Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 272
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Plant Physiol ; 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39365766

RESUMEN

Chloroplasts are important photosynthetic organelles that regulate plant immunity, growth, and development. However, the role of fungal secretory proteins in linking the photosystem to the plant immune system remains largely unknown. Our systematic characterization of 17 chloroplast-targeting secreted proteins of Fusarium graminearum indicated that Fg03600 is an important virulence factor. Fg03600 translocation into plant cells and accumulation in chloroplasts depended on its chloroplast transit peptide. Fg03600 interacted with the wheat (Triticum aestivum L.) proton gradient regulation 5-like protein 1 (TaPGRL1), a part of the cyclic photosynthetic electron transport chain, and promoted TaPGRL1 homo-dimerization. Interestingly, TaPGRL1 also interacted with ferredoxin (TaFd), a chloroplast ferredoxin protein that transfers cyclic electrons to TaPGRL1. TaFd competed with Fg03600 for binding to the same region of TaPGRL1. Fg03600 expression in plants decreased cyclic electron flow (CEF) but increased the production of chloroplast-derived reactive oxygen species (ROS). Stably silenced TaPGRL1 impaired resistance to Fusarium head blight (FHB) and disrupted CEF. Overall, Fg03600 acts as a chloroplast-targeting effector to suppress plant CEF and increase photosynthesis-derived ROS for FHB development at the necrotrophic stage by promoting homo-dimeric TaPGRL1 or competing with TaFd for TaPGRL1 binding.

2.
BMC Biol ; 22(1): 204, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39256758

RESUMEN

BACKGROUND: Fusarium head blight (FHB) significantly impacts wheat yield and quality. Understanding the intricate interaction mechanisms between Fusarium graminearum (the main pathogen of FHB) and wheat is crucial for developing effective strategies to manage and this disease. Our previous studies had shown that the absence of the cell wall mannoprotein FgCWM1, located at the outermost layer of the cell wall, led to a decrease in the pathogenicity of F. graminearum and induced the accumulation of salicylic acid (SA) in wheat. Hence, we propose that FgCWM1 may play a role in interacting between F. graminearum and wheat, as its physical location facilitates interaction effects. RESULTS: In this study, we have identified that the C-terminal region of NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 9 (NDUFA9) could interact with FgCWM1 through the yeast two-hybrid assay. The interaction was further confirmed through the combination of Co-IP and BiFC analyses. Consistently, the results of subcellular localization indicated that TaNDUFA9 was localized in the cytoplasm adjacent to the cell membrane and chloroplasts. The protein was also detected to be associated with mitochondria and positively regulated complex I activity. The loss-of-function mutant of TaNDUFA9 exhibited a delay in flowering, decreased seed setting rate, and reduced pollen fertility. However, it exhibited elevated levels of SA and increased resistance to FHB caused by F. graminearum infection. Meanwhile, inoculation with the FgCWM1 deletion mutant strain led to increased synthesis of SA in wheat. CONCLUSIONS: These findings suggest that TaNDUFA9 inhibits SA synthesis and FHB resistance in wheat. FgCWM1 enhances this inhibition by interacting with the C-terminal region of TaNDUFA9, ultimately facilitating F. graminearum infection in wheat. This study provides new insights into the interaction mechanism between F. graminearum and wheat. TaNDUFA9 could serve as a target gene for enhancing wheat resistance to FHB.


Asunto(s)
Resistencia a la Enfermedad , Fusarium , Enfermedades de las Plantas , Proteínas de Plantas , Ácido Salicílico , Triticum , Triticum/microbiología , Triticum/genética , Triticum/metabolismo , Enfermedades de las Plantas/microbiología , Fusarium/fisiología , Resistencia a la Enfermedad/genética , Ácido Salicílico/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
BMC Genomics ; 25(1): 626, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902625

RESUMEN

BACKGROUND: Wheat grain endosperm is mainly composed of proteins and starch. The contents and the overall composition of seed storage proteins (SSP) markedly affect the processing quality of wheat flour. Polyploidization results in duplicated chromosomes, and the genomes are often unstable and may result in a large number of gene losses and gene rearrangements. However, the instability of the genome itself, as well as the large number of duplicated genes generated during polyploidy, is an important driving force for genetic innovation. In this study, we compared the differences in starch and SSP, and analyzed the transcriptome and metabolome among Aegilops sharonensis (R7), durum wheat (Z636) and amphidiploid (Z636×R7) to reveal the effects of polyploidization on the synthesis of seed reserve polymers. RESULTS: The total starch and amylose content of Z636×R7 was significantly higher than R7 and lower than Z636. The gliadin and glutenin contents of Z636×R7 were higher than those in Z636 and R7. Through transcriptome analysis, there were 21,037, 2197, 15,090 differentially expressed genes (DEGs) in the three comparison groups of R7 vs Z636, Z636 vs Z636×R7, and Z636×R7 vs R7, respectively, which were mainly enriched in carbon metabolism and amino acid biosynthesis pathways. Transcriptome data and qRT-PCR were combined to analyze the expression levels of genes related to storage polymers. It was found that the expression levels of some starch synthase genes, namely AGP-L, AGP-S and GBSSI in Z636×R7 were higher than in R7 and among the 17 DEGs related to storage proteins, the expression levels of 14 genes in R7 were lower than those in Z636 and Z636×R7. According to the classification analysis of all differential metabolites, most belonged to carboxylic acids and derivatives, and fatty acyls were enriched in the biosynthesis of unsaturated fatty acids, niacin and nicotinamide metabolism, one-carbon pool by folate, etc. CONCLUSION: After allopolyploidization, the expression of genes related to starch synthesis was down-regulated in Z636×R7, and the process of starch synthesis was inhibited, resulting in delayed starch accumulation and prolongation of the seed development process. Therefore, at the same development time point, the starch accumulation of Z636×R7 lagged behind that of Z636. In this study, the expression of the GSe2 gene in Z636×R7 was higher than that of the two parents, which was beneficial to protein synthesis, and increased the protein content. These results eventually led to changes in the synthesis of seed reserve polymers. The current study provided a basis for a greater in-depth understanding of the mechanism of wheat allopolyploid formation and its stable preservation, and also promoted the effective exploitation of high-value alleles.


Asunto(s)
Aegilops , Semillas , Triticum , Triticum/genética , Triticum/metabolismo , Aegilops/genética , Aegilops/metabolismo , Semillas/genética , Semillas/metabolismo , Hibridación Genética , Poliploidía , Almidón/biosíntesis , Almidón/metabolismo , Transcriptoma , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteómica/métodos , Multiómica
4.
BMC Plant Biol ; 24(1): 558, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38877396

RESUMEN

BACKGROUND: Wheat is one of the important grain crops in the world. The formation of lesion spots related to cell death is involved in disease resistance, whereas the regulatory pathway of lesion spot production and resistance mechanism to pathogens in wheat is largely unknown. RESULTS: In this study, a pair of NILs (NIL-Lm5W and NIL-Lm5M) was constructed from the BC1F4 population by the wheat lesion mimic mutant MC21 and its wild genotype Chuannong 16. The formation of lesion spots in NIL-Lm5M significantly increased its resistance to stripe rust, and NIL-Lm5M showed superiour agronomic traits than NIL-Lm5W under stripe rust infection.Whereafter, the NILs were subjected to transcriptomic (stage N: no spots; stage S, only a few spots; and stage M, numerous spots), metabolomic (stage N and S), and hormone analysis (stage S), with samples taken from normal plants in the field. Transcriptomic analysis showed that the differentially expressed genes were enriched in plant-pathogen interaction, and defense-related genes were significantly upregulated following the formation of lesion spots. Metabolomic analysis showed that the differentially accumulated metabolites were enriched in energy metabolism, including amino acid metabolism, carbohydrate metabolism, and lipid metabolism. Correlation network diagrams of transcriptomic and metabolomic showed that they were both enriched in energy metabolism. Additionally, the contents of gibberellin A7, cis-Zeatin, and abscisic acid were decreased in leaves upon lesion spot formation, whereas the lesion spots in NIL-Lm5M leaves were restrained by spaying GA and cytokinin (CTK, trans-zeatin) in the field. CONCLUSION: The formation of lesion spots can result in cell death and enhance strip rust resistance by protein degradation pathway and defense-related genes overexpression in wheat. Besides, the formation of lesion spots was significantly affected by GA and CTK. Altogether, these results may contribute to the understanding of lesion spot formation in wheat and laid a foundation for regulating the resistance mechanism to stripe rust.


Asunto(s)
Muerte Celular , Resistencia a la Enfermedad , Enfermedades de las Plantas , Reguladores del Crecimiento de las Plantas , Transcriptoma , Triticum , Triticum/genética , Triticum/microbiología , Triticum/metabolismo , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Giberelinas/metabolismo , Citocininas/metabolismo , Perfilación de la Expresión Génica , Metabolómica , Regulación de la Expresión Génica de las Plantas
5.
Theor Appl Genet ; 137(5): 116, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698276

RESUMEN

KEY MESSAGE: An adult plant gene for resistance to stripe rust was narrowed down to the proximal one-third of the 2NvS segment translocated from Aegilops ventricosa to wheat chromosome arm 2AS, and based on the gene expression analysis, two candidate genes were identified showing a stronger response at the adult plant stage compared to the seedling stage. The 2NvS translocation from Aegilops ventricosa, known for its resistance to various diseases, has been pivotal in global wheat breeding for more than three decades. Here, we identified an adult plant resistance (APR) gene in the 2NvS segment in wheat line K13-868. Through fine mapping in a segregating near-isogenic line (NIL) derived population of 6389 plants, the candidate region for the APR gene was narrowed down to between 19.36 Mb and 33 Mb in the Jagger reference genome. Transcriptome analysis in NILs strongly suggested that this APR gene conferred resistance to stripe rust by triggering plant innate immune responses. Based on the gene expression analysis, two disease resistance-associated genes within the candidate region, TraesJAG2A03G00588940 and TraesJAG2A03G00590140, exhibited a stronger response to Puccinia striiformis f. sp. tritici (Pst) infection at the adult plant stage than at the seedling stage, indicating that they could be potential candidates for the resistance gene. Additionally, we developed a co-dominant InDel marker, InDel_31.05, for detecting this APR gene. Applying this marker showed that over one-half of the wheat varieties approved in 2021 and 2022 in Sichuan province, China, carry this gene. Agronomic trait evaluation of NILs indicated that the 2NvS segment effectively mitigated the negative effects of stripe rust on yield without affecting other important agronomic traits. This study provided valuable insights for cloning and breeding through the utilization of the APR gene present in the 2NvS segment.


Asunto(s)
Aegilops , Basidiomycota , Mapeo Cromosómico , Resistencia a la Enfermedad , Perfilación de la Expresión Génica , Genes de Plantas , Enfermedades de las Plantas , Triticum , Triticum/genética , Triticum/microbiología , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Basidiomycota/patogenicidad , Basidiomycota/fisiología , Aegilops/genética , Aegilops/microbiología , Fitomejoramiento , Transcriptoma , Cromosomas de las Plantas/genética , Puccinia/patogenicidad , Puccinia/fisiología , Regulación de la Expresión Génica de las Plantas
6.
Theor Appl Genet ; 137(10): 232, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39320516

RESUMEN

KEY MESSAGE: A major and stable QTL for sterile florets per spike and sterile florets per spikelet was identified, it was mapped within a 2.22-Mb interval on chromosome 5AL, and the locus was validated using two segregating populations with different genetic backgrounds. Both the number of fertile florets per spike (FFS) and the number of sterile florets per spike (SFS) significantly influence the final yield of wheat (Triticum aestivum L.), and a trade-off theoretically exists between them. To enhance crop yield, wheat breeders have historically concentrated on easily measurable traits such as FFS, spikelets per spike, and spike length. Other traits of agronomic importance, including SFS and sterile florets per spikelet (SFPs), have been largely overlooked. In the study, reported here, genetic bases of SFS and SFPs were investigated based on the assessment of a population of recombinant inbred lines (RILs) population. The RIL population was developed by crossing a spontaneous mutant with higher SFS (msf) with the cultivar Chuannong 16. A total of 10 quantitative trait loci (QTL) were identified, with QSFS.sau-MC-5A for SFS and QSFPs.sau-MC-5A for SFPs being the major and stable ones, and they were co-located on the long arm of chromosome 5A. The locus was located within a 2.22-Mb interval, and it was further validated in two additional populations based on a tightly linked Kompetitive Allele-Specific PCR (KASP) marker, K_sau_5A_691403852. Expression differences and promoter sequence variations were observed between the parents for both TraesCS5A03G1247300 and TraesCS5A03G1250300. The locus of QSFS.sau-MC-5A/QSFPs.sau-MC-5A showed a significantly positive correlation with spike length, florets in the middle spikelet, and total florets per spike, but it showed no correlation with either kernel number per spike (KNS) or kernel weight per spike. Appropriate nitrogen fertilizer application led to reduced SFS and increased KNS, supporting results from previous reports on the positive effect of nitrogen fertilizer on wheat spike and floret development. Based on these results, we propose a promising approach for breeding wheat cultivars with multiple fertile florets per spike, which could increase the number of kernels per spike and potentially improve yield. Collectively, these findings will facilitate further fine mapping of QSFS.sau-MC-5A/QSFPs.sau-MC-5A and be instrumental in strategies to increase KNS, thereby enhancing wheat yield.


Asunto(s)
Mapeo Cromosómico , Fenotipo , Sitios de Carácter Cuantitativo , Triticum , Triticum/genética , Triticum/crecimiento & desarrollo , Flores/genética , Flores/crecimiento & desarrollo , Infertilidad Vegetal/genética , Fitomejoramiento , Cromosomas de las Plantas/genética , Genes de Plantas , Marcadores Genéticos , Ligamiento Genético , Cruzamientos Genéticos
7.
Theor Appl Genet ; 137(1): 31, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38267732

RESUMEN

KEY MESSAGE: A co-located novel QTL for TFS, FPs, FMs, FFS, FFPs, KWS, and KWPs with potential of improving wheat yield was identified and validated. Spike-related traits, including fertile florets per spike (FFS), kernel weight per spike (KWS), total florets per spike (TFS), florets per spikelet (FPs), florets in the middle spikelet (FMs), fertile florets per spikelet (FFPs), and kernel weight per spikelet (KWPs), are key traits in improving wheat yield. In the present study, quantitative trait loci (QTL) for these traits evaluated under various environments were detected in a recombinant inbred line population (msf/Chuannong 16) mainly genotyped using the 16 K SNP array. Ultimately, we identified 60 QTL, but only QFFS.sau-MC-1A for FFS was a major and stably expressed QTL. It was located on chromosome arm 1AS, where loci for TFS, FPs, FMs, FFS, FFPs, KWS, and KWPs were also simultaneously co-mapped. The effect of QFFS.sau-MC-1A was further validated in three independent segregating populations using a Kompetitive Allele-Specific PCR marker. For the co-located QTL, QFFS.sau-MC-1A, the presence of a positive allele from msf was associate with increases for all traits: + 12.29% TFS, + 10.15% FPs, + 13.97% FMs, + 17.12% FFS, + 14.75% FFPs, + 22.17% KWS, and + 19.42% KWPs. Furthermore, pleiotropy analysis showed that the positive allele at QFFS.sau-MC-1A simultaneously increased the spike length, spikelet number per spike, and thousand-kernel weight. QFFS.sau-MC-1A represents a novel QTL for marker-assisted selection with the potential for improving wheat yield. Four genes, TraesCS1A03G0012700, TraesCS1A03G0015700, TraesCS1A03G0016000, and TraesCS1A03G0016300, which may affect spike development, were predicted in the physical interval harboring QFFS.sau-MC-1A. Our results will help in further fine mapping QFFS.sau-MC-1A and be useful for improving wheat yield.


Asunto(s)
Sitios de Carácter Cuantitativo , Triticum , Triticum/genética , Fitomejoramiento , Fenotipo , Genotipo
8.
J Integr Plant Biol ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39171839

RESUMEN

During their co-evolution with herbivorous insects, plants have developed multiple defense strategies that resist pests, such as releasing a blend of herbivory-induced plant volatiles (HIPVs) that repel pests or recruit their natural enemies. However, the responses of insects to HIPVs in maize (Zea mays L.) are not well understood. Here, we demonstrate that the Asian corn borer (ACB, Ostrinia furnacalis), a major insect pest of maize, shows a preference for maize pre-infested with ACB larvae rather than being repelled by these plants. Through combined transcriptomic and metabolomics analysis of ACB-infested maize seedlings, we identified two substances that explain this behavior: (E)-4,8-dimethylnona-1,3,7-triene (DMNT) and (3E,7E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene (TMTT). DMNT and TMTT attracted ACB larvae, and knocking out the maize genes responsible for their biosynthesis via gene editing impaired this attraction. External supplementation with DMNT/TMTT hampered the larvae's ability to locate pre-infested maize. These findings uncover a novel role for DMNT and TMTT in driving the behavior of ACB. Genetic modification of maize to make it less detectable by ACB might be an effective strategy for developing maize germplasm resistant to ACB and for managing this pest effectively in the field.

9.
BMC Genomics ; 24(1): 178, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37020178

RESUMEN

BACKGROUND: Fusarium crown rot (FCR) is a chronic disease of cereals worldwide. Compared with tetraploid wheat, hexaploid wheat is more resistant to FCR infection. The underlying reasons for the differences are still not clear. In this study, we compared FCR responses of 10 synthetic hexaploid wheats (SHWs) and their tetraploid and diploid parents. We then performed transcriptome analysis to uncover the molecular mechanism of FCR on these SHWs and their parents. RESULTS: We observed higher levels of FCR resistance in the SHWs compared with their tetraploid parents. The transcriptome analysis suggested that multiple defense pathways responsive to FCR infection were upregulated in the SHWs. Notably, phenylalanine ammonia lyase (PAL) genes, involved in lignin and salicylic acid (SA) biosynthesis, exhibited a higher level of expression to FCR infection in the SHWs. Physiological and biochemical analysis validated that PAL activity and SA and lignin contents of the stem bases were higher in SHWs than in their tetraploid parents. CONCLUSION: Overall, these findings imply that improved FCR resistance in SHWs compared with their tetraploid parents is probably related to higher levels of response on PAL-mediated lignin and SA biosynthesis pathways.


Asunto(s)
Fusarium , Fusarium/fisiología , Tetraploidía , Lignina , Poaceae , Genotipo , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética
10.
Opt Express ; 31(12): 19536-19543, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37381366

RESUMEN

Single photons are pivotal building blocks for photonic quantum technologies. Semiconductor quantum dots are promising candidates for optimal single photon sources in terms of purity, brightness and indistinguishability. Here we embed quantum dots into bullseye cavities with a backside dielectric mirror to enhance the collection efficiency up to near 90%. Experimentally, we achieve a collection efficiency of 30%. The auto-correlation measurements reveal a multiphoton probability below 0.05±0.005. A moderate Purcell factor of 3.1 is observed. Furthermore, we propose a scheme for laser integration as well as fiber coupling. Our results represent a step forward to the practical plug-and-play single photon sources.

11.
Theor Appl Genet ; 136(10): 213, 2023 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-37740730

RESUMEN

KEY MESSAGE: A novel and stably expressed QTL QSNS.sicau-SSY-7A for spikelet number per spike in wheat without negative effects on thousand-kernel weight was identified and validated in different genetic backgrounds. Spikelet number per spike (SNS) is an important determinant of yield in wheat. In the present study, we combined bulked segregant analysis (BSA) and the wheat 660 K single-nucleotide polymorphism (SNP) array to rapidly identify genomic regions associated with SNS from a recombinant inbred line (RIL) population derived from a cross between the wheat lines S849-8 and SY95-71. A genetic map was constructed using Kompetitive Allele Specific PCR markers in the SNP-enriched region on the long arm of chromosome 7A. A major and stably expressed QTL, QSNS.sicau-SSY-7A, was detected in multiple environments. It was located in a 1.6 cM interval on chromosome arm 7AL flanked by the markers AX-109983514 and AX-109820548. This QTL explained 6.86-15.72% of the phenotypic variance, with LOD values ranging from 3.66 to 8.66. Several genes associated with plant growth and development were identified in the interval where QSNS.sicau-SSY-7A was located on the 'Chinese Spring' wheat and wild emmer reference genomes. Furthermore, the effects of QSNS.sicau-SSY-7A and WHEAT ORTHOLOG OFAPO1(WAPO1) on SNS were analyzed. Interestingly, QSNS.sicau-SSY-7A significantly increased SNS without negative effects on thousand-kernel weight, anthesis date and plant height, demonstrating its great potential for breeding aimed at improving grain yield. Taken together, these results indicate that QSNS.sicau-SSY-7A is a promising locus for yield improvement, and its linkage markers are helpful for fine mapping and molecular breeding.


Asunto(s)
Fitomejoramiento , Triticum , Triticum/genética , Alelos , Barajamiento de ADN , Grano Comestible
12.
Theor Appl Genet ; 136(4): 90, 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37000252

RESUMEN

KEY MESSAGE: Two major and stably expressed QTL for traits related to mature wheat embryo independent of kernel size were identified and validated in a natural population that contained 171 Sichuan wheat accessions and 49 Sichuan wheat landraces. As the juvenile of a highly differentiated plant, mature wheat (Triticum aestivum L.) embryos are highly significant to agricultural production. To understand the genetic basis of traits related to wheat embryo size, the embryo of mature kernels in a recombination inbred line that contained 126 lines from four environments was measured. The genetic loci of embryo size, including embryo length (EL), embryo width (EW), embryo area (EA), embryo length/kernel length (EL/KL), embryo width/kernel width (EW/KW), and EL/EW, were identified based on a genetic linkage map constructed based on PCR markers and the Wheat 55 K single nucleotide polymorphism (SNP) array. A total of 50 quantitative trait loci (QTL) for traits related to wheat embryo size were detected. Among them, QEL.sicau-2SY-4A for EL and QEW.sicau-2SY-7B for EW were major and stably expressed and were genetically independent of KL and KW, respectively. Their effects were further verified in a natural population that contained 171 Sichuan wheat accessions and 49 Sichuan wheat landraces. Further analysis showed that TraesCS4A02G343300 and TraesCS7B02G006800 could be candidate genes for QEL.sicau-2SY-4A and QEW.sicau-2SY-7B, respectively. In addition, significant positive correlations between EL and kernel-related traits and the 1,000-grain weight were detected. Collectively, this study broadens our understanding of the genetic basis of wheat embryo size and will be helpful for the further fine-mapping of interesting loci in the future.


Asunto(s)
Sitios de Carácter Cuantitativo , Triticum , Triticum/genética , Mapeo Cromosómico , Fenotipo , Grano Comestible/genética , Polimorfismo de Nucleótido Simple
13.
Theor Appl Genet ; 136(4): 67, 2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-36952028

RESUMEN

KEY MESSAGE: Combined with BSE-Seq analysis and multiple genetic populations, three genes involved in stripe rust resistance were identified in Chinese wheat landrace Dahongpao, including a novel suppressor on 2BS. Dahongpao (DHP), a landrace of hexaploid wheat in China, exhibits a high degree of stripe rust resistance in the field for many years. In this study, bulked segregant analysis coupled with exome capture sequencing (BSE-Seq) was used to identify genes encoding stripe rust resistance in multiple genetic populations from the cross between DHP and a susceptible hexaploid Australian cultivar, Avocet S (AvS). The most effective QTL in DHP was Yr18, explaining up to 53.08% of phenotypic variance in the F2:3 families. To identify additional genes, secondary mapping populations SP1 and SP2 were produced by crossing AvS with two resistant lines derived from F2:3 families lacking Yr18. An all-stage resistance gene, Yr.DHP-6AS, was identified via BSE-Seq analysis of SP1. Combined the recombinant plants from both SP1 and SP2, Yr.DHP-6AS was located between KP6A_1.66 and KP6A_8.18, corresponding to the same region as Yr81. In addition, secondary mapping populations SP3 and SP4 were developed by selfing a segregating line from F2:3 families lacking Yr18. A novel suppressor gene on chromosome 2BS was identified from DHP for effectively suppressing the resistance of Yr.DHP-6AS in the SP3 and SP4. As a result, the wheat lines carrying both Yr18 and Yr.DHP-6AS show higher level of stripe rust resistance than DHP, providing an effective and simple combination for developing new wheat cultivars with ASR and APR genes. Further, the newly developed KASP markers, KP6A_1.99 and KP6A_5.22, will facilitate the application of Yr.DHP-6AS in wheat breeding via marker-assisted selection.


Asunto(s)
Basidiomycota , Triticum , Humanos , Mapeo Cromosómico , Triticum/genética , Fitomejoramiento , Resistencia a la Enfermedad/genética , Australia , Enfermedades de las Plantas/genética
14.
Theor Appl Genet ; 136(9): 181, 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37550493

RESUMEN

KEY MESSAGE: A likely new locus QSns.sau-MC-3D.1 associated with SNS showing no negative effect on yield-related traits compared to WAPO1 was identified and validated in various genetic populations under multiple environments. The number of spikelets per spike (SNS) is one of the crucial factors determining wheat yield. Thus, improving our understanding of the genes that regulate SNS could help develop wheat varieties with higher yield. In this study, a recombinant inbred line (RIL) population (MC) containing 198 lines derived from a cross between msf and Chuannong 16 (CN16) was used to construct a genetic linkage map using the GenoBaits Wheat 16 K Panel. The genetic map contained 5,991 polymorphic SNP markers spanning 2,813.25 cM. A total of twelve QTL for SNS were detected, and two of them, i.e., QSns.sau-MC-3D.1 and QSns.sau-MC-7A, were stably expressed. QSns.sau-MC-3D.1 had high LOD values ranging from 4.99 to 11.06 and explained 9.71-16.75% of the phenotypic variation. Comparison of QSns.sau-MC-3D.1 with previously reported SNS QTL suggested that it is likely a novel one, and two kompetitive allele-specific PCR (KASP) markers were further developed. The positive effect of QSns.sau-MC-3D.1 was also validated in three biparental populations and a diverse panel containing 388 Chinese wheat accessions. Genetic analysis indicated that WHEAT ORTHOLOG OFAPO1 (WAPO1) was a candidate gene for QSns.sau-MC-7A. Pyramiding of QSns.sau-MC-3D.1 and WAP01 had a great additive effect increasing SNS by 7.10%. Correlation analysis suggested that QSns.sau-MC-3D.1 was likely independent of effective tiller number, plant height, spike length, anthesis date, and thousand kernel weight. However, the H2 haplotype of WAPO1 may affect effective tiller number and plant height. These results indicated that utilization of QSns.sau-MC-3D.1 should be given priority for wheat breeding. Geographical distribution analysis showed that the positive allele of QSns.nsau-MC-3D.1 was dominant in most wheat-producing regions of China, and it has been positively selected among modern cultivars released in China since the 1940s. Gene prediction, qRT-PCR analysis, and sequence alignment suggested that TraesCS3D03G0216800 may be the candidate gene of QSns.nsau-MC-3D.1. Taken together, these results enrich our understanding of the genetic basis of wheat SNS and will be useful for fine mapping and cloning of the gene underlying QSns.sau-MC-3D.1.


Asunto(s)
Sitios de Carácter Cuantitativo , Triticum , Mapeo Cromosómico/métodos , Triticum/genética , Fitomejoramiento , Fenotipo
15.
Crit Rev Food Sci Nutr ; 63(19): 4188-4209, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34755571

RESUMEN

Sand rice (Agriophyllum squarrosum) is prized for its well-balanced nutritional properties, broad adaptability in Central Asia and highly therapeutic potentials. It has been considered as a potential climate-resilient crop. Its seed has comparable metabolite profile with Chenopodium quinoa and is rich in proteins, essential amino acids, minerals, polyunsaturated fatty acids, and phenolics, but low in carbohydrates. Phenolics like protocatechuic acid and quercetins have been characterized with biological functions on regulation of lipid and glucose metabolism in addition to anti-inflammatory and antioxidant activities. Sand rice is thus an important source for developing functional and nutraceutical products. Though historical consumption has been over 1300 years, sand rice has undergone few agronomic improvements until recently. Breeding by individual selection has been performed and yield of the best genotype can reach up to 1295.5 kg/ha. Furthermore, chemical mutagenesis has been used to modify the undesirable traits and a case study of a dwarf line (dwarf1), which showed the Green Revolution-like phenotypes, is presented. Utilization of both breeding methodologies will accelerate its domestication process. As a novel crop, sand rice research is rather limited compared with quinoa. More scientific input is urgently required if the nutritional and commercial potentials are to be fully realized.Supplemental data for this article is available online at https://doi.org/10.1080/10408398.2021.1999202 .


Asunto(s)
Chenopodium quinoa , Chenopodium quinoa/química , Domesticación , Semillas/química , Agricultura
16.
J Sci Food Agric ; 103(6): 3093-3101, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36418909

RESUMEN

BACKGROUND: Intelligent monitoring of fixation quality is a prerequisite for automated green tea processing. To meet the requirements of intelligent monitoring of fixation quality in large-scale production, fast and non-destructive detection means are urgently needed. Here, smartphone-coupled micro near-infrared spectroscopy and a self-built computer vision system were used to perform rapid detection of the fixation quality in green tea processing lines. RESULTS: Spectral and image information from green tea samples with different fixation degrees were collected at-line by two intelligent monitoring sensors. Competitive adaptive reweighted sampling and correlation analysis were employed to select feature variables from spectral and color information as the target data for modeling, respectively. The developed least squares support vector machine (LS-SVM) model by spectral information and the LS-SVM model by image information achieved the best discriminations of sample fixation degree, with both prediction set accuracies of 100%. Compared to the spectral information, the image information-based support vector regression model performed better in moisture prediction, with a correlation coefficient of prediction of 0.9884 and residual predictive deviation of 6.46. CONCLUSION: The present study provided a rapid and low-cost means of monitoring fixation quality, and also provided theoretical support and technical guidance for the automation of the green tea fixation process. © 2022 Society of Chemical Industry.


Asunto(s)
Espectroscopía Infrarroja Corta , , Té/química , Espectroscopía Infrarroja Corta/métodos , Análisis de los Mínimos Cuadrados , Máquina de Vectores de Soporte
17.
J Sci Food Agric ; 103(4): 1668-1675, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36541584

RESUMEN

BACKGROUND: Eighteen wheat (Triticum aestivum-Aegilops sharonensis) introgression lines were generated in the previous study. These lines possessed four types of high molecular weight glutenin subunit (HMW-GS) combinations consisting of one glutenin from Ae. sharonensis (Glu-1Ssh ) plus one or more HMW-GSs from common wheat (Glu-A1, Glu-B1, or Glu-D1). RESULTS: In this study, we conducted quality tests to explore the effects of 1Ssh x2.3 and 1Ssh y2.9 on the processing quality of 18 wheat-Aegilops sharonensis introgression lines. Our data showed that the 1Ssh x2.3 and 1Ssh y2.9 subunits had a positive effect on gluten and baking quality. The bread volume of all these lines was higher than that of the parental wheat line LM3. In these lines, the HMW-GS content and the HMW/LMW ratio of 66-36-11 were higher than those of LM3, and the 66-36-11 line exhibited greatly improved quality parameters in comparison with the parent LM3. CONCLUSION: These results demonstrated that the 1Ssh x2.3 and 1Ssh y2.9 subunits from Ae. sharonensis contributed immensely to gluten strength and bread-baking quality, and proved a positive relationship between the HMW-GS sizes and their effects on dough strength in vivo. The materials developed could be used by breeding programs aiming to increase bread-making quality. © 2022 Society of Chemical Industry.


Asunto(s)
Aegilops , Triticum , Triticum/genética , Triticum/química , Pan , Peso Molecular , Fitomejoramiento , Glútenes/química
18.
BMC Genomics ; 23(1): 386, 2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35590264

RESUMEN

BACKGROUND: High yield and quality are essential goals of wheat (Triticum aestivum L.) breeding. Kernel length (KL), as a main component of kernel size, can indirectly change kernel weight and then affects yield. Identification and utilization of excellent loci in wheat genetic resources is of great significance for cultivating high yield and quality wheat. Genetic identification of loci for KL has been performed mainly through genome-wide association study in natural populations or QTL mapping based on genetic linkage map in high generation populations. RESULTS: In this study, an F3 biparental population derived from the cross between an EMS mutant BLS1 selected from an EMS-induced wheat genotype LJ2135 (derived from the hybrid progeny of a spelt wheat (T. spelta L.) and a common wheat) mutant bank and a local breeding line 99E18 was used to rapidly identify loci controlling KL based on Bulked Segregant Analysis (BSA) and the wheat 660 K single-nucleotide polymorphism (SNP) array. The highest ratio of polymorphic SNPs was located on chromosome 4A. Linkage map analysis showed that 33 Kompetitive Allele Specific PCR markers were linked to the QTL for KL (Qkl.sicau-BLE18-4A) identified in three environments as well as the best linear unbiased prediction (BLUP) dataset. This QTL explained 10.87-19.30% of the phenotypic variation. Its effect was successfully confirmed in another F3 population with the two flanking markers KASP-AX-111536305 and KASP-AX-110174441. Compared with previous studies and given that the of BLS1 has the genetic background of spelt wheat, the major QTL was likely a new one. A few of predicted genes related to regulation of kernel development were identified in the interval of the detected QTL. CONCLUSION: A major, novel and stable QTL (Qkl.sicau-BLE18-4A) for KL was identified and verified in two F3 biparental populations across three environments. Significant relationships among KL, kernel width (KW) and thousand kernel weight (TKW) were identified. Four predicted genes related to kernel growth regulation were detected in the interval of Qkl.sicau-BLE18-4A. Furthermore, this study laid foundation on subsequent fine mapping work and provided a possibility for breeding of elite wheat varieties.


Asunto(s)
Cromosomas de las Plantas , Triticum , Pan , Estudio de Asociación del Genoma Completo , Genotipo , Fenotipo , Fitomejoramiento , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Triticum/genética
19.
Plant Biotechnol J ; 20(1): 75-88, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34487615

RESUMEN

The AGAMOUS-LIKE6 (AGL6)-like genes are ancient MADS-box genes and are functionally studied in a few model plants. The knowledge of these genes in wheat remains limited. Here, by studying a 'double homoeolog mutant' of the AGL6 gene in tetraploid wheat, we showed that AGL6 was required for the development of all four whorls of floral organs with dosage-dependent effect on floret fertility. Yeast two-hybrid analyses detected interactions of AGL6 with all classes of MADS-box proteins in the ABCDE model for floral organ development. AGL6 was found to interact with several additional proteins, including the G protein ß and γ (DEP1) subunits. Analysis of the DEP1-B mutant showed a significant reduction in spikelet number per spike in tetraploid wheat, while overexpression of AGL6 in common wheat increased the spikelet number per spike and hence the grain number per spike. RNA-seq analysis identified the regulation of several meristem activity genes by AGL6, such as FUL2 and TaMADS55. Our work therefore extensively updated the wheat ABCDE model and proposed an alternative approach to improve wheat grain yield by manipulating the AGL6 gene.


Asunto(s)
Proteínas de Dominio MADS , Triticum , Flores , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Meristema , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Triticum/metabolismo
20.
Plant Biotechnol J ; 20(7): 1311-1326, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35315196

RESUMEN

Plant transcription factors (TFs), such as basic helix-loop-helix (bHLH) and AT-rich zinc-binding proteins (PLATZ), play critical roles in regulating the expression of developmental genes in cereals. We identified the bHLH protein TaPGS1 (T. aestivum Positive Regulator of Grain Size 1) specifically expressed in the seeds at 5-20 days post-anthesis in wheat. TaPGS1 was ectopically overexpressed (OE) in wheat and rice, leading to increased grain weight (up to 13.81% in wheat and 18.55% in rice lines) and grain size. Carbohydrate and total protein levels also increased. Scanning electron microscopy results indicated that the starch granules in the endosperm of TaPGS1 OE wheat and rice lines were smaller and tightly embedded in a proteinaceous matrix. Furthermore, TaPGS1 was bound directly to the E-box motif at the promoter of the PLATZ TF genes TaFl3 and OsFl3 and positively regulated their expression in wheat and rice. In rice, the OsFl3 CRISPR/Cas9 knockout lines showed reduced average thousand-grain weight, grain width, and grain length in rice. Our results reveal that TaPGS1 functions as a valuable trait-associated gene for improving cereal grain yield.


Asunto(s)
Grano Comestible , Oryza , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Semillas , Triticum/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA