Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Diabetologia ; 66(11): 2042-2061, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37537395

RESUMEN

AIMS/HYPOTHESIS: Increased circulating levels of incompletely processed insulin (i.e. proinsulin) are observed clinically in type 1 and type 2 diabetes. Previous studies have suggested that Ca2+ signalling within beta cells regulates insulin processing and secretion; however, the mechanisms that link impaired Ca2+ signalling with defective insulin maturation remain incompletely understood. METHODS: We generated mice with beta cell-specific sarcoendoplasmic reticulum Ca2+ ATPase-2 (SERCA2) deletion (ßS2KO mice) and used an INS-1 cell line model of SERCA2 deficiency. Whole-body metabolic phenotyping, Ca2+ imaging, RNA-seq and protein processing assays were used to determine how loss of SERCA2 impacts beta cell function. To test key findings in human model systems, cadaveric islets were treated with diabetogenic stressors and prohormone convertase expression patterns were characterised. RESULTS: ßS2KO mice exhibited age-dependent glucose intolerance and increased plasma and pancreatic levels of proinsulin, while endoplasmic reticulum (ER) Ca2+ levels and glucose-stimulated Ca2+ synchronicity were reduced in ßS2KO islets. Islets isolated from ßS2KO mice and SERCA2-deficient INS-1 cells showed decreased expression of the active forms of the proinsulin processing enzymes PC1/3 and PC2. Additionally, immunofluorescence staining revealed mis-location and abnormal accumulation of proinsulin and proPC2 in the intermediate region between the ER and the Golgi (i.e. the ERGIC) and in the cis-Golgi in beta cells of ßS2KO mice. Treatment of islets from human donors without diabetes with high glucose and palmitate concentrations led to reduced expression of the active forms of the proinsulin processing enzymes, thus phenocopying the findings observed in ßS2KO islets and SERCA2-deficient INS-1 cells. Similar findings were observed in wild-type mouse islets treated with brefeldin A, a compound that perturbs ER-to-Golgi trafficking. CONCLUSIONS/INTERPRETATION: Taken together, these data highlight an important link between ER Ca2+ homeostasis and proinsulin processing in beta cells. Our findings suggest a model whereby chronic ER Ca2+ depletion due to SERCA2 deficiency impairs the spatial regulation of prohormone trafficking, processing and maturation within the secretory pathway. DATA AVAILABILITY: RNA-seq data have been deposited in the Gene Expression Omnibus (GEO; accession no.: GSE207498).


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Islotes Pancreáticos , Ratones , Humanos , Animales , Proinsulina/genética , Proinsulina/metabolismo , Células Secretoras de Insulina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Insulina/metabolismo , Glucosa/metabolismo , Islotes Pancreáticos/metabolismo
2.
Ann Neurol ; 74(2): 297-300, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23913475

RESUMEN

Lafora disease (LD) is a fatal progressive myoclonus epilepsy characterized neuropathologically by aggregates of abnormally structured glycogen and proteins (Lafora bodies [LBs]), and neurodegeneration. Whether LBs could be prevented by inhibiting glycogen synthesis and whether they are pathogenic remain uncertain. We genetically eliminated brain glycogen synthesis in LD mice. This resulted in long-term prevention of LB formation, neurodegeneration, and seizure susceptibility. This study establishes that glycogen synthesis is requisite for LB formation and that LBs are pathogenic. It opens a therapeutic window for potential treatments in LD with known and future small molecule inhibitors of glycogen synthesis.


Asunto(s)
Glucógeno/antagonistas & inhibidores , Glucógeno/biosíntesis , Enfermedad de Lafora/prevención & control , Animales , Modelos Animales de Enfermedad , Fosfatasas de Especificidad Dual/genética , Técnicas de Inactivación de Genes , Glucógeno Sintasa/genética , Glucógeno Sintasa/metabolismo , Enfermedad de Lafora/patología , Enfermedad de Lafora/fisiopatología , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Tirosina Fosfatasas no Receptoras
3.
bioRxiv ; 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38562689

RESUMEN

We previously showed that miR-146a-5p is upregulated in pancreatic islets treated with pro-inflammatory cytokines. Others have reported that miR-146a-5p overexpression is associated with ß cell apoptosis and impaired insulin secretion. However, the molecular mechanisms mediating these effects remain elusive. To investigate the role of miR-146a-5p in ß cell function, we developed stable MIN6 cell lines to either overexpress or inhibit the expression of miR-146a-5p. Monoclonal cell populations were treated with pro-inflammatory cytokines (IL-1ß, IFNγ, and TNFα) to model T1D in vitro. We found that overexpression of miR-146a-5p increased cell death under conditions of inflammatory stress, whereas inhibition of miR-146a-5p reversed these effects. Additionally, inhibition of miR-146a-5p increased mitochondrial DNA copy number, respiration rate, and ATP production. Further, RNA sequencing data showed enrichment of pathways related to insulin secretion, apoptosis, and mitochondrial function when the expression levels of miR-146a-5p were altered. Finally, a temporal increase in miR-146a-5p expression levels and a decrease in mitochondria function markers was observed in islets derived from NOD mice. Collectively, these data suggest that miR-146a-5p may promote ß cell dysfunction and death during inflammatory stress by suppressing mitochondrial function.

4.
bioRxiv ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38766166

RESUMEN

Tyrosine protein-kinase 2 (TYK2), a member of the Janus kinase family, mediates inflammatory signaling through multiple cytokines, including interferon-α (IFNα), interleukin (IL)-12, and IL-23. Missense mutations in TYK2 are associated with protection against type 1 diabetes (T1D), and inhibition of TYK2 shows promise in the management of other autoimmune conditions. Here, we evaluated the effects of specific TYK2 inhibitors (TYK2is) in pre-clinical models of T1D. First, human ß cells, cadaveric donor islets, and iPSC-derived islets were treated in vitro with IFNα in combination with a small molecule TYK2i (BMS-986165 or a related molecule BMS-986202). TYK2 inhibition prevented IFNα-induced ß cell HLA class I up-regulation, endoplasmic reticulum stress, and chemokine production. In co-culture studies, pre-treatment of ß cells with a TYK2i prevented IFNα-induced activation of T cells targeting an epitope of insulin. In vivo administration of BMS-986202 in two mouse models of T1D (RIP-LCMV-GP mice and NOD mice) reduced systemic and tissue-localized inflammation, prevented ß cell death, and delayed T1D onset. Transcriptional phenotyping of pancreatic islets, pancreatic lymph nodes (PLN), and spleen during early disease pathogenesis highlighted a role for TYK2 inhibition in modulating signaling pathways associated with inflammation, translational control, stress signaling, secretory function, immunity, and diabetes. Additionally, TYK2i treatment changed the composition of innate and adaptive immune cell populations in the blood and disease target tissues, resulting in an immune phenotype with a diminished capacity for ß cell destruction. Overall, these findings indicate that TYK2i has beneficial effects in both the immune and endocrine compartments in models of T1D, thus supporting a path forward for testing TYK2 inhibitors in human T1D.

5.
Compr Physiol ; 14(1): 5243-5267, 2023 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-38158370

RESUMEN

Type 2 diabetes (T2D) affects more than 32.3 million individuals in the United States, creating an economic burden of nearly $966 billion in 2021. T2D results from a combination of insulin resistance and inadequate insulin secretion from the pancreatic ß cell. However, genetic and physiologic data indicate that defects in ß cell function are the chief determinant of whether an individual with insulin resistance will progress to a diagnosis of T2D. The subcellular organelles of the insulin secretory pathway, including the endoplasmic reticulum, Golgi apparatus, and secretory granules, play a critical role in maintaining the heavy biosynthetic burden of insulin production, processing, and secretion. In addition, the mitochondria enable the process of insulin release by integrating the metabolism of nutrients into energy output. Advanced imaging techniques are needed to determine how changes in the structure and composition of these organelles contribute to the loss of insulin secretory capacity in the ß cell during T2D. Several microscopy techniques, including electron microscopy, fluorescence microscopy, and soft X-ray tomography, have been utilized to investigate the structure-function relationship within the ß cell. In this overview article, we will detail the methodology, strengths, and weaknesses of each approach. © 2024 American Physiological Society. Compr Physiol 14:5243-5267, 2024.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Células Secretoras de Insulina , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Retículo Endoplásmico/metabolismo
6.
bioRxiv ; 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38106138

RESUMEN

Histone deacetylase inhibitors (HDIs) modulate ß cell function in preclinical models of diabetes; however, the mechanisms underlying these beneficial effects have not been determined. In this study, we investigated the impact of the HDI sodium butyrate (NaB) on ß cell function and calcium (Ca2+) signaling using ex vivo and in vitro models of diabetes. Our results show that NaB significantly improved glucose-stimulated insulin secretion in islets from human organ donors with type 2 diabetes and in cytokine-treated INS-1 ß cells. Consistently, NaB partially rescued glucose-stimulated Ca2+ oscillations in mouse islets treated with proinflammatory cytokines. Because the oscillatory phenotype of Ca2+ in the ß cell is governed by changes in endoplasmic reticulum (ER) Ca2+ levels, next we explored the relationship between NaB and store-operated calcium entry (SOCE), a rescue mechanism that acts to refill ER Ca2+ levels through STIM1-mediated gating of plasmalemmal Orai channels. We found that NaB treatment preserved basal ER Ca2+ levels and restored SOCE in IL-1ß-treated INS-1 cells. Furthermore, we linked these changes with the restoration of STIM1 levels in cytokine-treated INS-1 cells and mouse islets, and we found that NaB treatment was sufficient to prevent ß cell death in response to IL-1ß treatment. Mechanistically, NaB counteracted cytokine-mediated reductions in phosphorylation levels of key signaling molecules, including AKT, ERK1/2, glycogen synthase kinase-3α (GSK-3α), and GSK-3ß. Taken together, these data support a model whereby HDI treatment promotes ß cell function and Ca2+ homeostasis under proinflammatory conditions through STIM1-mediated control of SOCE and AKT-mediated inhibition of GSK-3.

7.
J Mol Endocrinol ; 69(2): 329-341, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35521759

RESUMEN

Type 2 diabetes (T2D) is associated with loss of transcription factors (TFs) from a subset of failing ß-cells. Among these TFs is Pdx1, which controls the expression of numerous genes involved in maintaining ß-cell function and identity. Pdx1 activity is modulated by transcriptional coregulators and has recently been shown, through an unbiased screen, to interact with the Chd4 ATPase subunit of the nucleosome remodeling and deacetylase complex. Chd4 contributes to the maintenance of cellular identity and functional status of numerous different cell types. Here, we demonstrated that Pdx1 dynamically interacts with Chd4 under physiological and stimulatory conditions within islet ß-cells and established a fundamental role for Chd4 in regulating insulin secretion and modulating numerous Pdx1-bound genes in vitro, including the MafA TF, where we discovered Chd4 is bound to the MafA region 3 enhancer. Furthermore, we found that Pdx1:Chd4 interactions are significantly compromised in islet ß-cells under metabolically induced stress in vivo and in human donor tissues with T2D. Our findings establish a fundamental role for Chd4 in regulating insulin secretion and modulating Pdx1-bound genes in vitro, and disruption of Pdx1:Chd4 interactions coincides with ß-cell dysfunction associated with T2D.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Proteínas de Homeodominio/metabolismo , Humanos , Células Secretoras de Insulina/metabolismo , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
J Neurosci Res ; 89(4): 585-91, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21259334

RESUMEN

Brain glycogen is proposed to function under both physiological and pathological conditions. Pharmacological elevation of this glucose polymer in brain is hypothesized to protect neurons against hypoglycemia-induced cell death. Elevation of brain glycogen levels due to prior hypoglycemia is postulated to contribute to the development of hypoglycemia-associated autonomic failure (HAAF) in insulin-treated diabetic patients. This latter mode of elevating glycogen levels is termed "supercompensation." We tested whether brain glycogen supercompensation occurs in healthy, conscious mice after recovery from insulin-induced acute or recurrent hypoglycemia. Blood glucose levels were lowered to less than 2.2 mmol/liter for 90 min by administration of insulin. Brain glucose levels decreased at least 80% and brain glycogen levels decreased approximately 50% after episodes of either acute or recurrent hypoglycemia. After these hypoglycemic episodes, mice were allowed access to food for 6 or 27 hr. After 6 hr, blood and brain glucose levels were restored but brain glycogen levels were elevated by 25% in mice that had been subjected to either acute or recurrent hypoglycemia compared with saline-treated controls. After a 27-hr recovery period, the concentration of brain glycogen had returned to baseline levels in mice previously subjected to either acute or recurrent hypoglycemia. We conclude that brain glycogen supercompensation occurs in healthy mice, but its functional significance remains to be established.


Asunto(s)
Encéfalo/metabolismo , Glucógeno/metabolismo , Hipoglucemia/metabolismo , Animales , Encéfalo/fisiopatología , Glucosa/metabolismo , Hipoglucemia/inducido químicamente , Hipoglucemia/fisiopatología , Hipoglucemiantes/farmacología , Insulina/farmacología , Masculino , Ratones
9.
Mol Metab ; 37: 100975, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32283079

RESUMEN

OBJECTIVES: Epidemiological studies indicate that first- and second-hand cigarette smoke (CS) exposure are important risk factors for the development of type 2 diabetes (T2D). Additionally, elevated diabetes risk has been reported to occur within a short period of time after smoking cessation, and health risks associated with smoking are increased when combined with obesity. At present, the mechanisms underlying these associations remain incompletely understood. The objective of this study was to test the impact of CS exposure on pancreatic ß-cell function using rodent and in vitro models. METHODS: Beginning at 8 weeks of age, C57BL/6 J mice were concurrently fed a high-fat diet (HFD) and exposed to CS for 11 weeks, followed by an additional 11 weeks of smoking cessation with continued HFD. Glucose tolerance testing was performed during CS exposure and during the cessation period. Cultured INS-1 ß-cells and primary islets were exposed ex vivo to CS extract (CSE), and ß-cell function and viability were tested. Since CS increases ceramide accumulation in the lung and these bioactive sphingolipids have been implicated in pancreatic ß-cell dysfunction in diabetes, islet and ß-cell sphingolipid levels were measured in islets from CS-exposed mice and in CSE-treated islets and INS-1 cells using liquid chromatography-tandem mass spectrometry. RESULTS: Compared to HFD-fed, ambient air-exposed mice, HFD-fed and CS-exposed mice had reduced weight gain and better glucose tolerance during the active smoking period. Following smoking cessation, CS-mice exhibited rapid weight gain and had accelerated worsening of their glucose tolerance. CS-exposed mice had higher serum proinsulin/insulin ratios, indicative of ß-cell dysfunction, significantly lower ß-cell mass (p = 0.017), reduced ß-cell proliferation (p = 0.006), and increased islet ceramide content compared to non-smoking control mice. Ex vivo exposure of isolated islets to CSE was sufficient to increase islet ceramide levels, which was correlated with reduced insulin gene expression and glucose-stimulated insulin secretion, and increased ß-cell oxidative and endoplasmic reticulum (ER) stress. Treatment with the antioxidant N-acetylcysteine markedly attenuated the effects of CSE on ceramide levels, restored ß-cell function and survival, and increased cyclin D2 expression, while also reducing activation of ß-cell ER and oxidative stress. CONCLUSIONS: Our results indicate that CS exposure leads to impaired insulin production, processing, secretion and reduced ß-cell viability and proliferation. These effects were linked to increased ß-cell oxidative and ER stress and ceramide accumulation. Mice fed HFD continued to experience detrimental effects of CS exposure even during smoking cessation. Elucidation of the mechanisms by which CS exposure impairs ß-cell function in synergy with obesity will help design therapeutic and preventive interventions for both active and former smokers.


Asunto(s)
Ceramidas/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Fumar Tabaco/efectos adversos , Animales , Glucemia/metabolismo , Proliferación Celular/efectos de los fármacos , Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa , Estrés del Retículo Endoplásmico/efectos de los fármacos , Estrés del Retículo Endoplásmico/fisiología , Glucosa/metabolismo , Prueba de Tolerancia a la Glucosa , Insulina/metabolismo , Resistencia a la Insulina/fisiología , Secreción de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/complicaciones , Obesidad/metabolismo , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Productos de Tabaco/efectos adversos , Aumento de Peso
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA