Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Environ Sci Technol ; 52(16): 9468-9477, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-30004222

RESUMEN

We fabricated polymer nanocomposites (PNCs) from low-density polyethylene and CdSe quantum dots (QDs) and used these materials to explore potential exposure after long-term storage in different acidic media that could be encountered in food contact applications. While the low-level release of QD-associated mass into all the food simulants was observed, exposure to dilute acetic acid resulted in more than double the mass transfer compared to that which occurred during exposure to dilute hydrochloric acid at the same pH. Conversely, exposure to citric acid resulted in a suppression of QD release. Permeation experiments and confocal microscopy were used to reveal mechanistic details underlying these mass-transfer phenomena. From this work, we conclude that the permeation of undissociated acid molecules into the polymer, limited by partitioning of the acids into the hydrophobic polymer, plays a larger role than pH in determining exposure to nanoparticles embedded in plastics. Although caution must be exercised when extrapolating these results to PNCs incorporating other nanofillers, these findings are significant because they undermine current thinking about the influence of pH on nanofiller release phenomena. From a regulatory standpoint, these results also support current guidance that 3% acetic acid is an acceptable acidic food simulant for PNCs fabricated from hydrophobic polymers because the other acids investigated resulted in significantly less exposure.


Asunto(s)
Compuestos de Cadmio , Nanocompuestos , Puntos Cuánticos , Compuestos de Selenio , Polímeros
2.
Small ; 12(20): 2701-6, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27038413

RESUMEN

In situ liquid cell scanning transmission electron microscopy probes seeded growth in real time. The growth of Pd on Au nanocubes is monitored as a model system to compare growth within a liquid cell and traditional colloidal synthesis. Different growth patterns are observed due to seed immobilization and the highly reducing environment within the liquid cell.

3.
Acc Chem Res ; 48(10): 2688-95, 2015 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-26339803

RESUMEN

Bimetallic nanoparticles display unique optical and catalytic properties that depend on crystallite size and shape, composition, and overall architecture. They may serve as multifunctional platforms as well. Unfortunately, many routes toward shape and architecturally controlled bimetallic nanocrystals yield polydisperse samples on account of the challenges associated with homogeneously nucleating a defined bimetallic phase by co-reduction methods. Developed by the Skrabalak laboratory, seed-mediated co-reduction (SMCR) involves the simultaneous co-reduction of two metal precursors to deposit metal onto shape-controlled metal nanocrystalline seeds. The central premise is that seeds will serve as preferential and structurally defined platforms for bimetallic deposition, where the shape of the seeds can be transferred to the shells. With Au-Pd as a model system, a set of design principles has been established for the bottom-up synthesis of shape-controlled bimetallic nanocrystals by SMCR. This strategy is successful at synthesizing symmetrically stellated Au-Pd nanocrystals with a variety of symmetries and core@shell Au@Au-Pd nanocrystals. Achieving nanocrystals with high morphological control via SMCR is governed by the following parameters: seed size, shape, and composition as well as the kinetics of seeded growth (through manipulation of synthetic parameters such as pH and metal precursor ratios). For example, larger seeds yield larger nanocrystals as does increasing the amount of metal deposited relative to the number of seeds. This increase in nanocrystal size leads to red-shifts in their localized surface plasmon resonance. Additionally, seed shape directs the overgrowth process during SMCR so the resultant nanocrystals adopt related symmetries. The ability to tune structure is important due to the size-, shape- and composition-dependent optical properties of bimetallic nanocrystals. Using this toolkit, the light scattering and absorption properties of Au-Pd octopods, 8-branched nanocrystals, could be tuned and were shown to be highly sensitive to changes in refractive index. The refractive index sensitivity displayed a linear correlation to the localized surface plasmon resonance initial position, where the sensitivity is greater than that of monometallic Au structures. Due to their bimetallic composition and unique architecture enabled by SMCR, Au-Pd octopods are promising refractive index based sensors. This Account summarizes the underlying principles for synthesis of bimetallic nanocrystals by SMCR, which have been established by systematic manipulation of synthetic parameters in a model Au-Pd system. These principles are anticipated to be general to other bimetallic systems, allowing for the design and synthesis of new nanocrystals with fascinating optical and catalytic properties.

4.
Angew Chem Int Ed Engl ; 54(4): 1181-4, 2015 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-25424302

RESUMEN

Hierarchically organized structures are prevalent in nature, where such features account for the adhesion properties of gecko feet and the brilliant color variation of butterfly wings. Achieving artificial structures with multiscale features is of interest for metamaterials and biomimetic applications. However, the fabrication of such structures relies heavily on lithographic approaches, although self-assembly routes to superstructures are promising. Sequential seed-directed overgrowth is now demonstrated as a route to metal dendrimers, which are hierarchically branched nanocrystals (NCs) with a three-dimensional order analogous to that of molecular dendrimers. This method was applied to a model Au/Pd NC system; in general, the principle of sequential seed-directed overgrowth should enable the synthesis of new hierarchical inorganic structures with high symmetry.

5.
NanoImpact ; 28: 100426, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36096361

RESUMEN

We show that inorganic sulfides strongly influence transfer (migration) of nanoparticle mass out of polymer nanocomposites (PNCs) and into aqueous environments. We first manufactured two families of PNCs: one incorporating silver nanoparticles (AgNPs) and one incorporating CdSe quantum dots (QDs). Then, we assessed migration out of these PNCs and into aqueous media containing Na2S at concentrations ranging from 0 to 10-4 M. Results show that Na2S strongly suppressed migration of Ag from AgNP-based PNCs: the migration into water spiked with 10-6 M Na2S was 79% less than migration into water without Na2S, and no migration was detected (LOD ≈ 0.01 ng/cm2) in water spiked with Na2S at 10-5 M or 10-4 M. With CdSe QD-based PNCs, Na2S suppressed Cd migration but enhanced Se migration, resulting in only a small net effect on the total QD migration but a large shift of the leachate composition (from favoring Cd by an average of 5.8 to 1 in pure water to favoring Se 9.4 to 1 when Na2S was present at 10-4 M). These results show that common inorganic substances like sulfides may play a strong role in determining the environmental fate of polymer-dispersed nanoparticles and imply that migration tests conducted in purified water may not always accurately reflect migration into real environments.


Asunto(s)
Nanopartículas del Metal , Sulfuros , Plásticos , Cadmio , Plata , Agua
6.
ACS Omega ; 4(8): 13349-13359, 2019 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-31460463

RESUMEN

Clay/polymer nanocomposites (CPNs) are polymers incorporating refined clay particles that are frequently functionalized with quaternary ammonium cations (QACs) as dispersion aids. There is interest in commercializing CPNs for food contact applications because they have improved strength and barrier properties, but there are few studies on the potential for QACs in CPNs to transfer to foods under conditions of intended use. In this study, we manufactured low-density poly(ethylene) (LDPE)-based CPNs and assessed whether QACs can migrate into several food simulants under accelerated storage conditions. QACs were found to migrate to a fatty food simulant (ethanol) at levels of ∼1.1 µg mg-1 CPN mass after 10 days at 40 °C, constituting about 4% total migration (proportion of the initial QAC content in the CPN that migrated to the simulant). QAC migration into ethanol was ∼16× higher from LDPE containing approximately the same concentration of QACs but no clay, suggesting that most QACs in the CPN are tightly bound to clay particles and are immobile. Negligible QACs were found to migrate into aqueous, alcoholic, or acidic simulants from CPNs, and the amount of migrated QACs was also found to scale with the temperature and the initial clay concentration. The migration data were compared to a theoretical diffusion model, and it was found that the diffusion constant for QACs in the CPN was several orders of magnitude slower than predicted, which we attributed to the potential for QACs to migrate as dimers or other aggregates rather than as individual ions. Nevertheless, the use of the migration model resulted in a conservative estimate of the mass transfer of QAC from the CPN test specimens.

7.
ACS Omega ; 3(4): 3952-3956, 2018 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-31458632

RESUMEN

Here, a systematic study of the roles played by Pd seeds during seed-mediated coreduction of Pd-Pt is presented. Either nanoparticles with porous, hollow architectures or concave nanocubes were achieved, depending on whether the synthesis conditions favored galvanic replacement or overgrowth. Prior works have shown that the galvanic replacement reaction between seeds and a precursor can be suppressed by introducing a faster, parallel reaction that removes one of the reagents (e.g., adatom generation in solution rather than surface-catalyzed precursor reduction). Here, we show that the galvanic replacement reaction depends on the size and concentration of the Pd seeds; the former of which can be manipulated during the course of the reaction through the use of a secondary reducing agent. This insight will guide future syntheses of multimetallic nanostructures by seeded methods, allowing for a range of nanocrystals to be precisely engineered for a variety of applications.

8.
Nanoscale ; 9(22): 7570-7576, 2017 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-28534897

RESUMEN

Metal nanoparticles (NPs) are of interest for applications in catalysis, electronics, chemical sensing, and more. Their utility is dictated by their composition and physical parameters such as particle size, particle shape, and overall architecture (e.g., hollow vs. solid). Interestingly, the addition of a second metal to create bimetallic NPs adds multifunctionality, with new emergent properties common. However, synthesizing structurally defined bimetallic NPs remains a great challenge. One synthetic pathway to architecturally controlled bimetallic NPs is seed-mediated co-reduction (SMCR) in which two metal precursors are simultaneously co-reduced to deposit metal onto shape-controlled metal seeds, which direct the overgrowth. Previously demonstrated in a Au-Pd system, here SMCR is applied to a system with a larger lattice mismatch between the depositing metals: Pd and Cu (7% mismatch for Pd-Cu vs. 4% for Au-Pd). Through manipulation of precursor reduction kinetics, the morphology and bimetallic distribution of the resultant NPs can be tuned to achieve eight-branched Pd-Cu heterostructures with Cu localized at the tips of the Pd nanocubes as well as branched Pd-Cu alloyed nanostructures and polyhedra. Significantly, the symmetry of the seeds can be transferred to the final nanostructures. This study expands our understanding of SMCR as a route to structurally defined bimetallic nanostructures and the synthesis of multicomponent nanomaterials more generally.

9.
Nanoscale ; 8(38): 16841-5, 2016 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-27345192

RESUMEN

High refractive index sensitivity (RIS) of branched Au-Pd nanocrystals (NCs) is engineered through lowering the dielectric dispersion at the NC resonant wavelength with internal or external atomic % Pd. To our knowledge, these NCs display the highest ensemble RIS measurement for colloids with LSPR maximum band positions ≤900 nm, and these results are corroborated with FDTD computations.

10.
Chem Commun (Camb) ; 51(42): 8872-5, 2015 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-25925127

RESUMEN

Coupling seed-mediated co-reduction with galvanic replacement for the first time provides a route to trimetallic (Ag-Au-Pd) nanostructures with hollow interiors. Moreover, manipulating the synthetic conditions can suppress galvanic replacement and facilitate formation of trimetallic core@shell (Ag@Au-Pd) nanostructures. These results illustrate the role of seed composition in the synthesis of architecturally defined multimetallic nanostructures by seed-mediated co-reduction.


Asunto(s)
Oro/química , Nanoestructuras/química , Paladio/química , Plata/química , Oxidación-Reducción , Tamaño de la Partícula , Porosidad , Propiedades de Superficie
11.
ACS Nano ; 8(12): 12461-7, 2014 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-25490676

RESUMEN

The predictable synthesis of bimetallic nanostructures via co-reduction of two metal precursors is challenging due to our limited understanding of precursor ligand effects. Here, the influence of different metal-ligand environments is systematically examined in the synthesis of Pd-Pt nanostructures as a model bimetallic system. Nanodendrites with different spatially defined Pd-Pt compositions are achieved, where the local ligand environments of metal precursors dictate if temporally separated co-reduction dominates to achieve core-shell nanostructures or whether electroless co-deposition proceeds to facilitate alloyed nanostructure formation. As the properties of bimetallic nanomaterials depend on crystal ordering and composition, chemical routes to structurally defined bimetallic nanomaterials are critically needed. The approaches reported here should be applicable to other bimetallic compositions given the established reactivity of coordination complexes available for use as precursors.

12.
ACS Nano ; 8(8): 8625-35, 2014 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-25133784

RESUMEN

Branched nanocrystals display interesting optical and catalytic properties on account of their high surface areas and tips with small radii of curvatures. However, many synthetic routes toward branched nanocrystals result in inhomogeneous samples on account of asymmetric branching. Seed-mediated coreduction is a recently developed route to symmetrically branched nanocrystals where the symmetry of the seeds is transferred to the final stellated morphologies. Here, general guidelines to stellated nanocrystals are outlined by surveying coreduction of Au and Pd precursors in the presence of a variety of shape-controlled Au seeds to achieve Au/Pd nanostructures. Single-crystalline, twinned, and anisotropic seeds were analyzed to expand the classes of stellated nanostructures synthetically accessible. Significantly, single-crystalline Au seeds adopt {100}-terminated intermediates prior to branching, regardless of initial seed shape. We compared these results with those obtained with shape-controlled Pd seeds, and seed composition was identified as an important synthetic parameter, with Pd seeds being more resistant to shape changes during overgrowth. This difference is attributed to the greater diffusion rate of Au atoms on Au seeds compared to Au atoms on Pd seeds. These results provide guidelines for the seeded synthesis of symmetrically branched nanocrystals and architecturally defined bimetallic nanostructures in general.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA