Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Biol ; 22(2): e3002493, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38315724

RESUMEN

Mosquitoes of the Culex pipiens complex are worldwide vectors of arbovirus, filarial nematodes, and avian malaria agents. In these hosts, the endosymbiotic bacteria Wolbachia induce cytoplasmic incompatibility (CI), i.e., reduced embryo viability in so-called incompatible crosses. Wolbachia infecting Culex pipiens (wPip) cause CI patterns of unparalleled complexity, associated with the amplification and diversification of cidA and cidB genes, with up to 6 different gene copies described in a single wPip genome. In wPip, CI is thought to function as a toxin-antidote (TA) system where compatibility relies on having the right antidotes (CidA) in the female to bind and neutralize the male's toxins (CidB). By repeating crosses between Culex isofemale lines over a 17 years period, we documented the emergence of a new compatibility type in real time and linked it to a change in cid genes genotype. We showed that loss of specific cidA gene copies in some wPip genomes results in a loss of compatibility. More precisely, we found that this lost antidote had an original sequence at its binding interface, corresponding to the original sequence at the toxin's binding interface. We showed that these original cid variants are recombinant, supporting a role for recombination rather than point mutations in rapid CI evolution. These results strongly support the TA model in natura, adding to all previous data acquired with transgenes expression.


Asunto(s)
Culex , Wolbachia , Animales , Femenino , Masculino , Wolbachia/genética , Antídotos/metabolismo , Mosquitos Vectores/genética , Citoplasma
2.
PLoS Pathog ; 19(3): e1011211, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36928089

RESUMEN

Wolbachia are common bacteria among terrestrial arthropods. These endosymbionts transmitted through the female germline manipulate their host reproduction through several mechanisms whose most prevalent form called Cytoplasmic Incompatibility -CI- is a conditional sterility syndrome eventually favoring the infected progeny. Upon fertilization, the sperm derived from an infected male is only compatible with an egg harboring a compatible Wolbachia strain, this sperm leading otherwise to embryonic death. The Wolbachia Cif factors CidA and CidB responsible for CI and its neutralization function as a Toxin-Antitoxin system in the mosquito host Culex pipiens. However, the mechanism of CidB toxicity and its neutralization by the CidA antitoxin remain unexplored. Using transfected insect cell lines to perform a structure-function analysis of these effectors, we show that both CidA and CidB are chromatin interactors and CidA anchors CidB to the chromatin in a cell-cycle dependent-manner. In absence of CidA, the CidB toxin localizes to its own chromatin microenvironment and acts by preventing S-phase completion, independently of its deubiquitylase -DUB- domain. Experiments with transgenic Drosophila show that CidB DUB domain is required together with CidA during spermatogenesis to stabilize the CidA-CidB complex. Our study defines CidB functional regions and paves the way to elucidate the mechanism of its toxicity.


Asunto(s)
Proteínas de Drosophila , Wolbachia , Animales , Masculino , Cromatina/metabolismo , Wolbachia/fisiología , Semen/metabolismo , Animales Modificados Genéticamente , Drosophila/metabolismo , Citoplasma/metabolismo , Proteína A Centromérica/metabolismo , Proteínas de Drosophila/metabolismo
3.
Heredity (Edinb) ; 132(4): 179-191, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38280976

RESUMEN

Anopheles gambiae s.l. has been the target of intense insecticide treatment since the mid-20th century to try and control malaria. A substitution in the ace-1 locus has been rapidly selected for, allowing resistance to organophosphate and carbamate insecticides. Since then, two types of duplication of the ace-1 locus have been found in An. gambiae s.l. populations: homogeneous duplications that are composed of several resistance copies, or heterogeneous duplications that contain both resistance and susceptible copies. The substitution induces a trade-off between resistance in the presence of insecticides and disadvantages in their absence: the heterogeneous duplications allow the fixation of the intermediate heterozygote phenotype. So far, a single heterogeneous duplication has been described in An. gambiae s.l. populations (in contrast with the multiple duplicated alleles found in Culex pipiens mosquitoes). We used a new approach, combining long and short-read sequencing with Sanger sequencing to precisely identify and describe at least nine different heterogeneous duplications, in two populations of An. gambiae s.l. We show that these alleles share the same structure as the previously identified heterogeneous and homogeneous duplications, namely 203-kb tandem amplifications with conserved breakpoints. Our study sheds new light on the origin and maintenance of these alleles in An. gambiae s.l. populations, and their role in mosquito adaptation.


Asunto(s)
Anopheles , Culex , Insecticidas , Animales , Anopheles/genética , Insecticidas/farmacología , Resistencia a los Insecticidas/genética , Alelos , Control de Mosquitos
4.
Trends Genet ; 35(3): 175-185, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30685209

RESUMEN

Wolbachia bacteria inhabit the cells of about half of all arthropod species, an unparalleled success stemming in large part from selfish invasive strategies. Cytoplasmic incompatibility (CI), whereby the symbiont makes itself essential to embryo viability, is the most common of these and constitutes a promising weapon against vector-borne diseases. After decades of theoretical and experimental struggle, major recent advances have been made toward a molecular understanding of this phenomenon. As pieces of the puzzle come together, from yeast and Drosophila fly transgenesis to CI diversity patterns in natural mosquito populations, it becomes clearer than ever that the CI induction and rescue stem from a toxin-antidote (TA) system. Further, the tight association of the CI genes with prophages provides clues to the possible evolutionary origin of this phenomenon and the levels of selection at play.


Asunto(s)
Toxinas Bacterianas/genética , Citoplasma/genética , Enfermedades Transmitidas por Vectores/genética , Wolbachia/genética , Animales , Antídotos/química , Antídotos/uso terapéutico , Artrópodos/genética , Artrópodos/microbiología , Toxinas Bacterianas/química , Culicidae/genética , Culicidae/microbiología , Citoplasma/microbiología , Drosophila/genética , Drosophila/microbiología , Técnicas de Transferencia de Gen , Simbiosis/genética , Enfermedades Transmitidas por Vectores/microbiología , Wolbachia/patogenicidad
5.
J Insect Sci ; 22(3)2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35526103

RESUMEN

The control of mosquito populations using insecticides is increasingly threatened by the spread of resistance mechanisms. Dieldrin resistance, conferred by point mutations in the Rdl gene encoding the γ-aminobutyric acid receptor, has been reported at high prevalence in mosquito populations in response to selective pressures. In this study, we monitored spatio-temporal dynamics of the resistance-conferring RdlR allele in Aedes (Stegomyia) albopictus (Skuse, 1895) and Culex (Culex) quinquefasciatus (Say, 1823) populations from Reunion Island. Specimens of both mosquito species were sampled over a 12-month period in three cities and in sites located at lower (<61 m) and higher (between 503 and 564 m) altitudes. Mosquitoes were genotyped using a molecular test detecting the alanine to serine substitution (A302S) in the Rdl gene. Overall, the RdlR frequencies were higher in Cx. quinquefasciatus than Ae. albopictus. For both mosquito species, the RdlR frequencies were significantly influenced by location and altitude with higher RdlR frequencies in the most urbanized areas and at lower altitudes. This study highlights environmental factors that influence the dynamics of insecticide resistance genes, which is critical for the management of insecticide resistance and the implementation of alternative and efficient vector control strategies.


Asunto(s)
Aedes , Culex , Insecticidas , Aedes/fisiología , Animales , Culex/genética , Dieldrín , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , Mosquitos Vectores/genética , Reunión
6.
PLoS Pathog ; 14(10): e1007364, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30321239

RESUMEN

Wolbachia are maternally inherited endosymbiotic bacteria, widespread among arthropods thanks to host reproductive manipulations that increase their prevalence into host populations. The most commonly observed manipulation is cytoplasmic incompatibility (CI). CI leads to embryonic death in crosses between i) infected males and uninfected females and ii) individuals infected with incompatible Wolbachia strains. CI can be conceptualized as a toxin-antidote system where a toxin deposited by Wolbachia in the sperm would induce embryonic death unless countered by an antidote produced by Wolbachia present in the eggs. In Drosophila melanogaster, transgenic expression of Wolbachia effector cidB revealed its function of CI-inducing toxin. Moreover in Culex pipiens, the diversity of cidB variants present in wPip strains accounts for the diversity in crossing-types. We conducted cytological analyses to determine the CI mechanisms that lead to embryonic death in C. pipiens, and assess whether diversity in crossing-types could be based on variations in these mechanisms. We revealed that paternal chromatin condensation and segregation defects during the first embryonic division are always responsible for embryonic death. The strongest observed defects lead to an exclusion of the paternal chromatin from the first zygotic division, resulting in haploid embryos unable to hatch. The proportion of unhatched haploid embryos, developing with only maternal chromatin, which reflects the frequency of strong defects can be considered as a proxy of CI intensity at the cellular level. We thus studied the putative effect of variations in crossing types and cidB diversification on CI defects intensity. Incompatible crosses involving distinct wPip strains revealed that CI defects intensity depends on the Wolbachia strains hosted by the males and is linked to the diversity of cidB genes harbored in their genomes. These results support that, additionally to its implication in C. pipiens crossing type variability, cidB diversification also influences the strength of CI embryonic defects.


Asunto(s)
Animales Modificados Genéticamente/microbiología , Proteínas Bacterianas/metabolismo , Culex/microbiología , Citoplasma/microbiología , Drosophila melanogaster/microbiología , Polimorfismo Genético , Wolbachia/fisiología , Animales , Animales Modificados Genéticamente/genética , Proteínas Bacterianas/genética , Culex/genética , Citoplasma/patología , Drosophila melanogaster/genética , Femenino , Infecciones por Bacterias Gramnegativas/microbiología , Infecciones por Bacterias Gramnegativas/patología , Especificidad del Huésped , Masculino , Fenotipo , Simbiosis
7.
Mol Ecol ; 29(20): 4000-4013, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32854141

RESUMEN

The inadequacy of standard mosquito control strategies calls for ecologically safe novel approaches, for example the use of biological agents such as the endosymbiotic α-proteobacteria Wolbachia or insect-specific viruses (ISVs). Understanding the ecological interactions between these "biocontrol endosymbionts" is thus a fundamental step. Wolbachia are transmitted vertically from mother to offspring and modify their hosts' phenotypes, including reproduction (e.g., cytoplasmic incompatibility) and survival (e.g., viral interference). In nature, Culex pipiens (sensu lato) mosquitoes are always found infected with genetically diverse Wolbachia called wPip that belong to five phylogenetic groups. In recent years, ISVs have also been discovered in these mosquito species, although their interactions with Wolbachia in nature are unknown. Here, we studied the interactions between a widely prevalent ISV, the Culex pipiens densovirus (CpDV, Densovirinae), and Wolbachia in northern Tunisian C. pipiens populations. We showed an influence of different Wolbachia groups on CpDV prevalence and a general positive correlation between Wolbachia and CpDV loads. By investigating the putative relationship between CpDV diversification and wPip groups in the different sites, we detected a signal linked to wPip groups in CpDV phylogeny in sites where all larvae were infected by the same wPip group. However, no such signal was detected where the wPip groups coexisted, suggesting CpDV horizontal transfer between hosts. Overall, our results provide good evidence for an ecological influence of Wolbachia on an ISV, CpDV, in natural populations and highlight the importance of integrating Wolbachia in our understanding of ISV ecology in nature.


Asunto(s)
Culex , Densovirus , Wolbachia , Animales , Culex/genética , Densovirus/genética , Filogenia , Prevalencia , Carga Viral , Wolbachia/genética
8.
Heredity (Edinb) ; 124(4): 603-617, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32047292

RESUMEN

Although the diversity of bacterial endosymbionts in arthropods is well documented, whether and how such diversity is maintained remains an open question. We investigated the temporal changes occurring in the prevalence and composition of endosymbionts after transferring natural populations of Tetranychus spider mites from the field to the laboratory. These populations, belonging to three different Tetranychus species (T. urticae, T. ludeni and T. evansi) carried variable infection frequencies of Wolbachia, Cardinium, and Rickettsia. We report a rapid change of the infection status of these populations after only 6 months of laboratory rearing, with an apparent loss of Rickettsia and Cardinium, while Wolbachia apparently either reached fixation or was lost. We show that Wolbachia had variable effects on host longevity and fecundity, and induced variable levels of cytoplasmic incompatibility (CI) in each fully infected population, despite no sequence divergence in the markers used and full CI rescue between all populations. This suggests that such effects are largely dependent upon the host genotype. Subsequently, we used these data to parameterize a theoretical model for the invasion of CI-inducing symbionts in haplodiploids, which shows that symbiont effects are sufficient to explain their dynamics in the laboratory. This further suggests that symbiont diversity and prevalence in the field are likely maintained by environmental heterogeneity, which is reduced in the laboratory. Overall, this study highlights the lability of endosymbiont infections and draws attention to the limitations of laboratory studies to understand host-symbiont interactions in natural populations.


Asunto(s)
Bacteroidetes , Rickettsia , Simbiosis , Tetranychidae , Wolbachia , Animales , Bacteroidetes/genética , Femenino , Laboratorios , Rickettsia/genética , Tetranychidae/microbiología , Wolbachia/genética
9.
Proc Biol Sci ; 286(1894): 20182273, 2019 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-30963855

RESUMEN

Insecticide resistance has been reported to impact the interactions between mosquitoes and the pathogens they transmit. However, the effect on vector competence for arboviruses still remained to be investigated. We examined the influence of two insecticide resistance mechanisms on vector competence of the mosquito Culex quinquefasciatus for two arboviruses, Rift Valley Fever virus (RVFV) and West Nile virus (WNV). Three Cx. quinquefasciatus lines sharing a common genetic background were used: two insecticide-resistant lines, one homozygous for amplification of the Ester2 locus (SA2), the other homozygous for the acetylcholinesterase ace-1 G119S mutation (SR) and the insecticide-susceptible reference line Slab. Statistical analyses revealed no significant effect of insecticide-resistant mechanisms on vector competence for RVFV. However, both insecticide resistance mechanisms significantly influenced the outcome of WNV infections by increasing the dissemination of WNV in the mosquito body, therefore leading to an increase in transmission efficiency by resistant mosquitoes. These results showed that insecticide resistance mechanisms enhanced vector competence for WNV and may have a significant impact on transmission dynamics of arboviruses. Our findings highlight the importance of understanding the impacts of insecticide resistance on the vectorial capacity parameters to assess the overall consequence on transmission.


Asunto(s)
Culex/efectos de los fármacos , Genes de Insecto , Resistencia a los Insecticidas/genética , Mosquitos Vectores/efectos de los fármacos , Fiebre del Nilo Occidental/transmisión , Virus del Nilo Occidental/fisiología , Animales , Culex/genética , Culex/virología , Conducta Alimentaria , Femenino , Mosquitos Vectores/genética , Mosquitos Vectores/virología
10.
Mol Ecol ; 28(21): 4725-4736, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31550397

RESUMEN

Endosymbiotic Wolbachia bacteria are, to date, considered the most widespread symbionts in arthropods and are the cornerstone of major biological control strategies. Such a high prevalence is based on the ability of Wolbachia to manipulate their hosts' reproduction. One manipulation called cytoplasmic incompatibility (CI) is based on the death of the embryos generated by crosses between infected males and uninfected females or between individuals infected with incompatible Wolbachia strains. CI can be seen as a modification-rescue system (or mod-resc) in which paternal Wolbachia produce mod factors, inducing embryonic defects, unless the maternal Wolbachia produce compatible resc factors. Transgenic experiments in Drosophila melanogaster and Saccharomyces cerevisiae converged towards a model where the cidB Wolbachia gene is involved in the mod function while cidA is involved in the resc function. However, as cidA expression in Drosophila males was required to observe CI, it has been proposed that cidA could be involved in both resc and mod functions. A recent correlative study in natural Culex pipiens mosquito populations has revealed an association between specific cidA and cidB variations and changes in mod phenotype, also suggesting a role for both these genes in mod diversity. Here, by studying cidA and cidB genomic repertoires of individuals from newly sampled natural C. pipiens populations harbouring wPipIV strains from North Italy, we reinforce the link between cidB variation and mod phenotype variation fostering the involvement of cidB in the mod phenotype diversity. However, no association between any cidA variants or combination of cidA variants and mod phenotype variation was observed. Taken together our results in natural C. pipiens populations do not support the involvement of cidA in mod phenotype variation.


Asunto(s)
Culex/genética , Culex/microbiología , Citoplasma/genética , Citoplasma/microbiología , Genes Bacterianos/genética , Wolbachia/genética , Animales , Animales Modificados Genéticamente/genética , Cruzamientos Genéticos , Drosophila melanogaster/genética , Drosophila melanogaster/microbiología , Femenino , Italia , Masculino , Fenotipo , Reproducción/genética , Simbiosis/genética
11.
PLoS Biol ; 14(12): e2000618, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27918584

RESUMEN

Gene copy-number variations are widespread in natural populations, but investigating their phenotypic consequences requires contemporary duplications under selection. Such duplications have been found at the ace-1 locus (encoding the organophosphate and carbamate insecticides' target) in the mosquito Anopheles gambiae (the major malaria vector); recent studies have revealed their intriguing complexity, consistent with the involvement of various numbers and types (susceptible or resistant to insecticide) of copies. We used an integrative approach, from genome to phenotype level, to investigate the influence of duplication architecture and gene-dosage on mosquito fitness. We found that both heterogeneous (i.e., one susceptible and one resistant ace-1 copy) and homogeneous (i.e., identical resistant copies) duplications segregated in field populations. The number of copies in homogeneous duplications was variable and positively correlated with acetylcholinesterase activity and resistance level. Determining the genomic structure of the duplicated region revealed that, in both types of duplication, ace-1 and 11 other genes formed tandem 203kb amplicons. We developed a diagnostic test for duplications, which showed that ace-1 was amplified in all 173 resistant mosquitoes analyzed (field-collected in several African countries), in heterogeneous or homogeneous duplications. Each type was associated with different fitness trade-offs: heterogeneous duplications conferred an intermediate phenotype (lower resistance and fitness costs), whereas homogeneous duplications tended to increase both resistance and fitness cost, in a complex manner. The type of duplication selected seemed thus to depend on the intensity and distribution of selection pressures. This versatility of trade-offs available through gene duplication highlights the importance of large mutation events in adaptation to environmental variation. This impressive adaptability could have a major impact on vector control in Africa.


Asunto(s)
Anopheles/genética , Duplicación de Gen , Genes de Insecto , Animales , Mapeo Cromosómico , Variaciones en el Número de Copia de ADN
12.
Environ Microbiol ; 2018 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-30585387

RESUMEN

Culex pipiens densovirus (CpDV), a single stranded DNA virus, has been isolated from Culex pipiens mosquitoes but differs from other mosquito densoviruses in terms of genome structure and sequence identity. Its transmission from host to host, the nature of its interactions with both its host and host's endosymbiotic bacteria Wolbachia are not known. Here, we report the presence of CpDV in the ovaries and eggs of Cx. pipiens mosquitoes in close encounters with Wolbachia. In the ovaries, CpDV amount significantly differed between mosquito lines harbouring different strains of Wolbachia and these differences were not linked to variations in Wolbachia densities. CpDV was vertically transmitted in all laboratory lines to 17%-20% of the offspring. For some females, however, the vertical transmission reached 90%. Antibiotic treatment that cured the host from Wolbachia significantly decreased both CpDV quantity and vertical transmission suggesting an impact of host microbiota, including Wolbachia, on CpDV transmission. Overall our results show that CpDV is transmitted vertically via transovarian path along with Wolbachia with which it shares the same cells. Our results are primordial to understand the dynamics of densovirus infection, their persistence and spread in populations considering their potential use in the regulation of mosquito vector populations.

13.
Mol Ecol ; 27(2): 493-507, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29230902

RESUMEN

Gene duplications occur at a high rate. Although most appear detrimental, some homogeneous duplications (identical gene copies) can be selected for beneficial increase in produced proteins. Heterogeneous duplications, which combine divergent alleles of a single locus, are seldom studied due to the paucity of empirical data. We investigated their role in an ongoing adaptive process at the ace-1 locus in Culex pipiens mosquitoes. We assessed the worldwide diversity of the ace-1 alleles (single-copy, susceptible S and insecticide-resistant R, and duplicated D that pair one S and one R copy), analysed their phylogeography and measured their fitness to understand their early dynamics using population genetics models. It provides a coherent and comprehensive evolutionary scenario. We show that D alleles are present in most resistant populations and display a higher diversity than R alleles (27 vs. 4). Most appear to result from independent unequal crossing-overs between local single-copy alleles, suggesting a recurrent process. Most duplicated alleles have a limited geographic distribution, probably resulting from their homozygous sublethality (HS phenotype). In addition, heterozygotes carrying different HS D alleles showed complementation, indicating different recessive lethal mutations. Due to mosaic insecticide control practices, balancing selection (overdominance) plays a key role in the early dynamics of heterogeneous duplicated alleles; it also favours a high local polymorphism of HS D alleles in natural populations (overdominance reinforced by complementation). Overall, our study shows that the evolutionary fate of heterogeneous duplications (and their long-term role) depends on finely balanced selective pressures due to the environment and to their genomic structure.


Asunto(s)
Culex/genética , Duplicación de Gen/genética , Resistencia a los Insecticidas/genética , Filogenia , Alelos , Animales , Evolución Molecular , Variación Genética/genética , Heterocigoto , Mutación , Fenotipo
14.
Malar J ; 17(1): 408, 2018 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-30400987

RESUMEN

BACKGROUND: Until very recently, Anopheles were considered naturally unable to host Wolbachia, an intracellular bacterium regarded as a potential biological control tool. Their detection in field populations of Anopheles gambiae sensu lato, suggests that they may also be present in many more anopheline species than previously thought. RESULTS: Here, is reported the first discovery of natural Wolbachia infections in Anopheles funestus populations from Senegal, the second main malaria vector in Africa. Molecular phylogeny analysis based on the 16S rRNA gene revealed at least two Wolbachia genotypes which were named wAnfu-A and wAnfu-B, according to their close relatedness to the A and B supergroups. Furthermore, both wAnfu genotypes displayed high proximity with wAnga sequences previously described from the An. gambiae complex, with only few nucleotide differences. However, the low prevalence of infection, together with the difficulties encountered for detection, whatever method used, highlights the need to develop an effective and sensitive Wolbachia screening method dedicated to anopheline. CONCLUSIONS: The discovery of natural Wolbachia infection in An. funestus, another major malaria vector, may overcome the main limitation of using a Wolbachia-based approach to control malaria through population suppression and/or replacement.


Asunto(s)
Anopheles/microbiología , Mosquitos Vectores/microbiología , ARN Bacteriano/análisis , ARN Ribosómico 16S/análisis , Wolbachia/fisiología , Animales , Secuencia de Bases , Filogenia , Senegal , Alineación de Secuencia , Wolbachia/genética
15.
Exp Appl Acarol ; 74(2): 123-138, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29435771

RESUMEN

Spider mites of the genus Tetranychidae are severe crop pests. In the Mediterranean a few species coexist, but they are difficult to identify based on morphological characters. Additionally, spider mites often harbour several species of endosymbiotic bacteria, which may affect the biology of their hosts. Here, we propose novel, cost-effective, multiplex diagnostic methods allowing a quick identification of spider-mite species as well as of the endosymbionts they carry. First, we developed, and successfully multiplexed in a single PCR, primers to identify Tetranychus urticae, T. evansi and T. ludeni, some of the most common tetranychids found in southwest Europe. Moreover, we demonstrated that this method allows detecting multiple species in a single pool, even at low frequencies (up to 1/100), and can be used on entire mites without DNA extraction. Second, we developed another set of primers to detect spider-mite endosymbionts, namely Wolbachia, Cardinium and Rickettsia in a multiplex PCR, along with a generalist spider-mite primer to control for potential failure of DNA amplification in each PCR. Overall, our method represents a simple, cost-effective and reliable method to identify spider-mite species and their symbionts in natural field populations, as well as to detect contaminations in laboratory rearings. This method may easily be extended to other species.


Asunto(s)
Bacterias/aislamiento & purificación , Microbiota , Reacción en Cadena de la Polimerasa Multiplex/métodos , Simbiosis , Tetranychidae/clasificación , Animales , Fenómenos Fisiológicos Bacterianos , Femenino , Masculino , Reacción en Cadena de la Polimerasa Multiplex/economía , Portugal , España , Tetranychidae/genética , Tetranychidae/microbiología
17.
Mol Ecol ; 25(21): 5483-5499, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27662519

RESUMEN

Quantifying links between ecological processes and adaptation dynamics in natura remains a crucial challenge. Many studies have documented the strength, form and direction of selection, and its variations in space and time, but only a few managed to link these variations to their proximal causes. This step is, however, crucial, if we are to understand how the variation in selective pressure affects adaptive allele dynamics in natural settings. We used data from a long-term survey (about 30 years) monitoring the adaptation to insecticides of Culex pipiens mosquitoes in Montpellier area (France), focusing on three resistance alleles of the Ester locus. We used a population genetics model taking temporal and spatial variations in selective pressure into account, to assess the quantitative relationships between variations in the proximal agent of selection (amounts of insecticide sprayed) and the fitness of resistance alleles. The response to variations in selective pressure was fast, and the alleles displayed different fitness-to-environment relationships: the analyses revealed that even slight changes in insecticide doses could induce changes in the strength and direction of selection, thus changing the fitness ranking of the adaptive alleles. They also revealed that selective pressures other than the insecticides used for mosquito control affected the resistance allele dynamics. These fitness-to-environment relationships, fast responses and continuous evolution limit our ability to predict the outcome of adaptive allele dynamics in a changing environment, but they clearly contribute to the maintenance of polymorphism in natural populations. Our study also emphasizes the necessity of long-term surveys in evolutionary ecology.


Asunto(s)
Culex/genética , Aptitud Genética , Genética de Población , Resistencia a los Insecticidas/genética , Alelos , Animales , Evolución Molecular , Francia , Insecticidas
18.
Mol Ecol ; 24(2): 508-21, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25482270

RESUMEN

In arthropods, the intracellular bacteria Wolbachia often induce cytoplasmic incompatibility (CI) between sperm and egg, which causes conditional embryonic death and promotes the spatial spread of Wolbachia infections into host populations. The ability of Wolbachia to spread in natural populations through CI has attracted attention for using these bacteria in vector-borne disease control. The dynamics of incompatible Wolbachia infections have been deeply investigated theoretically, whereas in natural populations, there are only few examples described, especially among incompatible infected hosts. Here, we have surveyed the distribution of two molecular Wolbachia strains (wPip11 and wPip31) infecting the mosquito Culex pipiens in Tunisia. We delineated a clear spatial structure of both infections, with a sharp contact zone separating their distribution areas. Crossing experiments with isofemale lines from different localities showed three crossing types: wPip11-infected males always sterilize wPip31-infected females; however, while most wPip31-infected males were compatible with wPip11-infected females, a few completely sterilize them. The wPip11 strain was thus expected to spread, but temporal dynamics over 7 years of monitoring shows the stability of the contact zone. We examined which factors may contribute to the observed stability, both theoretically and empirically. Population cage experiments, field samples and modelling did not support significant impacts of local adaptation or assortative mating on the stability of wPip infection structure. By contrast, low dispersal probability and metapopulation dynamics in the host Cx. pipiens probably play major roles. This study highlights the need of understanding CI dynamics in natural populations to design effective and sustainable Wolbachia-based control strategies.


Asunto(s)
Culex/microbiología , Genética de Población , Wolbachia/genética , Animales , Técnicas de Tipificación Bacteriana , Cruzamientos Genéticos , Femenino , Masculino , Repeticiones de Microsatélite , Reproducción , Túnez , Wolbachia/clasificación
19.
Parasit Vectors ; 17(1): 72, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38374110

RESUMEN

BACKGROUND: Mosquitoes of the Culex pipiens complex are widely distributed vectors for several arboviruses affecting humans. Consequently, their populations have long been controlled using insecticides, in response to which different resistance mechanisms have been selected. Moreover, their ecological preferences and broad adaptability allow C. pipiens mosquitoes to breed in highly polluted water bodies where they are exposed to many residuals from anthropogenic activities. It has been observed for several mosquito species that anthropization (in particular urbanization and agricultural lands) can lead to increased exposure to insecticides and thus to increased resistance. The main objective of the present study was to investigate whether and how urbanization and/or agricultural lands had a similar impact on C. pipiens resistance to insecticides in Morocco. METHODS: Breeding sites were sampled along several transects in four regions around major Moroccan cities, following gradients of decreasing anthropization. The imprint of anthropogenic activities was evaluated around each site as the percentage of areas classified in three categories: urban, agricultural and natural. We then assessed the frequencies of four known resistance alleles in these samples and followed their dynamics in five urban breeding sites over 4 years. RESULTS: The distribution of resistance alleles revealed a strong impact of anthropization, in both agricultural and urbanized lands, although different between resistance mutations and between Moroccan regions; we did not find any clear trend in the dynamics of these resistance alleles during the survey. CONCLUSIONS: Our study provides further evidence for the role of anthropic activities in the selection and maintenance of mutations selected for resistance to insecticides in mosquitoes. The consequences are worrying as this could decrease vector control capacities and thus result in epizootic and epidemic outbreaks. Consequently, concerted and integrated disease control strategies must be designed that include better management regarding the consequences of our activities.


Asunto(s)
Culex , Culicidae , Insecticidas , Animales , Humanos , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , Marruecos/epidemiología , Mosquitos Vectores/genética , Actividades Humanas
20.
BMC Evol Biol ; 13: 181, 2013 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-24006922

RESUMEN

BACKGROUND: The maternally inherited bacterium Wolbachia often acts as a subtle parasite that manipulates insect reproduction, resulting potentially in reproductive isolation between host populations. Whilst distinct Wolbachia strains are documented in a group of evolutionarily closely related mosquitoes known as the Culex pipiens complex, their impact on mosquito population genetics remains unclear. To this aim, we developed a PCR-RFLP test that discriminates the five known Wolbachia groups found in this host complex. We further examined the Wolbachia genetic diversity, the variability in the coinherited host mitochondria and their partitioning among members of the Cx. pipiens complex, in order to assess the impact of Wolbachia on host population structure. RESULTS: There was a strong association between Wolbachia and mitochondrial haplotypes indicating a stable co-transmission in mosquito populations. Despite evidence that members of the Cx. pipiens complex are genetically distinct on the basis of nuclear DNA, the association of Wolbachia and mtDNA with members of the Cx. pipiens complex were limited. The Wolbachia wPip-I group, by far the most common, was associated with divergent Cx. pipiens members, including Cx. quinquefasciatus, Cx. pipiens pipiens form pipiens and Cx. pipiens pipiens form molestus. Four other wPip groups were also found in mosquito populations and all were shared between diverse Cx. pipiens members. CONCLUSION: This data overall supports the hypothesis that wPip infections, and their allied mitochondria, are associated with regular transfers between Cx. pipiens members rather than specific host associations. Overall, this is suggestive of a recent and likely ongoing cytoplasmic introgression through hybridization events across the Cx. pipiens complex.


Asunto(s)
Culex/microbiología , Wolbachia/aislamiento & purificación , Animales , Evolución Biológica , Culex/clasificación , ADN Mitocondrial/genética , Variación Genética , Haplotipos , Reacción en Cadena de la Polimerasa , Wolbachia/clasificación , Wolbachia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA