Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39126562

RESUMEN

INTRODUCTION: In robotic-assisted surgery (RAS), the input device is the primary site for the flow of information between the user and the robot. Most RAS systems remove the surgeon's console from the sterile surgical site. Beneficial for performing lengthy procedures with complex systems, this ultimately lacks the flexibility that comes with the surgeon being able to remain at the sterile site. METHODS: A prototype of an input device for RAS is constructed. The focus lies on intuitive control for surgeons and a seamless integration into the surgical workflow within the sterile environment. The kinematic design is translated from the kinematics of laparoscopic surgery. The input device uses three degrees of freedom from a flexible instrument as input. The prototype's performance is compared to that of a commercially available device in an evaluation. Metrics are used to evaluate the surgeons' performance with the respective input device in a virtual environment implemented for the evaluation. RESULTS: The evaluation of the two input devices shows statistically significant differences in the performance metrics. With the proposed prototype, the surgeons perform the tasks faster, more precisely, and with fewer errors. CONCLUSION: The prototype is an efficient and intuitive input device for surgeons with laparoscopic experience. The placement in the sterile working area allows for seamless integration into the surgical workflow and can potentially enable new robotic approaches.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38831175

RESUMEN

PURPOSE: Acoustic information can contain viable information in medicine and specifically in surgery. While laparoscopy depends mainly on visual information, our goal is to develop the means to capture and process acoustic information during laparoscopic surgery. METHODS: To achieve this, we iteratively developed three prototypes that will overcome the abdominal wall as a sound barrier and can be used with standard trocars. We evaluated them in terms of clinical applicability and sound transmission quality. Furthermore, the applicability of each prototype for sound classification based on machine learning was evaluated. RESULTS: Our developed prototypes for recording airborne sound from the intraperitoneal cavity represent a promising solution suitable for real-world clinical usage All three prototypes fulfill our set requirements in terms of clinical applicability (i.e., air-tightness, invasiveness, sterility) and show promising results regarding their acoustic characteristics and the associated results on ML-based sound classification. CONCLUSION: In summary, our prototypes for capturing acoustic information during laparoscopic surgeries integrate seamlessly with existing procedures and have the potential to augment the surgeon's perception. This advancement could change how surgeons interact with and understand the surgical field.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38862745

RESUMEN

PURPOSE: Even though workflow analysis in the operating room has come a long way, current systems are still limited to research. In the quest for a robust, universal setup, hardly any attention has been given to the dimension of audio despite its numerous advantages, such as low costs, location, and sight independence, or little required processing power. METHODOLOGY: We present an approach for audio-based event detection that solely relies on two microphones capturing the sound in the operating room. Therefore, a new data set was created with over 63 h of audio recorded and annotated at the University Hospital rechts der Isar. Sound files were labeled, preprocessed, augmented, and subsequently converted to log-mel-spectrograms that served as a visual input for an event classification using pretrained convolutional neural networks. RESULTS: Comparing multiple architectures, we were able to show that even lightweight models, such as MobileNet, can already provide promising results. Data augmentation additionally improved the classification of 11 defined classes, including inter alia different types of coagulation, operating table movements as well as an idle class. With the newly created audio data set, an overall accuracy of 90%, a precision of 91% and a F1-score of 91% were achieved, demonstrating the feasibility of an audio-based event recognition in the operating room. CONCLUSION: With this first proof of concept, we demonstrated that audio events can serve as a meaningful source of information that goes beyond spoken language and can easily be integrated into future workflow recognition pipelines using computational inexpensive architectures.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38884892

RESUMEN

INTRODUCTION: Surgical documentation has many implications. However, its primary function is to transfer information about surgical procedures to other medical professionals. Thereby, written reports describing procedures in detail are the current standard, impeding comprehensive understanding of patient-individual life-spanning surgical course, especially if surgeries are performed at a timely distance and in diverse facilities. Therefore, we developed a novel model-based approach for documentation of visceral surgeries, denoted as 'Surgical Documentation Markup-Modeling' (SDM-M). MATERIAL AND METHODS: For scientific evaluation, we developed a web-based prototype software allowing for creating hierarchical anatomical models that can be modified by individual surgery-related markup information. Thus, a patient's cumulated 'surgical load' can be displayed on a timeline deploying interactive anatomical 3D models. To evaluate the possible impact on daily clinical routine, we performed an evaluation study with 24 surgeons and advanced medical students, elaborating on simulated complex surgical cases, once with classic written reports and once with our prototypical SDM-M software. RESULTS: Leveraging SDM-M in an experimental environment reduced the time needed for elaborating simulated complex surgical cases from 354 ± 85 s with the classic approach to 277 ± 128 s. (p = 0.00109) The perceived task load measured by the Raw NASA-TLX was reduced significantly (p = 0.00003) with decreased mental (p = 0.00004) and physical (p = 0.01403) demand. Also, time demand (p = 0.00041), performance (p = 0.00161), effort (p = 0.00024), and frustration (p = 0.00031) were improved significantly. DISCUSSION: Model-based approaches for life-spanning surgical documentation could improve the daily clinical elaboration and understanding of complex cases in visceral surgery. Besides reduced workload and time sparing, even a more structured assessment of individual surgical cases could foster improved planning of further surgeries, information transfer, and even scientific evaluation, considering the cumulative 'surgical load.' CONCLUSION: Life-spanning model-based documentation of visceral surgical cases could significantly improve surgery and workload.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA