Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 299(1): 102753, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36442512

RESUMEN

Small Heat shock proteins (sHsps) are a family of molecular chaperones that bind nonnative proteins in an ATP-independent manner. Caenorhabditis elegans encodes 16 different sHsps, among them Hsp17, which is evolutionarily distinct from other sHsps in the nematode. The structure and mechanism of Hsp17 and how these may differ from other sHsps remain unclear. Here, we find that Hsp17 has a distinct expression pattern, structural organization, and chaperone function. Consistent with its presence under nonstress conditions, and in contrast to many other sHsps, we determined that Hsp17 is a mono-disperse, permanently active chaperone in vitro, which interacts with hundreds of different C. elegans proteins under physiological conditions. Additionally, our cryo-EM structure of Hsp17 reveals that in the 24-mer complex, 12 N-terminal regions are involved in its chaperone function. These flexible regions are located on the outside of the spherical oligomer, whereas the other 12 N-terminal regions are engaged in stabilizing interactions in its interior. This allows the same region in Hsp17 to perform different functions depending on the topological context. Taken together, our results reveal structural and functional features that further define the structural basis of permanently active sHsps.


Asunto(s)
Proteínas de Choque Térmico Pequeñas , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Choque Térmico Pequeñas/genética , Proteínas de Choque Térmico Pequeñas/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo
2.
Mol Cell ; 58(6): 1067-78, 2015 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-26009280

RESUMEN

Small heat shock proteins (sHsps) are ubiquitous molecular chaperones that prevent the aggregation of unfolding proteins during proteotoxic stress. In Caenorhabditis elegans, Sip1 is the only sHsp exclusively expressed in oocytes and embryos. Here, we demonstrate that Sip1 is essential for heat shock survival of reproducing adults and embryos. X-ray crystallography and electron microscopy revealed that Sip1 exists in a range of well-defined globular assemblies consisting of two half-spheres, each made of dimeric "spokes." Strikingly, the oligomeric distribution of Sip1 as well as its chaperone activity depend on pH, with a trend toward smaller species and higher activity at acidic conditions such as present in nematode eggs. The analysis of the interactome shows that Sip1 has a specific substrate spectrum including proteins that are essential for embryo development.


Asunto(s)
Proteínas de Caenorhabditis elegans/química , Proteínas de Choque Térmico Pequeñas/química , Chaperonas Moleculares/química , Conformación Proteica , Secuencia de Aminoácidos , Animales , Western Blotting , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/clasificación , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Microscopía por Crioelectrón , Cristalografía por Rayos X , Proteínas de Choque Térmico Pequeñas/genética , Proteínas de Choque Térmico Pequeñas/metabolismo , Concentración de Iones de Hidrógeno , Modelos Moleculares , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Datos de Secuencia Molecular , Mutación , Filogenia , Unión Proteica , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Temperatura
3.
J Biol Chem ; 295(1): 158-169, 2020 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-31767683

RESUMEN

Small heat-shock proteins (sHsps) compose the most widespread family of molecular chaperones. The human genome encodes 10 different sHsps (HspB1-10). It has been shown that HspB1 (Hsp27), HspB5 (αB-crystallin), and HspB6 (Hsp20) can form hetero-oligomers in vivo However, the impact of hetero-oligomerization on their structure and chaperone mechanism remains enigmatic. Here, we analyzed hetero-oligomer formation in human cells and in vitro using purified proteins. Our results show that the effect of hetero-oligomer formation on the composition of the sHsp ensembles and their chaperone activities depends strongly on the respective sHsps involved. We observed that hetero-oligomer formation between HspB1 and HspB5 leads to an ensemble that is dominated by species larger than the individual homo-oligomers. In contrast, the interaction of dimeric HspB6 with either HspB1 or HspB5 oligomers shifted the ensemble toward smaller oligomers. We noted that the larger HspB1-HspB5 hetero-oligomers are less active and that HspB6 activates HspB5 by dissociation to smaller oligomer complexes. The chaperone activity of HspB1-HspB6 hetero-oligomers, however, was modulated in a substrate-specific manner, presumably due to the specific enrichment of an HspB1-HspB6 heterodimer. These heterodimeric species may allow the tuning of the chaperone properties toward specific substrates. We conclude that sHsp hetero-oligomerization exerts distinct regulatory effects depending on the sHsps involved.


Asunto(s)
Proteínas de Choque Térmico Pequeñas/metabolismo , Multimerización de Proteína , Células CACO-2 , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Células MCF-7
4.
J Biol Chem ; 294(6): 2121-2132, 2019 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-30385502

RESUMEN

Small heat shock proteins (sHsps) are a ubiquitous and ancient family of ATP-independent molecular chaperones. A key characteristic of sHsps is that they exist in ensembles of iso-energetic oligomeric species differing in size. This property arises from a unique mode of assembly involving several parts of the subunits in a flexible manner. Current evidence suggests that smaller oligomers are more active chaperones. Thus, a shift in the equilibrium of the sHsp ensemble allows regulating the chaperone activity. Different mechanisms have been identified that reversibly change the oligomer equilibrium. The promiscuous interaction with non-native proteins generates complexes that can form aggregate-like structures from which native proteins are restored by ATP-dependent chaperones such as Hsp70 family members. In recent years, this basic paradigm has been expanded, and new roles and new cofactors, as well as variations in structure and regulation of sHsps, have emerged.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Pliegue de Proteína , Multimerización de Proteína , Animales , Proteínas HSP70 de Choque Térmico/genética , Humanos , Unión Proteica , Estructura Cuaternaria de Proteína
6.
Mol Cell ; 39(4): 507-20, 2010 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-20797624

RESUMEN

Hsp12 of S. cerevisiae is upregulated several 100-fold in response to stress. Our phenotypic analysis showed that this protein is important for survival of a variety of stress conditions, including high temperature. In the absence of Hsp12, we observed changes in cell morphology under stress conditions. Surprisingly, in the cell, Hsp12 exists both as a soluble cytosolic protein and associated to the plasma membrane. The in vitro analysis revealed that Hsp12, unlike all other Hsps studied so far, is completely unfolded; however, in the presence of certain lipids, it adopts a helical structure. The presence of Hsp12 does not alter the overall lipid composition of the plasma membrane but increases membrane stability.


Asunto(s)
Membrana Celular/metabolismo , Proteínas de Choque Térmico/genética , Fluidez de la Membrana , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Membrana Celular/ultraestructura , Citosol/metabolismo , Regulación Fúngica de la Expresión Génica , Genotipo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Respuesta al Choque Térmico , Lípidos de la Membrana/metabolismo , Presión Osmótica , Estrés Oxidativo , Fenotipo , Pliegue de Proteína , Estructura Secundaria de Proteína , Transporte de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Eliminación de Secuencia , Estrés Fisiológico , Relación Estructura-Actividad
7.
Biochim Biophys Acta ; 1860(1 Pt B): 149-66, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26116912

RESUMEN

BACKGROUND: The two α-crystallins (αA- and αB-crystallin) are major components of our eye lenses. Their key function there is to preserve lens transparency which is a challenging task as the protein turnover in the lens is low necessitating the stability and longevity of the constituent proteins. α-Crystallins are members of the small heat shock protein family. αB-crystallin is also expressed in other cell types. SCOPE OF THE REVIEW: The review summarizes the current concepts on the polydisperse structure of the α-crystallin oligomer and its chaperone function with a focus on the inherent complexity and highlighting gaps between in vitro and in vivo studies. MAJOR CONCLUSIONS: Both α-crystallins protect proteins from irreversible aggregation in a promiscuous manner. In maintaining eye lens transparency, they reduce the formation of light scattering particles and balance the interactions between lens crystallins. Important for these functions is their structural dynamics and heterogeneity as well as the regulation of these processes which we are beginning to understand. However, currently, it still remains elusive to which extent the in vitro observed properties of α-crystallins reflect the highly crowded situation in the lens. GENERAL SIGNIFICANCE: Since α-crystallins play an important role in preventing cataract in the eye lens and in the development of diverse diseases, understanding their mechanism and substrate spectra is of importance. To bridge the gap between the concepts established in vitro and the in vivo function of α-crystallins, the joining of forces between different scientific disciplines and the combination of diverse techniques in hybrid approaches are necessary. This article is part of a Special Issue entitled Crystallin Biochemistry in Health and Disease.


Asunto(s)
Catarata/metabolismo , Cristalino/química , Cristalino/metabolismo , alfa-Cristalinas/química , alfa-Cristalinas/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Catarata/patología , Humanos , Técnicas In Vitro , Cristalino/ultraestructura , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad , alfa-Cristalinas/ultraestructura
8.
Proc Natl Acad Sci U S A ; 110(40): E3780-9, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24043785

RESUMEN

The small heat shock protein αB-crystallin is an oligomeric molecular chaperone that binds aggregation-prone proteins. As a component of the proteostasis system, it is associated with cataract, neurodegenerative diseases, and myopathies. The structural determinants for the regulation of its chaperone function are still largely elusive. Combining different experimental approaches, we show that phosphorylation-induced destabilization of intersubunit interactions mediated by the N-terminal domain (NTD) results in the remodeling of the oligomer ensemble with an increase in smaller, activated species, predominantly 12-mers and 6-mers. Their 3D structures determined by cryo-electron microscopy and biochemical analyses reveal that the NTD in these species gains flexibility and solvent accessibility. These modulated properties are accompanied by an increase in chaperone activity in vivo and in vitro and a more efficient cooperation with the heat shock protein 70 system in client folding. Thus, the modulation of the structural flexibility of the NTD, as described here for phosphorylation, appears to regulate the chaperone activity of αB-crystallin rendering the NTD a conformational sensor for nonnative proteins.


Asunto(s)
Modelos Moleculares , Chaperonas Moleculares/química , Conformación Proteica , Cadena B de alfa-Cristalina/química , Cromatografía en Gel , Clonación Molecular , Microscopía por Crioelectrón , Electroforesis en Gel de Poliacrilamida , Proteínas HSP70 de Choque Térmico/metabolismo , Células HeLa , Humanos , Procesamiento de Imagen Asistido por Computador , Chaperonas Moleculares/metabolismo , Fosforilación , Colorantes de Rosanilina , Cadena B de alfa-Cristalina/metabolismo
9.
Proc Natl Acad Sci U S A ; 109(50): 20407-12, 2012 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-23184973

RESUMEN

Small heat shock proteins (sHsps) are molecular chaperones that prevent the aggregation of nonnative proteins. The sHsps investigated to date mostly form large, oligomeric complexes. The typical bacterial scenario seemed to be a two-component sHsps system of two homologous sHsps, such as the Escherichia coli sHsps IbpA and IbpB. With a view to expand our knowledge on bacterial sHsps, we analyzed the sHsp system of the bacterium Deinococcus radiodurans, which is resistant against various stress conditions. D. radiodurans encodes two sHsps, termed Hsp17.7 and Hsp20.2. Surprisingly, Hsp17.7 forms only chaperone active dimers, although its crystal structure reveals the typical α-crystallin fold. In contrast, Hsp20.2 is predominantly a 36mer that dissociates into smaller oligomeric assemblies that bind substrate proteins stably. Whereas Hsp20.2 cooperates with the ATP-dependent bacterial chaperones in their refolding, Hsp17.7 keeps substrates in a refolding-competent state by transient interactions. In summary, we show that these two sHsps are strikingly different in their quaternary structures and chaperone properties, defining a second type of bacterial two-component sHsp system.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas de Choque Térmico Pequeñas/química , Proteínas de Choque Térmico Pequeñas/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/ultraestructura , Cristalografía por Rayos X , Deinococcus/genética , Deinococcus/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico Pequeñas/genética , Proteínas de Choque Térmico Pequeñas/ultraestructura , Microscopía Electrónica de Transmisión , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Datos de Secuencia Molecular , Pliegue de Proteína , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestructura , Homología de Secuencia de Aminoácido , Estrés Fisiológico
10.
Proc Natl Acad Sci U S A ; 108(51): 20491-6, 2011 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-22143763

RESUMEN

The molecular chaperone αB-crystallin, the major player in maintaining the transparency of the eye lens, prevents stress-damaged and aging lens proteins from aggregation. In nonlenticular cells, it is involved in various neurological diseases, diabetes, and cancer. Given its structural plasticity and dynamics, structure analysis of αB-crystallin presented hitherto a formidable challenge. Here we present a pseudoatomic model of a 24-meric αB-crystallin assembly obtained by a triple hybrid approach combining data from cryoelectron microscopy, NMR spectroscopy, and structural modeling. The model, confirmed by cross-linking and mass spectrometry, shows that the subunits interact within the oligomer in different, defined conformations. We further present the molecular architectures of additional well-defined αB-crystallin assemblies with larger or smaller numbers of subunits, provide the mechanism how "heterogeneity" is achieved by a small set of defined structural variations, and analyze the factors modulating the oligomer equilibrium of αB-crystallin and thus its chaperone activity.


Asunto(s)
Cristalino/metabolismo , Cadena B de alfa-Cristalina/química , Reactivos de Enlaces Cruzados/química , Microscopía por Crioelectrón/métodos , Proteínas de Choque Térmico/metabolismo , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Espectroscopía de Resonancia Magnética/métodos , Espectrometría de Masas/métodos , Microscopía Electrónica/métodos , Modelos Moleculares , Conformación Molecular , Mutagénesis Sitio-Dirigida , Conformación Proteica , Estructura Secundaria de Proteína
11.
Proc Natl Acad Sci U S A ; 106(32): 13272-7, 2009 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-19651604

RESUMEN

Alpha-crystallins are molecular chaperones that protect vertebrate eye lens proteins from detrimental protein aggregation. alphaB-Crystallin, 1 of the 2 alpha-crystallin isoforms, is also associated with myopathies and neuropathological diseases. Despite the importance of alpha-crystallins in protein homeostasis, only little is known about their quaternary structures because of their seemingly polydisperse nature. Here, we analyzed the structures of recombinant alpha-crystallins using biophysical methods. In contrast to previous reports, we show that alphaB-crystallin assembles into defined oligomers consisting of 24 subunits. The 3-dimensional (3D) reconstruction of alphaB-crystallin by electron microscopy reveals a sphere-like structure with large openings to the interior of the protein. alphaA-Crystallin forms, in addition to complexes of 24 subunits, also smaller oligomers and large clusters consisting of individual oligomers. This propensity might explain the previously reported polydisperse nature of alpha-crystallin.


Asunto(s)
Cristalino/química , alfa-Cristalinas/química , Animales , Bovinos , Humanos , Modelos Moleculares , Estructura Cuaternaria de Proteína , alfa-Cristalinas/ultraestructura
12.
Nat Commun ; 12(1): 6697, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34795272

RESUMEN

Hsp26 is a small heat shock protein (sHsp) from S. cerevisiae. Its chaperone activity is activated by oligomer dissociation at heat shock temperatures. Hsp26 contains 9 phosphorylation sites in different structural elements. Our analysis of phospho-mimetic mutations shows that phosphorylation activates Hsp26 at permissive temperatures. The cryo-EM structure of the Hsp26 40mer revealed contacts between the conserved core domain of Hsp26 and the so-called thermosensor domain in the N-terminal part of the protein, which are targeted by phosphorylation. Furthermore, several phosphorylation sites in the C-terminal extension, which link subunits within the oligomer, are sensitive to the introduction of negative charges. In all cases, the intrinsic inhibition of chaperone activity is relieved and the N-terminal domain becomes accessible for substrate protein binding. The weakening of domain interactions within and between subunits by phosphorylation to activate the chaperone activity in response to proteotoxic stresses independent of heat stress could be a general regulation principle of sHsps.


Asunto(s)
Proteínas de Choque Térmico/metabolismo , Multimerización de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sitios de Unión/genética , Dicroismo Circular , Microscopía por Crioelectrón , Transferencia Resonante de Energía de Fluorescencia , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Respuesta al Choque Térmico , Modelos Moleculares , Mutación , Fosforilación , Unión Proteica , Conformación Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestructura , Espectrometría de Masas en Tándem , Temperatura
13.
Nat Struct Mol Biol ; 28(2): 143-151, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33432246

RESUMEN

The prevalent model for cataract formation in the eye lens posits that damaged crystallin proteins form light-scattering aggregates. The α-crystallins are thought to counteract this process as chaperones by sequestering misfolded crystallin proteins. In this scenario, chaperone pool depletion would result in lens opacification. Here we analyze lenses from different mouse strains that develop early-onset cataract due to point mutations in α-, ß-, or γ-crystallin proteins. We find that these mutant crystallins are unstable in vitro; in the lens, their levels are substantially reduced, and they do not accumulate in the water-insoluble fraction. Instead, all the other crystallin proteins, including the α-crystallins, are found to precipitate. The changes in protein composition and spatial organization of the crystallins observed in the mutant lenses suggest that the imbalance in the lenticular proteome and altered crystallin interactions are the bases for cataract formation, rather than the aggregation propensity of the mutant crystallins.


Asunto(s)
Catarata/metabolismo , Cristalinas/metabolismo , Cristalino , Agregación Patológica de Proteínas , Animales , Cristalino/metabolismo , Cristalino/patología , Ratones , Chaperonas Moleculares/metabolismo , Proteoma/metabolismo
14.
Biochim Biophys Acta Biomembr ; 1862(4): 183190, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31935366

RESUMEN

A membrane protein's oligomeric state modulates its functionality in various cellular processes. Since membrane proteins have to be solubilized in an appropriate membrane mimetic, the use of classical biophysical methods to analyze protein oligomers is challenging. We here present a method to determine the number of membrane proteins inserted into lipid nanodiscs. It is based on the ability to selectively quantify the amount of a small and robust fusion protein that can be proteolytically cleaved off from a membrane protein after incorporation into lipid nanodiscs. A detailed knowledge of the number of membrane proteins per nanodisc at defined assembly conditions is essential to estimate the tendency for oligomerization, but also for guiding sample optimization for structural investigations that require the presence of a homogenous oligomeric state. We show that this method can efficiently be used to determine the number of VDAC1 channels in nanodiscs at various assembly conditions, as confirmed by negative stain EM. The presented method is suitable in particular for membrane proteins that cannot be probed easily by other methods such as single span transmembrane helices. This assay can be applied to any membrane protein that can be incorporated into a nanodisc without the requirement for special instrumentation and will thus be widely applicable and complementary to other methods that quantify membrane protein insertion in lipid nanodiscs.


Asunto(s)
Membrana Dobles de Lípidos/química , Proteínas de la Membrana/química , Nanoestructuras/química , Canal Aniónico 1 Dependiente del Voltaje/genética , Fenómenos Biofísicos , Membrana Celular/química , Membrana Celular/genética , Humanos , Proteínas de la Membrana/genética , Fosfolípidos/química , Estructura Secundaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Canal Aniónico 1 Dependiente del Voltaje/química , Proteína bcl-X/química , Proteína bcl-X/genética
15.
Nat Struct Mol Biol ; 26(12): 1141-1150, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31792453

RESUMEN

The small heat shock protein αA-crystallin is a molecular chaperone important for the optical properties of the vertebrate eye lens. It forms heterogeneous oligomeric ensembles. We determined the structures of human αA-crystallin oligomers by combining cryo-electron microscopy, cross-linking/mass spectrometry, NMR spectroscopy and molecular modeling. The different oligomers can be interconverted by the addition or subtraction of tetramers, leading to mainly 12-, 16- and 20-meric assemblies in which interactions between N-terminal regions are important. Cross-dimer domain-swapping of the C-terminal region is a determinant of αA-crystallin heterogeneity. Human αA-crystallin contains two cysteines, which can form an intramolecular disulfide in vivo. Oxidation in vitro requires conformational changes and oligomer dissociation. The oxidized oligomers, which are larger than reduced αA-crystallin and destabilized against unfolding, are active chaperones and can transfer the disulfide to destabilized substrate proteins. The insight into the structure and function of αA-crystallin provides a basis for understanding its role in the eye lens.


Asunto(s)
Cadena A de alfa-Cristalina/química , Microscopía por Crioelectrón , Humanos , Cristalino/química , Modelos Moleculares , Oxidación-Reducción , Conformación Proteica , Multimerización de Proteína , Desplegamiento Proteico , Cadena A de alfa-Cristalina/ultraestructura
16.
Artículo en Inglés | MEDLINE | ID: mdl-18607092

RESUMEN

Icosahedral macromolecules have a wide spectrum of potential nanotechnological applications, the success of which relies on the level of accuracy at which the molecular structure is known. Lumazine synthase from Bacillus subtilis forms a 150 A icosahedral capsid consisting of 60 subunits and crystallizes in space group P6(3)22 or C2. However, the quality of these crystals is poor and structural information is only available at 2.4 A resolution. As classical strategies for growing better diffracting crystals have so far failed, protein engineering has been employed in order to improve the overexpression and purification of the molecule as well as to obtain new crystal forms. Two cysteines were replaced to bypass misfolding problems and a charged surface residue was replaced to force different molecular packings. The mutant protein crystallizes in space group R3, with unit-cell parameters a = b = 313.02, c = 365.77 A, alpha = beta = 90.0, gamma = 120 degrees , and diffracts to 1.6 A resolution.


Asunto(s)
Complejos Multienzimáticos/normas , Ingeniería de Proteínas/normas , Bacillus subtilis/enzimología , Bacillus subtilis/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/normas , Cristalización/métodos , Cristalización/normas , Complejos Multienzimáticos/química , Complejos Multienzimáticos/genética , Mutagénesis Sitio-Dirigida/métodos , Mutagénesis Sitio-Dirigida/normas , Ingeniería de Proteínas/métodos , Riboflavina Sintasa/química , Riboflavina Sintasa/genética , Riboflavina Sintasa/normas
17.
J Phys Chem B ; 111(12): 3106-14, 2007 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-17388477

RESUMEN

Dense liquid phases, metastable with respect to a solid phase, but stable with respect to the solution, have been known to form in solutions of proteins and small-molecule substances. Here, with the protein lumazine synthase as a test system, using dynamic and static light scattering and atomic force microscopy, we demonstrate submicron size clusters of dense liquid. In contrast to the macroscopic dense liquid, these clusters are metastable not only with respect to the crystals, but also with respect to the low-concentration solution: the characteristic cluster lifetime is limited to approximately 10 s, after which they decay. The cluster population is detectable only if they occupy >10(-6) of the solution volume and have a number density >105 cm-3 for 3 to 11% of the monitored time. The cluster volume fraction varies within wide limits and reaches up to 10(-3). Increasing protein concentration increases the frequency of cluster detection but does not affect the ranges of the cluster sizes, suggesting that a preferred cluster size exists. A simple Monte Carlo model with protein-like potentials reproduces the metastable clusters of dense liquid with limited lifetimes and variable sizes and suggests that the mean cluster size is determined by the kinetics of growth and decay and not by thermodynamics.


Asunto(s)
Proteínas/química , Algoritmos , Bacillus subtilis/enzimología , Fenómenos Químicos , Química Física , Cristalización , Luz , Modelos Químicos , Método de Montecarlo , Complejos Multienzimáticos/química , Dispersión de Radiación , Soluciones
18.
J Mol Biol ; 354(2): 258-71, 2005 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-16242710

RESUMEN

The multimeric membrane protein complex translocase mediates the transport of preproteins across and integration of membrane proteins into the inner membrane of Escherichia coli. The translocase consists of the peripheral membrane-associated ATPase SecA and the heterotrimeric channel-forming complex consisting of SecY, SecE and SecG. We have investigated the quaternary structure of the SecYEG complex in proteoliposomes. Fluorescence resonance energy transfer demonstrates that SecYEG forms oligomers when embedded in the membrane. Freeze-fracture techniques were used to examine the oligomeric composition under non-translocating and translocating conditions. Our data show that membrane-embedded SecYEG exists in a concentration-dependent equilibrium between monomers, dimers and tetramers, and that dynamic exchange of subunits between oligomers can occur. Remarkably, the formation of dimers and tetramers in the lipid environment is stimulated significantly by membrane insertion of SecA and by the interaction with translocation ligands SecA, preprotein and ATP, suggesting that the active translocation channel consists of multiple SecYEG complexes.


Asunto(s)
Adenosina Trifosfatasas/química , Proteínas Bacterianas/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Proteínas de la Membrana/química , Proteínas de Transporte de Membrana/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Membrana Celular/metabolismo , Dimerización , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Transferencia Resonante de Energía de Fluorescencia , Ligandos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Transporte de Proteínas , Proteolípidos/metabolismo , Canales de Translocación SEC , Proteína SecA
19.
Artículo en Inglés | MEDLINE | ID: mdl-16754988

RESUMEN

The gene coding for SecA from Enterococcus faecalis was cloned and overexpressed in Escherichia coli. In this protein, the lysine at position 6 was replaced by an asparagine in order to reduce sensitivity towards proteases. The modified protein was purified and crystallized. Crystals diffracting to 2.4 A resolution were obtained using the vapour-diffusion technique. The crystals belong to the monoclinic space group C2, with unit-cell parameters a = 203.4, b = 49.8, c = 100.8 A, alpha = gamma = 90.0, beta = 119.1 degrees. A selenomethionine derivative was prepared and is currently being tested in crystallization trials.


Asunto(s)
Adenosina Trifosfatasas/química , Proteínas Bacterianas/química , Enterococcus faecalis/enzimología , Proteínas de Transporte de Membrana/química , Sustitución de Aminoácidos , Clonación Molecular , Cristalización/métodos , Canales de Translocación SEC , Proteína SecA , Solventes , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA