Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 519
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(1): 149-168.e17, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33278357

RESUMEN

COVID-19 is characterized by excessive production of pro-inflammatory cytokines and acute lung damage associated with patient mortality. While multiple inflammatory cytokines are produced by innate immune cells during SARS-CoV-2 infection, we found that only the combination of TNF-α and IFN-γ induced inflammatory cell death characterized by inflammatory cell death, PANoptosis. Mechanistically, TNF-α and IFN-γ co-treatment activated the JAK/STAT1/IRF1 axis, inducing nitric oxide production and driving caspase-8/FADD-mediated PANoptosis. TNF-α and IFN-γ caused a lethal cytokine shock in mice that mirrors the tissue damage and inflammation of COVID-19, and inhibiting PANoptosis protected mice from this pathology and death. Furthermore, treating with neutralizing antibodies against TNF-α and IFN-γ protected mice from mortality during SARS-CoV-2 infection, sepsis, hemophagocytic lymphohistiocytosis, and cytokine shock. Collectively, our findings suggest that blocking the cytokine-mediated inflammatory cell death signaling pathway identified here may benefit patients with COVID-19 or other infectious and autoinflammatory diseases by limiting tissue damage/inflammation.


Asunto(s)
COVID-19/inmunología , COVID-19/patología , Síndrome de Liberación de Citoquinas/inmunología , Síndrome de Liberación de Citoquinas/patología , Interferón gamma/inmunología , Factor de Necrosis Tumoral alfa/inmunología , Animales , Anticuerpos Neutralizantes/administración & dosificación , Muerte Celular , Modelos Animales de Enfermedad , Femenino , Células Endoteliales de la Vena Umbilical Humana , Humanos , Inflamación/inmunología , Inflamación/patología , Linfohistiocitosis Hemofagocítica/inducido químicamente , Masculino , Ratones , Ratones Transgénicos , Células THP-1
2.
Nat Immunol ; 24(9): 1511-1526, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37592015

RESUMEN

Evidence suggests that innate and adaptive cellular responses mediate resistance to the influenza virus and confer protection after vaccination. However, few studies have resolved the contribution of cellular responses within the context of preexisting antibody titers. Here, we measured the peripheral immune profiles of 206 vaccinated or unvaccinated adults to determine how baseline variations in the cellular and humoral immune compartments contribute independently or synergistically to the risk of developing symptomatic influenza. Protection correlated with diverse and polyfunctional CD4+ and CD8+ T, circulating T follicular helper, T helper type 17, myeloid dendritic and CD16+ natural killer (NK) cell subsets. Conversely, increased susceptibility was predominantly attributed to nonspecific inflammatory populations, including γδ T cells and activated CD16- NK cells, as well as TNFα+ single-cytokine-producing CD8+ T cells. Multivariate and predictive modeling indicated that cellular subsets (1) work synergistically with humoral immunity to confer protection, (2) improve model performance over demographic and serologic factors alone and (3) comprise the most important predictive covariates. Together, these results demonstrate that preinfection peripheral cell composition improves the prediction of symptomatic influenza susceptibility over vaccination, demographics or serology alone.


Asunto(s)
Enfermedades Transmisibles , Gripe Humana , Infecciones por Orthomyxoviridae , Orthomyxoviridae , Adulto , Humanos , Linfocitos T CD8-positivos
3.
Immunity ; 54(9): 2159-2166.e6, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34464596

RESUMEN

The emergence of SARS-CoV-2 antigenic variants with increased transmissibility is a public health threat. Some variants show substantial resistance to neutralization by SARS-CoV-2 infection- or vaccination-induced antibodies. Here, we analyzed receptor binding domain-binding monoclonal antibodies derived from SARS-CoV-2 mRNA vaccine-elicited germinal center B cells for neutralizing activity against the WA1/2020 D614G SARS-CoV-2 strain and variants of concern. Of five monoclonal antibodies that potently neutralized the WA1/2020 D614G strain, all retained neutralizing capacity against the B.1.617.2 variant, four also neutralized the B.1.1.7 variant, and only one, 2C08, also neutralized the B.1.351 and B.1.1.28 variants. 2C08 reduced lung viral load and morbidity in hamsters challenged with the WA1/2020 D614G, B.1.351, or B.1.617.2 strains. Clonal analysis identified 2C08-like public clonotypes among B cells responding to SARS-CoV-2 infection or vaccination in 41 out of 181 individuals. Thus, 2C08-like antibodies can be induced by SARS-CoV-2 vaccines and mitigate resistance by circulating variants of concern.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Anticuerpos Neutralizantes/metabolismo , Anticuerpos Antivirales/metabolismo , Linfocitos B/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , Centro Germinal/inmunología , Pulmón/virología , SARS-CoV-2/fisiología , Animales , Células Cultivadas , Células Clonales , Cricetinae , Modelos Animales de Enfermedad , Humanos , Pruebas de Neutralización , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunación , Carga Viral
4.
Nature ; 622(7984): 810-817, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37853121

RESUMEN

Highly pathogenic avian influenza (HPAI) H5N1 activity has intensified globally since 2021, increasingly causing mass mortality in wild birds and poultry and incidental infections in mammals1-3. However, the ecological and virological properties that underscore future mitigation strategies still remain unclear. Using epidemiological, spatial and genomic approaches, we demonstrate changes in the origins of resurgent HPAI H5 and reveal significant shifts in virus ecology and evolution. Outbreak data show key resurgent events in 2016-2017 and 2020-2021, contributing to the emergence and panzootic spread of H5N1 in 2021-2022. Genomic analysis reveals that the 2016-2017 epizootics originated in Asia, where HPAI H5 reservoirs are endemic. In 2020-2021, 2.3.4.4b H5N8 viruses emerged in African poultry, featuring mutations altering HA structure and receptor binding. In 2021-2022, a new H5N1 virus evolved through reassortment in wild birds in Europe, undergoing further reassortment with low-pathogenic avian influenza in wild and domestic birds during global dissemination. These results highlight a shift in the HPAI H5 epicentre beyond Asia and indicate that increasing persistence of HPAI H5 in wild birds is facilitating geographic and host range expansion, accelerating dispersion velocity and increasing reassortment potential. As earlier outbreaks of H5N1 and H5N8 were caused by more stable genomic constellations, these recent changes reflect adaptation across the domestic-bird-wild-bird interface. Elimination strategies in domestic birds therefore remain a high priority to limit future epizootics.


Asunto(s)
Aves , Brotes de Enfermedades , Subtipo H5N1 del Virus de la Influenza A , Gripe Aviar , Internacionalidad , Animales , África/epidemiología , Animales Salvajes/virología , Asia/epidemiología , Aves/virología , Brotes de Enfermedades/prevención & control , Brotes de Enfermedades/estadística & datos numéricos , Brotes de Enfermedades/veterinaria , Europa (Continente)/epidemiología , Evolución Molecular , Especificidad del Huésped , Subtipo H5N1 del Virus de la Influenza A/clasificación , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/aislamiento & purificación , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Subtipo H5N8 del Virus de la Influenza A/genética , Subtipo H5N8 del Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/epidemiología , Gripe Aviar/mortalidad , Gripe Aviar/transmisión , Gripe Aviar/virología , Mamíferos/virología , Mutación , Filogenia , Aves de Corral/virología
5.
Nature ; 612(7940): 540-545, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36323336

RESUMEN

The BA.2 sublineage of the SARS-CoV-2 Omicron variant has become dominant in most countries around the world; however, the prevalence of BA.4 and BA.5 is increasing rapidly in several regions. BA.2 is less pathogenic in animal models than previously circulating variants of concern1-4. Compared with BA.2, however, BA.4 and BA.5 possess additional substitutions in the spike protein, which play a key role in viral entry, raising concerns that the replication capacity and pathogenicity of BA.4 and BA.5 are higher than those of BA.2. Here we have evaluated the replicative ability and pathogenicity of BA.4 and BA.5 isolates in wild-type Syrian hamsters, human ACE2 (hACE2) transgenic hamsters and hACE2 transgenic mice. We have observed no obvious differences among BA.2, BA.4 and BA.5 isolates in growth ability or pathogenicity in rodent models, and less pathogenicity compared to a previously circulating Delta (B.1.617.2 lineage) isolate. In addition, in vivo competition experiments revealed that BA.5 outcompeted BA.2 in hamsters, whereas BA.4 and BA.2 exhibited similar fitness. These findings suggest that BA.4 and BA.5 clinical isolates have similar pathogenicity to BA.2 in rodents and that BA.5 possesses viral fitness superior to that of BA.2.


Asunto(s)
COVID-19 , Aptitud Genética , Roedores , SARS-CoV-2 , Animales , Cricetinae , Humanos , Ratones , COVID-19/virología , Mesocricetus/virología , Ratones Transgénicos , Roedores/virología , SARS-CoV-2/clasificación , SARS-CoV-2/genética , SARS-CoV-2/patogenicidad , SARS-CoV-2/fisiología , Animales Modificados Genéticamente , Aptitud Genética/genética , Aptitud Genética/fisiología , Virulencia
7.
Nature ; 587(7834): 466-471, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33116313

RESUMEN

Severe respiratory infections can result in acute respiratory distress syndrome (ARDS)1. There are no effective pharmacological therapies that have been shown to improve outcomes for patients with ARDS. Although the host inflammatory response limits spread of and eventually clears the pathogen, immunopathology is a major contributor to tissue damage and ARDS1,2. Here we demonstrate that respiratory viral infection induces distinct fibroblast activation states, which we term extracellular matrix (ECM)-synthesizing, damage-responsive and interferon-responsive states. We provide evidence that excess activity of damage-responsive lung fibroblasts drives lethal immunopathology during severe influenza virus infection. By producing ECM-remodelling enzymes-in particular the ECM protease ADAMTS4-and inflammatory cytokines, damage-responsive fibroblasts modify the lung microenvironment to promote robust immune cell infiltration at the expense of lung function. In three cohorts of human participants, the levels of ADAMTS4 in the lower respiratory tract were associated with the severity of infection with seasonal or avian influenza virus. A therapeutic agent that targets the ECM protease activity of damage-responsive lung fibroblasts could provide a promising approach to preserving lung function and improving clinical outcomes following severe respiratory infections.


Asunto(s)
Proteína ADAMTS4/metabolismo , Fibroblastos/enzimología , Fibroblastos/patología , Virus de la Influenza A/patogenicidad , Pulmón/patología , Pulmón/fisiopatología , Proteína ADAMTS4/antagonistas & inhibidores , Animales , Aves/virología , Matriz Extracelular/enzimología , Perfilación de la Expresión Génica , Humanos , Gripe Aviar/virología , Gripe Humana/patología , Gripe Humana/terapia , Gripe Humana/virología , Interferones/inmunología , Interferones/metabolismo , Antígenos Comunes de Leucocito/metabolismo , Pulmón/enzimología , Pulmón/virología , Ratones , Síndrome de Dificultad Respiratoria/enzimología , Síndrome de Dificultad Respiratoria/fisiopatología , Síndrome de Dificultad Respiratoria/terapia , Síndrome de Dificultad Respiratoria/virología , Estaciones del Año , Análisis de la Célula Individual , Células del Estroma/metabolismo
8.
PLoS Pathog ; 19(12): e1011838, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38048355

RESUMEN

Influenza A viruses are RNA viruses that cause epidemics in humans and are enzootic in the pig population globally. In 2009, pig-to-human transmission of a reassortant H1N1 virus (H1N1pdm09) caused the first influenza pandemic of the 21st century. This study investigated the infection dynamics, pathogenesis, and lesions in pigs and ferrets inoculated with natural isolates of swine-adapted, human-adapted, and "pre-pandemic" H1N1pdm09 viruses. Additionally, the direct-contact and aerosol transmission properties of the three H1N1pdm09 isolates were assessed in ferrets. In pigs, inoculated ferrets, and ferrets infected by direct contact with inoculated ferrets, the pre-pandemic H1N1pdm09 virus induced an intermediary viral load, caused the most severe lesions, and had the highest clinical impact. The swine-adapted H1N1pdm09 virus induced the highest viral load, caused intermediary lesions, and had the least clinical impact in pigs. The human-adapted H1N1pdm09 virus induced the highest viral load, caused the mildest lesions, and had the least clinical impact in ferrets infected by direct contact. The discrepancy between viral load and clinical impact presumably reflects the importance of viral host adaptation. Interestingly, the swine-adapted H1N1pdm09 virus was transmitted by aerosols to two-thirds of the ferrets. Further work is needed to assess the risk of human-to-human aerosol transmission of swine-adapted H1N1pdm09 viruses.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Humana , Infecciones por Orthomyxoviridae , Humanos , Animales , Porcinos , Subtipo H1N1 del Virus de la Influenza A/genética , Hurones , Aerosoles y Gotitas Respiratorias , Virus Reordenados/genética
9.
J Virol ; 97(5): e0054423, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37166327

RESUMEN

The interface between humans and wildlife is changing and, with it, the potential for pathogen introduction into humans has increased. Avian influenza is a prominent example, with an ongoing outbreak showing the unprecedented expansion of both geographic and host ranges. Research in the field is essential to understand this and other zoonotic threats. Only by monitoring dynamic viral populations and defining their biology in situ can we gather the information needed to ensure effective pandemic preparation.


Asunto(s)
Gripe Aviar , Gripe Humana , Zoonosis , Animales , Humanos , Animales Salvajes , Brotes de Enfermedades , Especificidad del Huésped , Gripe Aviar/epidemiología , Gripe Humana/epidemiología , Gripe Humana/prevención & control , Pandemias , Zoonosis/epidemiología , Zoonosis/prevención & control
10.
PLoS Pathog ; 18(4): e1009973, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35417497

RESUMEN

Wild birds can carry avian influenza viruses (AIV), including those with pandemic or panzootic potential, long distances. Even though AIV has a broad host range, few studies account for host diversity when estimating AIV spread. We analyzed AIV genomic sequences from North American wild birds, including 303 newly sequenced isolates, to estimate interspecies and geographic viral transition patterns among multiple co-circulating subtypes. Our results show high transition rates within Anseriformes and Charadriiformes, but limited transitions between these orders. Patterns of transition between species were positively associated with breeding habitat range overlap, and negatively associated with host genetic distance. Distance between regions (negative correlation) and summer temperature at origin (positive correlation) were strong predictors of transition between locations. Taken together, this study demonstrates that host diversity and ecology can determine evolutionary processes that underlie AIV natural history and spread. Understanding these processes can provide important insights for effective control of AIV.


Asunto(s)
Virus de la Influenza A , Gripe Aviar , Animales , Animales Salvajes , Aves , América del Norte/epidemiología
11.
PLoS Pathog ; 18(7): e1010698, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35830486

RESUMEN

Baloxavir marboxil (BXM) is approved for treating uncomplicated influenza. The active metabolite baloxavir acid (BXA) inhibits cap-dependent endonuclease activity of the influenza virus polymerase acidic protein (PA), which is necessary for viral transcription. Treatment-emergent E23G or E23K (E23G/K) PA substitutions have been implicated in reduced BXA susceptibility, but their effect on virus fitness and transmissibility, their synergism with other BXA resistance markers, and the mechanisms of resistance have been insufficiently studied. Accordingly, we generated point mutants of circulating seasonal influenza A(H1N1)pdm09 and A(H3N2) viruses carrying E23G/K substitutions. Both substitutions caused 2- to 13-fold increases in the BXA EC50. EC50s were higher with E23K than with E23G and increased dramatically (138- to 446-fold) when these substitutions were combined with PA I38T, the dominant BXA resistance marker. E23G/K-substituted viruses exhibited slightly impaired replication in MDCK and Calu-3 cells, which was more pronounced with E23K. In ferret transmission experiments, all viruses transmitted to direct-contact and airborne-transmission animals, with only E23K+I38T viruses failing to infect 100% of animals by airborne transmission. E23G/K genotypes were predominantly stable during transmission events and through five passages in vitro. Thermostable PA-BXA interactions were weakened by E23G/K substitutions and further weakened when combined with I38T. In silico modeling indicated this was caused by E23G/K altering the placement of functionally important Tyr24 in the endonuclease domain, potentially decreasing BXA binding but at some cost to the virus. These data implicate E23G/K, alone or combined with I38T, as important markers of reduced BXM susceptibility, and such mutants could emerge and/or transmit among humans.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Humana , Tiepinas , Sustitución de Aminoácidos , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , Dibenzotiepinas , Farmacorresistencia Viral/genética , Endonucleasas/metabolismo , Hurones , Humanos , Subtipo H1N1 del Virus de la Influenza A/metabolismo , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/metabolismo , Virus de la Influenza A/genética , Virus de la Influenza A/metabolismo , Morfolinas , Oxazinas/farmacología , Piridinas/farmacología , Piridonas/farmacología , Tiepinas/farmacología , Triazinas , Proteínas Virales/metabolismo
12.
PLoS Pathog ; 18(2): e1010317, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35192673

RESUMEN

An individual's antibody titers to influenza A strains are a result of the complicated interplay between infection history, cross-reactivity, immune waning, and other factors. It has been challenging to disentangle how population-level patterns of humoral immunity change as a function of age, calendar year, and birth cohort from cross-sectional data alone. We analyzed 1,589 longitudinal sera samples from 260 children across three studies in Nicaragua, 2006-16. Hemagglutination inhibition (HAI) titers were determined against four H3N2 strains, one H1N1 strain, and two H1N1pdm strains. We assessed temporal patterns of HAI titers using an age-period-cohort modeling framework. We found that titers against a given virus depended on calendar year of serum collection and birth cohort but not on age. Titer cohort patterns were better described by participants' ages relative to year of likely introduction of the virus's antigenic cluster than by age relative to year of strain introduction or by year of birth. These cohort effects may be driven by a decreasing likelihood of early-life infection after cluster introduction and by more broadly reactive antibodies at a young age. H3N2 and H1N1 viruses had qualitatively distinct cohort patterns, with cohort patterns of titers to specific H3N2 strains reaching their peak in children born 3 years prior to that virus's antigenic cluster introduction and with titers to H1N1 and H1N1pdm strains peaking for children born 1-2 years prior to cluster introduction but not being dramatically lower for older children. Ultimately, specific patterns of strain circulation and antigenic cluster introduction may drive population-level antibody titer patterns in children.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Adolescente , Anticuerpos Antivirales , Cohorte de Nacimiento , Niño , Estudios Transversales , Pruebas de Inhibición de Hemaglutinación , Humanos , Subtipo H3N2 del Virus de la Influenza A , Gripe Humana/epidemiología
13.
Virol J ; 21(1): 70, 2024 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-38515117

RESUMEN

Since the emergence of SARS-CoV-2, different variants and subvariants successively emerged to dominate global virus circulation as a result of immune evasion, replication fitness or both. COVID-19 vaccines continue to be updated in response to the emergence of antigenically divergent viruses, the first being the bivalent RNA vaccines that encodes for both the Wuhan-like and Omicron BA.5 subvariant spike proteins. Repeated infections and vaccine breakthrough infections have led to complex immune landscapes in populations making it increasingly difficult to assess the intrinsic neutralizing antibody responses elicited by the vaccines. Hong Kong's intensive COVID-19 containment policy through 2020-2021 permitted us to identify sera from a small number of infection-naïve individuals who received 3 doses of the RNA BNT162b2 vaccine encoding the Wuhan-like spike (WT) and were boosted with a fourth dose of the WT vaccine or the bivalent WT and BA.4/5 spike (WT + BA.4/5). While neutralizing antibody to wild-type virus was comparable in both vaccine groups, BNT162b2 (WT + BA.4/BA.5) bivalent vaccine elicited significantly higher plaque neutralizing antibodies to Omicron subvariants BA.5, XBB.1.5, XBB.1.16, XBB.1.9.1, XBB.2.3.2, EG.5.1, HK.3, BA.2.86 and JN.1, compared to BNT162b2 monovalent vaccine. The single amino acid substitution that differentiates the spike of JN.1 from BA.2.86 resulted in a profound antigenic change.


Asunto(s)
Vacuna BNT162 , COVID-19 , Humanos , Anticuerpos ampliamente neutralizantes , SARS-CoV-2/genética , Vacunas contra la COVID-19 , COVID-19/prevención & control , Anticuerpos Neutralizantes , Vacunación , Anticuerpos Antivirales
14.
Arch Virol ; 169(2): 29, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38216710

RESUMEN

Genetic reassortment of avian, swine, and human influenza A viruses (IAVs) poses potential pandemic risks. Surveillance is important for influenza pandemic preparedness, but the susceptibility of zoonotic IAVs to the cap-dependent endonuclease inhibitor baloxavir acid (BXA) has not been thoroughly researched. Although an amino acid substitution at position 38 in the polymerase acidic protein (PA/I38) in seasonal IAVs reduces BXA susceptibility, PA polymorphisms at position 38 are rarely seen in zoonotic IAVs. Here, we examined the impact of PA/I38 substitutions on the BXA susceptibility of recombinant A(H5N1) viruses. PA mutants that harbored I38T, F, and M were 48.2-, 24.0-, and 15.5-fold less susceptible, respectively, to BXA than wild-type A(H5N1) but were susceptible to the neuraminidase inhibitor oseltamivir acid and the RNA polymerase inhibitor favipiravir. PA mutants exhibited significantly impaired replicative fitness in Madin-Darby canine kidney cells at 24 h postinfection. In addition, in order to investigate new genetic markers for BXA susceptibility, we screened geographically and temporally distinct IAVs isolated worldwide from birds and pigs. The results showed that BXA exhibited antiviral activity against avian and swine viruses with similar levels to seasonal isolates. All viruses tested in the study lacked the PA/I38 substitution and were susceptible to BXA. Isolates harboring amino acid polymorphisms at positions 20, 24, and 37, which have been implicated in the binding of BXA to the PA endonuclease domain, were also susceptible to BXA. These results suggest that monitoring of the PA/I38 substitution in animal-derived influenza viruses is important for preparedness against zoonotic influenza virus outbreaks.


Asunto(s)
Dibenzotiepinas , Subtipo H5N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Humana , Morfolinas , Orthomyxoviridae , Piridonas , Tiepinas , Triazinas , Animales , Perros , Humanos , Porcinos , Virus de la Influenza A/genética , Oxazinas/farmacología , Piridinas/farmacología , Piridinas/uso terapéutico , Subtipo H5N1 del Virus de la Influenza A/genética , Tiepinas/farmacología , Tiepinas/uso terapéutico , Antivirales/farmacología , Antivirales/uso terapéutico , Orthomyxoviridae/genética , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Sustitución de Aminoácidos , Endonucleasas/genética , Farmacorresistencia Viral/genética
15.
Arch Virol ; 169(5): 95, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594485

RESUMEN

The first detection of a human infection with avian influenza A/H6N1 virus in Taiwan in 2013 has raised concerns about this virus. During our routine surveillance of avian influenza viruses (AIVs) in live-bird markets in Egypt, an H6N1 virus was isolated from a garganey duck and was characterized. Phylogenetic analysis indicated that the Egyptian H6N1 strain A/Garganey/Egypt/20869C/2022(H6N1) has a unique genomic constellation, with gene segments inherited from different subtypes (H5N1, H3N8, H7N3, H6N1, and H10N1) that have been detected previously in AIVs from Egypt and some Eurasian countries. We examined the replication of kinetics of this virus in different mammalian cell lines (A549, MDCK, and Vero cells) and compared its pathogenicity to that of the ancestral H6N1 virus A/Quail/HK/421/2002(H6N1). The Egyptian H6N1 virus replicated efficiently in C57BL/6 mice without prior adaptation and grew faster and reached higher titers than in A549 cells than the ancestral strain. These results show that reassortant H6 AIVs might pose a potential threat to human health and highlight the need to continue surveillance of H6 AIVs circulating in nature.


Asunto(s)
Subtipo H3N8 del Virus de la Influenza A , Subtipo H5N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Aviar , Animales , Ratones , Chlorocebus aethiops , Humanos , Gripe Aviar/epidemiología , Egipto/epidemiología , Filogenia , Células Vero , Subtipo H7N3 del Virus de la Influenza A , Ratones Endogámicos C57BL , Animales Salvajes , Patos , Mamíferos
16.
J Infect Dis ; 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37770028

RESUMEN

The antiviral susceptibility of currently circulating (2022-2023) highly pathogenic avian influenza (HPAI) A(H5N1) viruses was assessed by genotypic and phenotypic approaches. The frequency of neuraminidase (NA) and polymerase acidic (PA) substitutions associated with reduced inhibition by NA inhibitors (NAIs) (21/2698, 0.78%) or by the PA inhibitor baloxavir (14/2600, 0.54%) was low. Phenotypic testing of 22 clade 2.3.2.1a and 2.3.4.4b viruses revealed broad susceptibility to NAIs and baloxavir concluding that most contemporary HPAI A(H5N1) viruses retain susceptibility to antiviral drugs. Novel NA-K432E and NA-T438I substitutions (N2 numbering) were identified at elevated frequencies (104/2698, 3.85%) and caused reduced zanamivir and peramivir inhibition.

17.
Clin Infect Dis ; 2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36610728

RESUMEN

BACKGROUND: Influenza A/H5N8 viruses infect poultry and wild birds in many countries. In 2021, the first human A/H5N8 cases were reported. METHODS: We conducted a phase I, cohort-randomized, double-blind, controlled trial of inactivated influenza A/H5N8 vaccine (clade 2.3.4.4c) administered with or without adjuvant. Cohort 1 subjects received either two doses of AS03-adjuvanted vaccine containing 3.75 µg or 15 µg hemagglutinin (HA); two doses of 15 µg HA unadjuvanted vaccine; or one dose of AS03-adjuvanted vaccine (3.75 µg or 15 µg HA), followed by one dose of non-adjuvanted vaccine (same HA content). Cohort 2 subjects received two doses of MF59-adjuvanted vaccine containing 3.75 µg or 15 µg HA, or 15 µg HA of non-adjuvanted vaccine. Subjects were followed for 13 months for safety and immunogenicity. RESULTS: We enrolled 386 adult subjects in good health. Solicited adverse events were generally mild and more common among subjects who received adjuvanted vaccines. Antibody responses (hemagglutination inhibition or microneutralization assays) were highest in the two-dose AS03 group, followed by the one-dose AS03 group, the MF59 groups, and the non-adjuvanted groups. Antibody levels returned to baseline 12 months after the second vaccination in all groups except the 15 µg AS03-adjuvanted group. Cross-reactive antibodies to clade 2.3.4.4b strains isolated from recent human cases were demonstrated in a subset of both 15 µg adjuvanted groups. CONCLUSIONS: Two doses of influenza A/H5N8 vaccine were well-tolerated. Immunogenicity improved with receipt of two doses of adjuvanted vaccine and higher antigen content. (Funded by the National Institute of Allergy and Infectious Diseases.

18.
J Virol ; 96(7): e0010022, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35254104

RESUMEN

Understanding how animal influenza A viruses (IAVs) acquire airborne transmissibility in humans and ferrets is needed to prepare for and respond to pandemics. Here, we investigated in ferrets the replication and transmission of swine H1N1 isolates P4 and G15, whose majority population had decreased polymerase activity and poor hemagglutinin (HA) stability, respectively. For both isolates, a minor variant was selected and transmitted in ferrets. Polymerase-enhancing variant PA-S321 airborne-transmitted and propagated in one ferret. HA-stabilizing variant HA1-S210 was selected in all G15-inoculated ferrets and was transmitted by contact and airborne routes. With an efficient polymerase and a stable HA, the purified minor variant G15-HA1-S210 had earlier and higher peak titers in inoculated ferrets and was recovered at a higher frequency after airborne transmission than P4 and G15. Overall, HA stabilization played a more prominent role than polymerase enhancement in the replication and transmission of these viruses in ferrets. The results suggest pandemic risk-assessment studies may benefit from deep sequencing to identify minor variants with human-adapted traits. IMPORTANCE Diverse IAVs circulate in animals, yet few acquire the viral traits needed to start a human pandemic. A stabilized HA and mammalian-adapted polymerase have been shown to promote the adaptation of IAVs to humans and ferrets (the gold-standard model for IAV replication, pathogenicity, and transmissibility). Here, we used swine IAV isolates of the gamma lineage as a model to investigate the importance of HA stability and polymerase activity in promoting replication and transmission in ferrets. These are emerging viruses that bind to both α-2,6- and α-2,3-linked receptors. Using isolates containing mixed populations, a stabilized HA was selected within days in inoculated ferrets. An enhanced polymerase was also selected and propagated after airborne transmission to a ferret. Thus, HA stabilization was a stricter requirement, yet both traits promoted transmissibility. Knowing the viral traits needed for pandemic potential, and the relative importance of each, will help identify emerging viruses of greatest concern.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza , Subtipo H1N1 del Virus de la Influenza A , Infecciones por Orthomyxoviridae , Animales , Hurones , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Humanos , Infecciones por Orthomyxoviridae/transmisión , Infecciones por Orthomyxoviridae/virología , Estabilidad Proteica , Porcinos
19.
PLoS Pathog ; 17(3): e1009413, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33705496

RESUMEN

SARS-CoV-2 virus is transmitted in closed settings to people in contact with COVID-19 patients such as healthcare workers and household contacts. However, household person-to-person transmission studies are limited. Households participating in an ongoing cohort study of influenza incidence and prevalence in rural Egypt were followed. Baseline enrollment was done from August 2015 to March 2017. The study protocol was amended in April 2020 to allow COVID-19 incidence and seroprevalence studies. A total of 290 households including 1598 participants were enrolled and followed from April to October 2020 in four study sites. When a participant showed respiratory illness symptoms, a serum sample and a nasal and an oropharyngeal swab were obtained. Swabs were tested by RT-PCR for SARS-CoV-2 infection. If positive, the subject was followed and swabs collected on days three, six, nine, and 14 after the first swab day and a serum sample obtained on day 14. All subjects residing with the index case were swabbed following the same sampling schedule. Sera were collected from cohort participants in October 2020 to assess seroprevalence. Swabs were tested by RT-PCR. Sera were tested by Microneutralization Assay to measure the neutralizing antibody titer. Incidence of COVID-19, household secondary attack rate, and seroprevalence in the cohort were determined. The incidence of COVID-19 was 6.9% and the household secondary attack rate was 89.8%. Transmission within households occurred within two-days of confirming the index case. Infections were asymptomatic or mild with symptoms resolving within 10 days. The majority developed a neutralizing antibody titer by day 14 post onset. The overall seroprevalence among cohort participants was 34.8%. These results suggest that within-household transmission is high in Egypt. Asymptomatic or mild illness is common. Most infections seroconvert and have a durable neutralizing antibody titer.


Asunto(s)
Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , COVID-19/transmisión , Adolescente , Adulto , COVID-19/sangre , COVID-19/epidemiología , COVID-19/virología , Niño , Estudios de Cohortes , Egipto/epidemiología , Familia , Femenino , Humanos , Incidencia , Masculino , Persona de Mediana Edad , SARS-CoV-2/genética , SARS-CoV-2/inmunología , SARS-CoV-2/fisiología , Estudios Seroepidemiológicos , Adulto Joven
20.
Microb Pathog ; 174: 105928, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36470346

RESUMEN

Multiple incursions of different subtypes of highly pathogenic avian influenza (HPAI) A/H5NX viruses have caused widely considerable outbreaks in poultry and hundreds of human infections. Extensive reassortment events associated with currently circulating clade 2.3.4.4b of A/H5NX viruses have been widely recorded. Wild migratory birds contribute to the spillover of diverse viruses throughout their migration flyways. During our active surveillance of avian influenza in Egypt, we successfully isolated and fully characterized HPAI A/H5N5 virus of clade 2.3.4.4b that was detected in a healthy purple heron. The Egyptian H5N5 virus is genotypically similar with the same subtype that was detected in the far east of Russia and several European countries. The antigenic analysis showed that the Egyptian H5N5 virus is distinct from HPAI A(H5N8) viruses in Egypt. The virus preferentially binds to avian-like receptors rather than human-like receptors. Our results showed that the virus caused 100% and 60% lethality in chicken and mice respectively. Increasing active surveillance efforts, monitoring the dynamics of emerging AIVs, and risk assessment implementation should be globally applied especially in hot spot regions like Egypt.


Asunto(s)
Subtipo H5N8 del Virus de la Influenza A , Virus de la Influenza A , Gripe Aviar , Humanos , Animales , Ratones , Gripe Aviar/epidemiología , Egipto/epidemiología , Filogenia , Animales Salvajes , Subtipo H5N8 del Virus de la Influenza A/genética , Pollos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA