Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Sens ; 9(1): 149-156, 2024 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-38178551

RESUMEN

Investigating the sensing mechanisms in semiconducting metal oxide (SMOx) gas sensors is essential for optimizing their performance across a wide range of potential applications. Despite significant progress in the field, there are still many gaps in comprehending the phenomenological processes occurring in one-dimensional (1D) nanostructures. This article presents the first insights into the conduction mechanism of chemoresistive gas sensors based on single-crystalline Sn3O4 nanobelts using the operando Kelvin Probe technique. From this approach, direct current (DC) electrical resistance and work function changes were simultaneously measured in different working conditions, and a correlation between the conductance and the surface band bending was established. Appropriate modeling was proposed, and the results revealed that the conduction mechanism in the single-crystalline one-dimensional nanostructures closely aligns with the behavior observed in single-crystalline epitaxial layers rather than in polycrystalline grains. Based on this assumption, relevant parameters were further estimated, including Debye length, concentration of free charge carriers, effective density of states in the conduction band, and position of the Fermi level. Overall, this study provides an effective contribution to understanding the role of surface chemistry in the transduction of the electrical signal generated from gas adsorption in single-crystalline one-dimensional nanostructures.


Asunto(s)
Nanoestructuras , Nanoestructuras/química , Óxidos/química , Electricidad
2.
ACS Sens ; 9(3): 1584-1591, 2024 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-38450591

RESUMEN

Chemoresistive gas sensors made from SnO2, ZnO, WO3, and In2O3 have been prepared by flame spray pyrolysis. The sensors' response to CO and NO2 in darkness and under illumination at different wavelengths, using commercially available LEDs, was investigated. Operation at room temperature turned out to be impractical due to the condensation of water inside the porous sensing layers and the irreversible changes it caused. Accordingly, for sensors operated at 70 °C, a characterization procedure was developed and proven to deliver consistent data. The resulting data set was so complex that usual univariate data analysis was intricate and, consequently, was investigated by correlation and principal component analysis. The results show that light of different wavelengths affects not only the resistance of each material, both under exposure to the target gases in humidity and in its absence, but also the sensor response to humidity and the target gases. It was found that each of the materials behaves differently under light exposure, and it was possible to identify conditions that need further investigations.


Asunto(s)
Gases , Análisis Multivariante , Humedad , Porosidad , Análisis de Componente Principal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA