: Higher levels of EPA, but not DHA, are associated with a lower risk of MACE. When combined with EPA, higher DHA blunts the benefit of EPA and is associated with a higher risk of MACE in the presence of low EPA. These findings can help explain the discrepant results of EPA-only and EPA/DHA mixed clinical supplementation trials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA