Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Physiol ; 599(17): 4117-4130, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34261189

RESUMEN

KEY POINTS: Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disorder of motor neurons, carrying a short survival. High-density motor unit recordings permit analysis of motor unit size (amplitude) and firing behaviour (afterhyperpolarization duration and muscle fibre conduction velocity). Serial recordings from biceps brachii indicated that motor units fired faster and with greater amplitude as disease progressed. First-recruited motor units in the latter stages of ALS developed characteristics akin to fast-twitch motor units, possibly as a compensatory mechanism for the selective loss of this motor unit subset. This process may become maladaptive, highlighting a novel therapeutic target to reduce motor unit vulnerability. ABSTRACT: Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder with a median survival of 3 years. We employed serial high-density surface electromyography (HDSEMG) to characterize voluntary and ectopic patterns of motor unit (MU) firing at different stages of disease. By distinguishing MU subtypes with variable vulnerability to disease, we aimed to evaluate compensatory neuronal adaptations that accompany disease progression. Twenty patients with ALS and five patients with benign fasciculation syndrome (BFS) underwent 1-7 assessments each. HDSEMG measurements comprised 30 min of resting muscle and 1 min of light voluntary activity from biceps brachii bilaterally. MU decomposition was performed by the progressive FastICA peel-off technique. Inter-spike interval, firing pattern, MU potential area, afterhyperpolarization duration and muscle fibre conduction velocity were determined. In total, 373 MUs (ALS = 287; BFS = 86) were identified from 182 recordings. Weak ALS muscles demonstrated a lower mean inter-spike interval (82.7 ms) than strong ALS muscles (96.0 ms; P = 0.00919) and BFS muscles (95.3 ms; P = 0.0039). Mean MU potential area (area under the curve: 487.5 vs. 98.7 µV ms; P < 0.0001) and muscle fibre conduction velocity (6.2 vs. 5.1 m/s; P = 0.0292) were greater in weak ALS muscles than in BFS muscles. Purely fasciculating MUs had a greater mean MU potential area than MUs also under voluntary command (area under the curve: 679.6 vs. 232.4 µV ms; P = 0.00144). These results suggest that first-recruited MUs develop a faster phenotype in the latter stages of ALS, likely driven by the preferential loss of vulnerable fast-twitch MUs. Inhibition of this potentially maladaptive phenotypic drift may protect the longevity of the MU pool, stimulating a novel therapeutic avenue.


Asunto(s)
Esclerosis Amiotrófica Lateral , Electromiografía , Fasciculación , Humanos , Neuronas Motoras , Músculo Esquelético , Fenotipo
2.
Proc Natl Acad Sci U S A ; 109(47): 19351-6, 2012 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-23129639

RESUMEN

The gene causative for the human nonsyndromic recessive form of deafness DFNB22 encodes otoancorin, a 120-kDa inner ear-specific protein that is expressed on the surface of the spiral limbus in the cochlea. Gene targeting in ES cells was used to create an EGFP knock-in, otoancorin KO (Otoa(EGFP/EGFP)) mouse. In the Otoa(EGFP/EGFP) mouse, the tectorial membrane (TM), a ribbon-like strip of ECM that is normally anchored by one edge to the spiral limbus and lies over the organ of Corti, retains its general form, and remains in close proximity to the organ of Corti, but is detached from the limbal surface. Measurements of cochlear microphonic potentials, distortion product otoacoustic emissions, and basilar membrane motion indicate that the TM remains functionally attached to the electromotile, sensorimotor outer hair cells of the organ of Corti, and that the amplification and frequency tuning of the basilar membrane responses to sounds are almost normal. The compound action potential masker tuning curves, a measure of the tuning of the sensory inner hair cells, are also sharply tuned, but the thresholds of the compound action potentials, a measure of inner hair cell sensitivity, are significantly elevated. These results indicate that the hearing loss in patients with Otoa mutations is caused by a defect in inner hair cell stimulation, and reveal the limbal attachment of the TM plays a critical role in this process.


Asunto(s)
Estimulación Acústica , Células Ciliadas Auditivas Internas/patología , Pérdida Auditiva Sensorineural/patología , Potenciales de Acción , Animales , Membrana Basilar/patología , Membrana Basilar/fisiopatología , Cóclea/patología , Cóclea/fisiopatología , Modelos Animales de Enfermedad , Exones/genética , Proteínas Ligadas a GPI/genética , Marcación de Gen , Proteínas Fluorescentes Verdes/metabolismo , Pérdida Auditiva/patología , Pérdida Auditiva/fisiopatología , Humanos , Ratones , Microscopía de Interferencia , Mutagénesis Insercional/genética , Mutación/genética , Fenotipo , Membrana Tectoria/patología , Membrana Tectoria/fisiopatología
3.
J R Soc Interface ; 11(93): 20131120, 2014 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-24501274

RESUMEN

The round window (RW) membrane provides pressure relief when the cochlea is excited by sound. Here, we report measurements of cochlear function from guinea pigs when the cochlea was stimulated at acoustic frequencies by movements of a miniature magnet which partially occluded the RW. Maximum cochlear sensitivity, corresponding to subnanometre magnet displacements at neural thresholds, was observed for frequencies around 20 kHz, which is similar to that for acoustic stimulation. Neural response latencies to acoustic and RW stimulation were similar and taken to indicate that both means of stimulation resulted in the generation of conventional travelling waves along the cochlear partition. It was concluded that the relatively high impedance of the ossicles, as seen from the cochlea, enabled the region of the RW not occluded by the magnet, to act as a pressure shunt during RW stimulation. We propose that travelling waves, similar to those owing to acoustic far-field pressure changes, are driven by a jet-like, near-field component of a complex pressure field, which is generated by the magnetically vibrated RW. Outcomes of research described here are theoretical and practical design principles for the development of new types of hearing aids, which use near-field, RW excitation of the cochlea.


Asunto(s)
Estimulación Acústica , Cóclea/fisiología , Presión , Animales , Cóclea/anatomía & histología , Cobayas , Audífonos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA