Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Opt Express ; 32(6): 10461-10478, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38571257

RESUMEN

We propose a multimode interference-based optical fiber NHTSN sensor with a helical taper for simultaneous measurement of micro torsion and temperature. The sensor consists of single mode fiber (SMF), no-core fiber (NCF), and seven-core fiber (SCF). A helical taper is fabricated in the SCF using a flame heater, forming the SMF-NCF-Helical Taper SCF-NCF-SMF (NHTSN) structure. Theoretical analysis and experimental results demonstrate that the introduction of helical taper not only imparts directionality to the torsion measurement, but also results in a significant improvement in torsion sensitivity due to the increased inter-mode optical path difference (OPD) and enhanced inter-mode coupling. In the experiment, the torsion sensitivity of the NHTSN sensor reaches -1.255 nm/(rad/m) in the twist rate (TR) range of -3.931 rad/m to 3.931 rad/m, which is a 9-fold improvement over the original structure. Further reduction of the helical taper diameter increases the sensitivity to -1.690 nm/(rad/m). In addition, the sensor has a temperature sensitivity of up to 97 pm/°C from 20 °C to 90 °C, and simultaneous measurement of torsion and temperature is attainable through a dual-parameter measurement matrix. The NHTSN sensor possesses advantages of compact size, high sensitivity, good linearity, and strain-independence, endowing it with potential applications in structural health monitoring (SHM) and engineering machinery.

2.
Opt Express ; 31(10): 16192-16204, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37157703

RESUMEN

The perfect optical vortex (POV) beam carrying orbital angular momentum with topological charge-independent radial intensity distribution possesses ubiquitous applications in optical communication, particle manipulation, and quantum optics. But the mode distribution of conventional POV beam is relatively single, limiting the modulation of the particles. Here, we originally introduce the high-order cross-phase (HOCP) and ellipticity γ into the POV beam and construct all-dielectric geometric metasurfaces to generate irregular polygonal perfect optical vortex (IPPOV) beams following the trend of miniaturization and integration of optical systems. By controlling the order of the HOCP, conversion rate u, and ellipticity factor γ, various shapes of IPPOV beams with different electric field intensity distributions can be realized. In addition, we analyze the propagation characteristics of IPPOV beams in free-space, and the number and rotation direction of bright spots at the focal plane give the magnitude and sign of the topological charge carried by the beam. The method does not require cumbersome devices or complex calculation process, and provides a simple and effective method for simultaneous polygon shaping and topological charge measurement. This work further improves the beam manipulation ability while maintaining the characteristics of the POV beam, enriches the mode distribution of the POV beam, and provides more possibilities for particle manipulation.

3.
Opt Express ; 31(19): 30932-30946, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37710625

RESUMEN

In this paper, we investigate the singular multi-wavelength and multi-waveband transparencies generated by P T-symmetric dumbbell optical waveguide networks composed of two materials, and obtain the number regularity for the transparency wavelengths of one-unit-cell system and the general relationships for the transmission and reflection coefficients of multi-unit-cell systems. Consequently, three types of exact transparencies produced by multi-unit-cell systems are found based on the aforementioned formulas: (i)exact multi-wavelength unidirectional or bidirectional transparency as the same as those of one-unit-cell system; (ii)exact multi-wavelength bidirectional transparency at which one-unit-cell system cannot produce exact transparency, generated by adjusting the number of unit cells; (iii)exact multi-wavelength bidirectional transparency at which one-unit-cell system produces exact transparency, also generated by adjusting the number of unit cells. It provides theoretical foundations for developing highly sensitive and multi-wavelength optical filters. On the other hand, we also discover that multi-unit-cell systems can create approximate multi-waveband bidirectional transparencies by adjusting the number of unit cells, which provides scientific support for developing high-performance optical stealth devices.

4.
Int J Mol Sci ; 24(5)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36902142

RESUMEN

Lead-free perovskite is one of the ideal solutions for the toxicity and instability of lead halide perovskite quantum dots. As the most ideal lead-free perovskite at present, bismuth-based perovskite quantum dots still have the problem of a low photoluminescence quantum yield, and its biocompatibility also needs to be explored. In this paper, Ce3+ ions were successfully introduced into the Cs3Bi2Cl9 lattice using a modified antisolvent method. The photoluminescence quantum yield of Cs3Bi2Cl9:Ce is up to 22.12%, which is 71% higher than that of undoped Cs3Bi2Cl9. The two quantum dots show high water-soluble stability and good biocompatibility. Under the excitation of a 750 nm femtosecond laser, high-intensity up-conversion fluorescence images of human liver hepatocellular carcinoma cells cultured with the quantum dots were obtained, and the fluorescence of the two quantum dots was observed in the image of the nucleus. The fluorescence intensity of cells cultured with Cs3Bi2Cl9:Ce was 3.20 times of that of the control group and 4.54 times of the control group for the fluorescence intensity of the nucleus, respectively. This paper provides a new strategy to develop the biocompatibility and water stability of perovskite and expands the application of perovskite in the field.


Asunto(s)
Bismuto , Óxidos , Humanos , Compuestos de Calcio , Agua
5.
Opt Express ; 30(17): 30881-30893, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-36242184

RESUMEN

The perfect vortex (PV) beam, characterized by carrying orbital angular momentum and a radial electric intensity distribution independent of the topological charge, has important applications in optical communication, particle manipulation, and quantum optics. Conventional methods of generating PV beams require a series of bulky optical elements that are tightly collimated with each other, adding to the complexity of optical systems. Here, making the amplitude of transmitted co-polarized and cross-polarized components to be constant, all-dielectric transmission metasurfaces with superimposed phase profiles integrating spiral phase plate, axicon and Fourier lens are constructed based on the phase-only modulation method. Using mathematical derivation and numerical simulation, multi-channel PV beams with controllable annular ring radius and topological charge are realized for the first time under circularly polarized light incidence combining the propagation phase and geometric phase. Meanwhile, perfect vector vortex beams are produced by superposition of PV beams under the incidence of left-handed circularly polarized and right-handed circularly polarized lights, respectively. This work provides a new perspective on generating tailored PV beams, increasing design flexibility and facilitating the construction of compact, integrated, and versatile nanophotonics platforms.

6.
Opt Express ; 30(2): 1152-1166, 2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-35209281

RESUMEN

We have manufactured an intensity modulated optical fiber SMDMS sensor with hydroxyethyl cellulose (HEC) hydrogel coating for simultaneous measurement of RH and temperature. The SMDMS sensor was manufactured by splicing single-mode fiber (SMF), multi-mode fiber (MMF), dispersion compensation fiber (DCF), MMF, and SMF in sequence to form a structure of SMF + MMF + DCF + MMF + SMF (SMDMS). The cladding of MMFs and DCF were corroded by hydrofluoric acid (HF) and coated with HEC hydrogel to excite a strong evanescent field and increase the sensitivity of the SMDMS sensor. The adsorption of water molecules by HEC will cause a change in the effective refractive index of cladding mode, which will eventually change the intensity of the transmission spectrum. The experimental results indicate that the sensitivities are 0.507 dB/%RH and 0.345 dB/°C in the RH range of 30%-80% and temperature range of 10°C-50°C, respectively. At last, a dual-parameter measurement matrix is constructed based on the experimental results to achieve the simultaneous measurement of RH and temperature. The SMDMS sensor has the advantages of high sensitivity and good robustness, and has potential application prospects in daily life and other fields.

7.
Opt Express ; 30(17): 30936-30948, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-36242188

RESUMEN

Metasurface based on independent and simultaneous control of near field and far field has significant potential for use in multichannel optics platform devices. However, the previous studies cannot satisfy independent and simultaneous control of near field and far field under a single line source, which made a significant challenge to multichannel optical platforms working in a compact environment. To manipulate effectively and freely the amplitude and phase of transmission under line source, Marius' law and Propagation phase was introduced on all-dielectric encoding metasurfaces meta-atoms. The Marius' law and Propagation phase can control the size and rotation angle of meta-atoms to encode grayscale amplitude images and holographic phase images. Finite-difference time-domain simulation results reveal that dual channel metasurface under a single line source achieves the same display effect as the dual channel metasurface under multiple light sources, which proves the feasibility of our studies. Moreover, under different angles of the line source, we encode the near-field binary image by using the degeneracy rotation angle of meta-atoms. Finally, a three-channel metasurface was obtained without affecting the display of the previous two-channel metasurface. As a result, the independent control amplitude, phase, and polarization of the incident light wave were achieved. The proposed metasurface could be applied in creating a multi-channel metasurface optical platform in a compact environment, which has application potential in image displays, optical storage, optical anti-counterfeiting, and information encryption technology.

8.
Opt Express ; 30(10): 17541-17553, 2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-36221574

RESUMEN

Achromatic metalens have the potential to significantly reduce the size and complexity of broadband imaging systems. A large variety of achromatic metalens has been proposed and most of them have the fixed achromatic band that cannot be actively modified. However, band-tunable is an important function in practical applications such as fluorescence microscopic imaging and optical detection. Here, we propose a bilayer metalens that can switch achromatic bands by taking the advantage of the high refractive index contrast of Sb2S3 between amorphous and crystalline state. By switching the state of Sb2S3, the achromatic band can be reversibly switched between the red region of visible spectrum (650-830 nm) and the near-infrared spectrum (830-1100 nm). This band-tunable design indicates a novel (to our knowledge) method to solve the problem of achromatic focusing in an ultrabroad band. The metalens have an average focusing efficiency of over 35% and 55% in two bands while maintaining diffraction-limited performance. Moreover, through proper design, we can combine different functionalities in two bands such as combining achromatic focusing and diffractive focusing. The proposed metalens have numerous potential applications in tunable displaying, detecting devices and multifunctional devices.

9.
Opt Express ; 30(11): 18434-18446, 2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-36221644

RESUMEN

The operation of near-field and far-field can be employed to display holographic and nanoprinting images, which significantly improves the information density. Previous studies have proposed some approaches to display the images independently or simultaneously, but cannot satisfy these two characteristics in a single structure under the same incident light. Here, a single layer multifunctional metasurface is proposed to display a nanoprinting image and a holographic image independently and simultaneously. By tailoring the dimensions of each nanobricks and adopting different orientation angle, the amplitude and phase can be artificially designed. Moreover, enabled by the simulated annealing algorithm, we take the impact of both amplitude and phase of each nanobrick into consideration, which eliminates the unnecessary influence of amplitude on holographic image. Compared with previous work, our metasurfaces markedly improve the quality of holographic image with simple structures while not affecting the nanoprinting image. To be exact, it breaks the coupling between the near-field and far-field, achieving independent and simultaneous control of both fields. Our proposed metasurfaces carry characteristics of simple manufacture, little crosstalk, and great compactness, which provides novel applications for image displays, optical storage and information technology.

10.
Opt Express ; 30(26): 47216-47234, 2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36558655

RESUMEN

In this paper, an asymmetric structure optical fiber sensor is proposed to measure relative humidity (RH). The sensing structure is composed of splicing dispersion compensation fiber (DCF) and coreless fiber (NCF), and two sections of single-mode fiber (SMF) at both ends. Peanut shaped structure is used as a beam splitter at the input side, and the NCF is used as a beam combiner at the output side to form interference fringes. The partial cladding of DCF was etched, and polyvinyl alcohol (PVA) was coated on the etched area to form a hygroscopic film. When the ambient humidity changes, the refractive index and thickness of the hygroscopic film will change, which will lead to the wavelength shift of the resonant dip. The experimental results show that the sensitivity of the sensor is 0.1304 nm/RH% and 0.4452 nm/RH% in the RH range of 55%-75% and 75%-95%, respectively. In order to improve the sensitivity further, the original spectrum data is filtered by fast Fourier transform (FFT) and inverse fast Fourier transform (IFFT), and the high-frequency interference components of high-order mode (LP09) and fundamental mode are obtained, which is superimposed with a simulated signal to form Vernier effect. With the method of virtual Vernier effect, the sensitivity in the RH range of 55%-75% is improved to 2.869 nm/RH%, which is 22 times larger than the original sensitivity, and the sensitivity in the RH range of 75%-95% is improved to 2.64 nm/RH%, which is 6 times larger than the original sensitivity.

11.
Opt Express ; 30(26): 47338-47349, 2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36558664

RESUMEN

The resonant optical tunneling effect (ROTE) originates from the frustrated total reflection effect because unique transmission characteristics are used to study high-sensitivity sensors. In this study, we theoretically demonstrated that choosing a suitable transmission gap made it possible for the ROTE structure based on hexagonal boron nitride and graphene to obtain a large Goos-Hänchen shift as high as tens of thousands of times the incident wavelength at a specific incident angle. The amplitude of the Goos-Hänchen shift was found to be sensitive to the central layer thickness but was also modulated by the tunneling gap on both sides. In addition, adjusting the chemical potential and relaxation time of the graphene sheets could alter the Goos-Hänchen shift. Our work provides a new way to explore the Goos-Hänchen effect and opens the possibility for the application of high-precision measurement technology based on the ROTE.

12.
Opt Express ; 30(21): 37888-37898, 2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36258368

RESUMEN

In this study, a one-dimensional (1D) two-material period ring optical waveguide network (TMPROWN) was designed, and its optical properties were investigated. The key characteristics observed in the 1D TMPROWN include the following: (1) Bound states in continuum (BICs) can be generated in the optical waveguide network. (2) In contrast to the BICs previously reported in optical structures, the range of the BICs generated by the 1D TMPROWN is not only larger, but also continuous. This feature makes it possible for us to further study the electromagnetic wave characteristics in the range of the BICs. In addition, we analyzed the physical mechanisms of the BICs generated in the 1D TMPROWN. The 1D TMPROWN is simple in structure, demonstrates flexibility with respect to adjusting the frequency band of the BICs, and offers easy measurement of the amplitude and phase of electromagnetic waves. Hence, further research on high-power super luminescent diodes, optical switches, efficient photonic energy storage, and other optical devices based on the 1D TMPROWN designed in this study is likely to have implications in a broad range of applications.

13.
Opt Express ; 29(6): 9332-9345, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33820364

RESUMEN

Optical metasurfaces exhibit unprecedented ability in light field control due to their ability to locally change the phase, amplitude, and polarization of transmitted or reflected light. We propose a multifunctional metalens with dual working modes based on bilayer geometric phase elements consisting of low-loss phase change materials (Sb2Se3) and amorphous silicon (a-Si). In transmission mode, by changing the crystalline state of the Sb2Se3 scatterer, a bifocal metalens with an arbitrary intensity ratio at the telecommunication C-band is realized, and the total focusing efficiency of the bifocal metalens is as high as 78%. Also, at the resonance wavelength of the amorphous Sb2Se3 scatterer, the scatterer can be regarded as a half-wave plate in reflection mode. The multifunctional metalens can reversely converge incident light into a focal point with a focusing efficiency of up to 30%. The high focusing efficiency, dynamic reconfigurability, and dual working modes of the multifunctional metalens contribute to polarization state detection, optical imaging, and optical data storage. In addition, the bilayer geometric phase elements can be easily extended to multilayer, which significantly improves the capability of manipulating the incident light field.

14.
Opt Express ; 29(12): 18304, 2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34154088

RESUMEN

We provide corrected equations for our previous publication [Opt. Express29, 9332(2021)10.1364/OE.420003].

15.
Opt Express ; 29(15): 24102-24117, 2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34614661

RESUMEN

A single core-offset Mach-Zehnder interferometer (MZI) coated with polyvinyl alcohol (PVA) for simultaneous measurement of relative humidity (RH) and temperature is proposed in this paper. The sensing structure is fabricated by splicing dispersion compensating fiber (DCF) and no-core fiber (NCF) and splicing two single-mode fibers (SMF) at both ends, where the core-offset is located at the splicing of SMF and DCF. A part of the cladding of DCF is etched to excite the high-order cladding mode (LP10), and PVA is coated on the etched area. The refractive index of PVA varies due to the adsorption of water molecules. Therefore, when the ambient relative humidity and temperature change, the change of MZI phase difference causes the wavelength of the resonant dip to shift. The experimental results indicate that the proposed sensor has a sensitivity of 0.256 nm/RH% for RH range of 30%-95%, and a sensitivity of 0.153 nm/℃ for temperature range of 20℃-80℃, respectively. The simultaneous measurement of RH and temperature can be achieved by demodulating the sensitivity coefficient matrix. The proposed sensor has the characteristics of good repeatability, high sensitivity, and good stability, which make it potentially applications for the detection of RH and temperature measurement.

16.
Opt Express ; 29(5): 7925-7934, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33726284

RESUMEN

Focus-tunable metalenses play an indispensable role in the development of integrated optical systems. In this paper, the phase change material Sb2S3 is used in a thermally modulated varifocal metalens based on PB-phase for the first time. Sb2S3 not only has a real part of refractive index shift between the amorphous and crystalline state but also has low losses in both amorphous and crystalline states in the near-infrared region. By switching Sb2S3 between the two states, a metalens doublet with a variable focal length is proposed. Moreover, the full width at half maximum of each focal point is close to the diffraction limit. And the focusing efficiency can be over 50% for the two focal points. Together with the advantage of precise thermal control, the proposed metalens has great potential in the application of multi-functional devices, biomedical science, communication and imaging.

17.
Sensors (Basel) ; 21(11)2021 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-34199927

RESUMEN

A graphene oxide-coated in-fiber Mach-Zehnder interferometer (MZI) formed with a multimode fiber-thin core fiber-multimode fiber (MMF-TCF-MMF) is proposed and experimentally demonstrated for ammonia gas (NH3) sensing. The MZI structure is composed of two segments of MMF of length 2 mm, with a flame-tapered TCF between them as the sensing arm. The MMFs act as mode couplers to split and recombine light owing to the core diameter mismatch with the other fibers. A tapered TCF is formed by the flame melting taper method, resulting in evanescent wave leakage. A layer of graphene oxide (GO) is applied to the tapered region of the TCF to achieve gas adsorption. The sensor operates on the principle of changing the effective refractive index of the cladding mode of a fiber through changing the conductivity of the GO coating by adsorbed NH3 molecules, which gives rise to a phase shift and shows as the resonant dip shifts in the transmission spectrum. So the concentration of the ammonia gas can be obtained by measuring the dip shift. A wavelength-shift sensitivity of 4.97 pm/ppm with a linear fit coefficient of 98.9% is achieved for ammonia gas concentrations in the range of 0 to 151 ppm. In addition, we performed a repetitive dynamic response test on the sensor by charging/releasing NH3 at concentration of 200 ppm and a relative humidity test in a relative humidity range of 35% to 70%, which demonstrates the reusability and stability of the sensor.

18.
Nanotechnology ; 31(3): 035702, 2020 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-31557749

RESUMEN

The ability of light to carry and deliver orbital angular momentum (OAM) in the form of optical vortices has attracted much interest. Conventional optical vortices are usually generated by bulky or expensive devices, which would sharply decrease the integration of optical communication systems. Here we demonstrate efficient large-area wavelength-thick metasurfaces that have the ability to produce high-quality optical vortexes with arbitrary OAM and to focus the beams into wavelength-scale rings with efficiency as high as 80%. Moreover, we reveal the relationship between size and energy distribution of focal rings (FR) with different OAMs: as the number of OAM increases, the size of the FR is linearly increasing, the peak focusing intensity (FFI) is decreasing in inverse proportional type, while the total energy on the FR remain almost unchanged. Rigorous quantitative analysis about the coupling effect among nanoantennas and the chromatic aberrations of the proposed metasurfaces are further discussed. We envision such highly efficient metasurfaces for spiral focusing will have potential applications in optical tweezers and communications.

19.
Appl Opt ; 59(27): 8182-8189, 2020 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-32976399

RESUMEN

In this study, an all-optical switch is designed using a one-dimensional two-segment-connected periodic triangular optical waveguide network, and its switching characteristics and mechanism are investigated. The performance of the switch is numerically calculated by using the network equation and the generalized eigenfunction method and we find it relatively excellent. Its switching efficiency ratio reached 3.7202×1016, which is 5 orders of magnitude larger than the best reported result. The switching threshold control energy is approximately 1.8×10-20J, which is 1 order of magnitude larger than the best reported result. The switch size is approximately 0.0672µm2 and the integration degree is up to 14per/µm2, and it can be used for micrometer chip integration. The switching time is close to 209 fs, which is the same order of magnitude as the previously reported results. In addition, the all-optical switching designed in this study not only exhibits excellent switching performance and a novel working mechanism, but also provides a new technology for the design of pump-free all-optical switching devices.

20.
Opt Express ; 26(22): 28891-28901, 2018 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-30470059

RESUMEN

Efficiently controlling the direction of optical radiation at nanoscale dimensions is essential for various nanophotonics applications. All-dielectric nanoparticles can be used to engineer the direction of scattered light via overlapping of electric and magnetic resonance modes. Herein, we propose all-dielectric core-shell SiO2-Ge-SiO2 nanoparticles that can simultaneously achieve broadband zero backward scattering and enhanced forward scattering. Introducing higher-order electric and magnetic resonance modes satisfies the generalized first Kerker condition for breaking through the dipole approximation. Zero backward scattering occurs near the electric and magnetic resonant regions, this directional scattering is therefore efficient. Adjusting the nanoparticles' geometric parameters can shift the spectral position of the broadband zero backward scattering to the visible and near-infrared regions. The wavelength width of the zero backward scattering could be enlarged as high as 142 and 63 nm in the visible and near-infrared region. Due to these unique optical features the proposed core-shell nanoparticles are promising candidates for the design of high-performance nanoantennas, low-loss metamaterials, and photovoltaic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA