Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Cell ; 175(1): 43-56.e21, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30241615

RESUMEN

Stem cell regulation and hierarchical organization of human skeletal progenitors remain largely unexplored. Here, we report the isolation of a self-renewing and multipotent human skeletal stem cell (hSSC) that generates progenitors of bone, cartilage, and stroma, but not fat. Self-renewing and multipotent hSSCs are present in fetal and adult bones and can also be derived from BMP2-treated human adipose stroma (B-HAS) and induced pluripotent stem cells (iPSCs). Gene expression analysis of individual hSSCs reveals overall similarity between hSSCs obtained from different sources and partially explains skewed differentiation toward cartilage in fetal and iPSC-derived hSSCs. hSSCs undergo local expansion in response to acute skeletal injury. In addition, hSSC-derived stroma can maintain human hematopoietic stem cells (hHSCs) in serum-free culture conditions. Finally, we combine gene expression and epigenetic data of mouse skeletal stem cells (mSSCs) and hSSCs to identify evolutionarily conserved and divergent pathways driving SSC-mediated skeletogenesis. VIDEO ABSTRACT.


Asunto(s)
Desarrollo Óseo/fisiología , Huesos/citología , Células Madre Hematopoyéticas/citología , Animales , Huesos/metabolismo , Cartílago/citología , Diferenciación Celular , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/fisiología , Células Madre Mesenquimatosas/citología , Ratones , Ratones Endogámicos C57BL , Transducción de Señal , Análisis de la Célula Individual/métodos , Células Madre/citología , Células del Estroma/citología , Transcriptoma/genética
2.
Cell ; 160(1-2): 285-98, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25594184

RESUMEN

How are skeletal tissues derived from skeletal stem cells? Here, we map bone, cartilage, and stromal development from a population of highly pure, postnatal skeletal stem cells (mouse skeletal stem cells, mSSCs) to their downstream progenitors of bone, cartilage, and stromal tissue. We then investigated the transcriptome of the stem/progenitor cells for unique gene-expression patterns that would indicate potential regulators of mSSC lineage commitment. We demonstrate that mSSC niche factors can be potent inducers of osteogenesis, and several specific combinations of recombinant mSSC niche factors can activate mSSC genetic programs in situ, even in nonskeletal tissues, resulting in de novo formation of cartilage or bone and bone marrow stroma. Inducing mSSC formation with soluble factors and subsequently regulating the mSSC niche to specify its differentiation toward bone, cartilage, or stromal cells could represent a paradigm shift in the therapeutic regeneration of skeletal tissues.


Asunto(s)
Huesos/citología , Células Madre Mesenquimatosas/citología , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Cartílago/citología , Linaje de la Célula , Cruzamientos Genéticos , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Transducción de Señal
3.
Proc Natl Acad Sci U S A ; 112(32): 9920-5, 2015 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-26216955

RESUMEN

The postnatal skeleton undergoes growth, remodeling, and repair. We hypothesized that skeletal progenitor cells active during these disparate phases are genetically and phenotypically distinct. We identified a highly potent regenerative cell type that we term the fracture-induced bone, cartilage, stromal progenitor (f-BCSP) in the fracture callus of adult mice. The f-BCSP possesses significantly enhanced skeletogenic potential compared with BCSPs harvested from uninjured bone. It also recapitulates many gene expression patterns involved in perinatal skeletogenesis. Our results indicate that the skeletal progenitor population is functionally stratified, containing distinct subsets responsible for growth, regeneration, and repair. Furthermore, our findings suggest that injury-induced changes to the skeletal stem and progenitor microenvironments could activate these cells and enhance their regenerative potential.


Asunto(s)
Huesos/patología , Fracturas Óseas/patología , Células Madre/citología , Animales , Animales Recién Nacidos , Desarrollo Óseo , Callo Óseo/citología , Cartílago/patología , Proliferación Celular , Separación Celular , Fémur/patología , Perfilación de la Expresión Génica , Miembro Posterior/efectos de la radiación , Integrina alfa6/metabolismo , Masculino , Ratones Endogámicos C57BL , Osteogénesis , Fenotipo , Células del Estroma/citología
4.
Blood ; 125(2): 249-60, 2015 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-25406351

RESUMEN

In the last decade there has been a rapid expansion in clinical trials using mesenchymal stromal cells (MSCs) from a variety of tissues. However, despite similarities in morphology, immunophenotype, and differentiation behavior in vitro, MSCs sourced from distinct tissues do not necessarily have equivalent biological properties. We performed a genome-wide methylation, transcription, and in vivo evaluation of MSCs from human bone marrow (BM), white adipose tissue, umbilical cord, and skin cultured in humanized media. Surprisingly, only BM-derived MSCs spontaneously formed a BM cavity through a vascularized cartilage intermediate in vivo that was progressively replaced by hematopoietic tissue and bone. Only BM-derived MSCs exhibited a chondrogenic transcriptional program with hypomethylation and increased expression of RUNX3, RUNX2, BGLAP, MMP13, and ITGA10 consistent with a latent and primed skeletal developmental potential. The humanized MSC-derived microenvironment permitted homing and maintenance of long-term murine SLAM(+) hematopoietic stem cells (HSCs), as well as human CD34(+)/CD38(-)/CD90(+)/CD45RA(+) HSCs after cord blood transplantation. These studies underscore the profound differences in developmental potential between MSC sources independent of donor age, with implications for their clinical use. We also demonstrate a tractable human niche model for studying homing and engraftment of human hematopoietic cells in normal and neoplastic states.


Asunto(s)
Linaje de la Célula , Epigénesis Genética , Células Madre Hematopoyéticas/citología , Células Madre Mesenquimatosas/citología , Nicho de Células Madre , Western Blotting , Células de la Médula Ósea/citología , Diferenciación Celular/fisiología , Condrogénesis/fisiología , Citometría de Flujo , Humanos , Osteogénesis/fisiología
5.
Expert Opin Emerg Drugs ; 20(2): 235-46, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25704608

RESUMEN

INTRODUCTION: Wound healing can be characterized as underhealing, as in the setting of chronic wounds, or overhealing, occurring with hypertrophic scar formation after burn injury. Topical therapies targeting specific biochemical and molecular pathways represent a promising avenue for improving and, in some cases normalizing, the healing process. AREAS COVERED: A brief overview of both normal and pathological wound healing has been provided, along with a review of the current clinical guidelines and treatment modalities for chronic wounds, burn wounds and scar formation. Next, the major avenues for wound healing drugs, along with drugs currently in development, are discussed. Finally, potential challenges to further drug development, and future research directions are discussed. EXPERT OPINION: The large body of research concerning wound healing pathophysiology has provided multiple targets for topical therapies. Growth factor therapies with the ability to be targeted for localized release in the wound microenvironment are most promising, particularly when they modulate processes in the proliferative phase of wound healing.


Asunto(s)
Diseño de Fármacos , Cicatrización de Heridas/efectos de los fármacos , Heridas y Lesiones/tratamiento farmacológico , Administración Tópica , Animales , Quemaduras/complicaciones , Quemaduras/tratamiento farmacológico , Quemaduras/patología , Cicatriz/tratamiento farmacológico , Cicatriz/etiología , Humanos , Terapia Molecular Dirigida , Guías de Práctica Clínica como Asunto , Heridas y Lesiones/patología
6.
Plast Reconstr Surg ; 150(5): 1115-1127, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36288254

RESUMEN

BACKGROUND: Hidradenitis suppurativa is a chronic inflammatory condition that presents a challenging reconstructive problem for plastic surgeons. METHODS: The authors performed a retrospective chart review of hidradenitis suppurativa patients managed with surgical excision between 2005 and 2020 at Brigham and Women's Hospital and Tulane University Medical Center. Operative cases associated with the same hospitalization were organized into treatment episodes and assessed for patient demographics, operative techniques, and outcomes. RESULTS: A total of 181 patients, 435 cases and 316 treatment episodes (Brigham and Women's Hospital, n = 269; Tulane University Medical Center, n = 47), were identified across two diverse institutions. Their respective series showed comparable patient demographics, and 94 percent of the combined episodes achieved wound closure and healing during the study period. Several techniques of closure were identified, including immediate closure and site-specific methods, such as an expedited staged closure using internal negative-pressure wound therapy as a temporary bridge, "recycled" skin grafting, and repurposing iodoform wicks as an adjunct wound healing therapy to immediate closure. CONCLUSIONS: This large multi-institutional retrospective chart review on the plastic surgical management of hidradenitis suppurativa demonstrates that surgery is an effective therapy for hidradenitis suppurativa and captures a diversity of site-specific techniques that may serve as a foundation for future prospective studies and evidence-based guidelines for the use of various techniques to optimize patients' surgical outcomes. CLINICAL QUESTION/LEVEL OF EVIDENCE: Therapeutic, IV.


Asunto(s)
Hidradenitis Supurativa , Terapia de Presión Negativa para Heridas , Humanos , Femenino , Hidradenitis Supurativa/cirugía , Estudios Retrospectivos , Estudios Prospectivos , Trasplante de Piel
7.
Plast Reconstr Surg ; 140(3): 517-524, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28574947

RESUMEN

BACKGROUND: Because of the abundance and biocompatibility of fat, lipotransfer has become an attractive method for treating soft-tissue deficits. However, it is limited by unpredictable graft survival and retention. Currently, little is known about the viscoelastic properties of fat after various injection methods. Here, the authors assess the effects of cannula diameter, length, and shape on the viscoelastic properties, structure, and retention of fat. METHODS: Human lipoaspirate was harvested using suction-assisted liposuction and prepared for grafting. A syringe pump was used to inject fat at a controlled flow rate through cannulas of varying gauges, lengths, and shapes. Processed samples were tested in triplicate on an oscillatory rheometer to measure their viscoelastic properties. Fat grafts from each group were placed into the scalps of immunocompromised mice. After 8 weeks, graft retention was measured using micro-computed tomography and grafts were explanted for histologic analysis. RESULTS: Lipoaspirate injected through narrower, longer, and bent cannulas exhibited more shear thinning with diminished quality. The storage modulus (G') of fat processed with 18-gauge cannulas was significantly lower than when processed with 14-gauge or larger cannulas, which also corresponded with inferior in vivo histologic structure. Similarly, the longer cannula group had a significantly lower storage modulus than the shorter cannula, and was associated with decreased graft retention. CONCLUSIONS: Discrete modifications in the methods used for fat placement can have a significant impact on immediate graft integrity, and ultimately on graft survival and quality. Respecting these biomechanical influences during the placement phase of lipotransfer may allow surgeons to optimize outcomes. CLINICAL QUESTION/LEVEL OF EVIDENCE: Therapeutic, V.


Asunto(s)
Tejido Adiposo/fisiología , Tejido Adiposo/trasplante , Catéteres , Supervivencia de Injerto/fisiología , Trasplante de Tejidos/métodos , Adipocitos/trasplante , Animales , Modelos Animales de Enfermedad , Diseño de Equipo , Humanos , Ratones , Trasplante Autólogo , Microtomografía por Rayos X
8.
Sci Transl Med ; 9(372)2017 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-28077677

RESUMEN

Diabetes mellitus (DM) is a metabolic disease frequently associated with impaired bone healing. Despite its increasing prevalence worldwide, the molecular etiology of DM-linked skeletal complications remains poorly defined. Using advanced stem cell characterization techniques, we analyzed intrinsic and extrinsic determinants of mouse skeletal stem cell (mSSC) function to identify specific mSSC niche-related abnormalities that could impair skeletal repair in diabetic (Db) mice. We discovered that high serum concentrations of tumor necrosis factor-α directly repressed the expression of Indian hedgehog (Ihh) in mSSCs and in their downstream skeletogenic progenitors in Db mice. When hedgehog signaling was inhibited during fracture repair, injury-induced mSSC expansion was suppressed, resulting in impaired healing. We reversed this deficiency by precise delivery of purified Ihh to the fracture site via a specially formulated, slow-release hydrogel. In the presence of exogenous Ihh, the injury-induced expansion and osteogenic potential of mSSCs were restored, culminating in the rescue of Db bone healing. Our results present a feasible strategy for precise treatment of molecular aberrations in stem and progenitor cell populations to correct skeletal manifestations of systemic disease.


Asunto(s)
Fracturas del Fémur/tratamiento farmacológico , Curación de Fractura/efectos de los fármacos , Proteínas Hedgehog/farmacología , Células Madre Mesenquimatosas/citología , Nicho de Células Madre , Animales , Huesos/patología , Proliferación Celular , Separación Celular , Diabetes Mellitus Experimental/patología , Femenino , Citometría de Flujo , Proteínas Hedgehog/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Osteogénesis , Transducción de Señal
9.
Tissue Eng Part A ; 22(1-2): 31-40, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26486617

RESUMEN

Cell-based therapy is an emerging paradigm in skeletal regenerative medicine. However, the primary means by which transplanted cells contribute to bone repair and regeneration remain controversial. To gain an insight into the mechanisms of how both transplanted and endogenous cells mediate skeletal healing, we used a transgenic mouse strain expressing both the topaz variant of green fluorescent protein under the control of the collagen, type I, alpha 1 promoter/enhancer sequence (Col1a1(GFP)) and membrane-bound tomato red fluorescent protein constitutively in all cell types (R26(mTmG)). A comparison of healing in parietal versus frontal calvarial defects in these mice revealed that frontal osteoblasts express Col1a1 to a greater degree than parietal osteoblasts. Furthermore, the scaffold-based application of adipose-derived stromal cells (ASCs), bone marrow-derived mesenchymal stem cells (BM-MSCs), and osteoblasts derived from these mice to critical-sized calvarial defects allowed for investigation of cell survival and function following transplantation. We found that ASCs led to significantly faster rates of bone healing in comparison to BM-MSCs and osteoblasts. ASCs displayed both increased survival and increased Col1a1 expression compared to BM-MSCs and osteoblasts following calvarial defect transplantation, which may explain their superior regenerative capacity in the context of bone healing. Using this novel reporter system, we were able to elucidate how cell-based therapies impact bone healing and identify ASCs as an attractive candidate for cell-based skeletal regenerative therapy. These insights potentially influence stem cell selection in translational clinical trials evaluating cell-based therapeutics for osseous repair and regeneration.


Asunto(s)
Tejido Adiposo/metabolismo , Colágeno Tipo I/biosíntesis , Regulación de la Expresión Génica , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/metabolismo , Cráneo , Aloinjertos , Animales , Supervivencia Celular , Colágeno Tipo I/genética , Cadena alfa 1 del Colágeno Tipo I , Ratones , Ratones Transgénicos , Cráneo/lesiones , Cráneo/metabolismo , Cráneo/patología
10.
J Vis Exp ; (95): 52181, 2015 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-25650785

RESUMEN

Bone marrow-derived mesenchymal stromal cells (BM-MSCs) are considered the gold standard for stem cell-based tissue engineering applications. However, the process by which they must be harvested can be associated with significant donor site morbidity. In contrast, adipose-derived stromal cells (ASCs) are more readily abundant and more easily harvested, making them an appealing alternative to BM-MSCs. Like BM-MSCs, ASCs can differentiate into osteogenic lineage cells and can be used in tissue engineering applications, such as seeding onto scaffolds for use in craniofacial skeletal defects. ASCs are obtained from the stromal vascular fraction (SVF) of digested adipose tissue, which is a heterogeneous mixture of ASCs, vascular endothelial and mural cells, smooth muscle cells, pericytes, fibroblasts, and circulating cells. Flow cytometric analysis has shown that the surface marker profile for ASCs is similar to that for BM-MSCs. Despite several published reports establishing markers for the ASC phenotype, there is still a lack of consensus over profiles identifying osteoprogenitor cells in this heterogeneous population. This protocol describes how to isolate and use a subpopulation of ASCs with enhanced osteogenic capacity to repair critical-sized calvarial defects.


Asunto(s)
Tejido Adiposo/citología , Citometría de Flujo/métodos , Células Madre Mesenquimatosas/citología , Osteogénesis/fisiología , Adipocitos/citología , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular/fisiología , Linaje de la Célula , Femenino , Humanos , Fenotipo
11.
J Vis Exp ; (95): e52217, 2015 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-25590561

RESUMEN

Lipotransfer is a vital tool in the surgeon's armamentarium for the treatment of soft tissue deficits of throughout the body. Fat is the ideal soft tissue filler as it is readily available, easily obtained, inexpensive, and inherently biocompatible.(1) However, despite its burgeoning popularity, fat grafting is hampered by unpredictable results and variable graft survival, with published retention rates ranging anywhere from 10-80%. (1-3) To facilitate investigations on fat grafting, we have therefore developed an animal model that allows for real-time analysis of injected fat volume retention. Briefly, a small cut is made in the scalp of a CD-1 nude mouse and 200-400 µl of processed lipoaspirate is placed over the skull. The scalp is chosen as the recipient site because of its absence of native subcutaneous fat, and because of the excellent background contrast provided by the calvarium, which aids in the analysis process. Micro-computed tomography (micro-CT) is used to scan the graft at baseline and every two weeks thereafter. The CT images are reconstructed, and an imaging software is used to quantify graft volumes. Traditionally, techniques to assess fat graft volume have necessitated euthanizing the study animal to provide just a single assessment of graft weight and volume by physical measurement ex vivo. Biochemical and histological comparisons have likewise required the study animal to be euthanized. This described imaging technique offers the advantage of visualizing and objectively quantifying volume at multiple time points after initial grafting without having to sacrifice the study animal. The technique is limited by the size of the graft able to be injected as larger grafts risk skin and fat necrosis. This method has utility for all studies evaluating fat graft viability and volume retention. It is particularly well-suited to providing a visual representation of fat grafts and following changes in volume over time.


Asunto(s)
Tejido Adiposo/trasplante , Supervivencia de Injerto/fisiología , Trasplante Heterólogo/métodos , Animales , Femenino , Humanos , Ratones , Ratones Desnudos , Modelos Animales , Microtomografía por Rayos X/métodos
12.
Plast Reconstr Surg ; 135(3): 907-917, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25719706

RESUMEN

Over 100 million patients acquire scars in the industrialized world each year, primarily as a result of elective operations. Although undefined, the global incidence of scarring is even larger, extending to significant numbers of burn and other trauma-related wounds. Scars have the potential to exert a profound psychological and physical impact on the individual. Beyond aesthetic considerations and potential disfigurement, scarring can result in restriction of movement and reduced quality of life. The formation of a scar following skin injury is a consequence of wound healing occurring through reparative rather than regenerative mechanisms. In this article, the authors review the basic stages of wound healing; differences between adult and fetal wound healing; various mechanical, genetic, and pharmacologic strategies to reduce scarring; and the biology of skin stem/progenitor cells that may hold the key to scarless regeneration.


Asunto(s)
Cicatriz/fisiopatología , Regeneración/fisiología , Fenómenos Fisiológicos de la Piel , Piel/fisiopatología , Cicatrización de Heridas/fisiología , Humanos
13.
J Vis Exp ; (93): e52056, 2014 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-25407120

RESUMEN

Osteoclasts are highly specialized cells that are derived from the monocyte/macrophage lineage of the bone marrow. Their unique ability to resorb both the organic and inorganic matrices of bone means that they play a key role in regulating skeletal remodeling. Together, osteoblasts and osteoclasts are responsible for the dynamic coupling process that involves both bone resorption and bone formation acting together to maintain the normal skeleton during health and disease. As the principal bone-resorbing cell in the body, changes in osteoclast differentiation or function can result in profound effects in the body. Diseases associated with altered osteoclast function can range in severity from lethal neonatal disease due to failure to form a marrow space for hematopoiesis, to more commonly observed pathologies such as osteoporosis, in which excessive osteoclastic bone resorption predisposes to fracture formation. An ability to isolate osteoclasts in high numbers in vitro has allowed for significant advances in the understanding of the bone remodeling cycle and has paved the way for the discovery of novel therapeutic strategies that combat these diseases. Here, we describe a protocol to isolate and cultivate osteoclasts from mouse bone marrow that will yield large numbers of osteoclasts.


Asunto(s)
Células de la Médula Ósea/citología , Técnicas de Cultivo de Célula/métodos , Separación Celular/métodos , Osteoclastos/citología , Animales , Macrófagos/citología , Ratones , Ratones Endogámicos C57BL
14.
Regen Med ; 9(6): 817-30, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25431917

RESUMEN

Wounds, both chronic and acute, continue to be a tremendous socioeconomic burden. As such, technologies drawn from many disciplines within science and engineering are constantly being incorporated into innovative wound healing therapies. While many of these therapies are experimental, they have resulted in new insights into the pathophysiology of wound healing, and in turn the development of more specialized treatments for both normal and abnormal wound healing states. Herein, we review some of the emerging technologies that are currently being developed to aid and improve wound healing after cutaneous injury.


Asunto(s)
Piel/citología , Piel/patología , Células Madre/citología , Cicatrización de Heridas , Animales , Humanos , Piel/lesiones , Trasplante de Células Madre , Ingeniería de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA