Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 315
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(11): 7763-7770, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38456418

RESUMEN

Blends comprising organic semiconductors and inorganic quantum dots (QDs) are relevant for many optoelectronic applications and devices. However, the individual components in organic-QD blends have a strong tendency to aggregate and phase-separate during film processing, compromising both their structural and electronic properties. Here, we demonstrate a QD surface engineering approach using electronically active, highly soluble semiconductor ligands that are matched to the organic semiconductor host material to achieve well-dispersed inorganic-organic blend films, as characterized by X-ray and neutron scattering, and electron microscopies. This approach preserves the electronic properties of the organic and QD phases and also creates an optimized interface between them. We exemplify this in two emerging applications, singlet-fission-based photon multiplication (SF-PM) and triplet-triplet annihilation-based photon upconversion (TTA-UC). Steady-state and time-resolved optical spectroscopy shows that triplet excitons can be transferred with near unity efficiently across the organic-inorganic interface, while the organic films maintain efficient SF (190% yield) in the organic phase. By changing the relative energy between organic and inorganic components, yellow upconverted emission is observed upon 790 nm NIR excitation. Overall, we provide a highly versatile approach to overcome longstanding challenges in the blending of organic semiconductors with QDs that have relevance for many optical and optoelectronic applications.

2.
Int J Mol Sci ; 25(15)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39125977

RESUMEN

This study aimed to synthesize a novel elastomeric ligature with dimethylaminohexadecyl methacrylate (DMAHDM) grafted, providing a new strategy for improving the issue of enamel demineralization during fixed orthodontics. DMAHDM was incorporated into elastomeric ligatures at different mass fractions using ultraviolet photochemical grafting. The antibacterial properties were evaluated and the optimal DMAHDM amount was determined based on cytotoxicity assays. Moreover, tests were conducted to evaluate the in vivo changes in the mechanical properties of the elastomeric ligatures. To assess the actual in vivo effectiveness in preventing enamel demineralization, a rat demineralization model was established, with analyses focusing on changes in surface microstructure, elemental composition, and nanomechanical properties. Elastomeric ligatures with 2% DMAHDM showed excellent biocompatibility and the best antibacterial properties, reducing lactic acid production by 65.3% and biofilm bacteria by 50.0% within 24 h, without significant mechanical property differences from the control group (p > 0.05). Most importantly, they effectively prevented enamel demineralization in vivo, enhancing elastic modulus by 73.2% and hardness by 204.8%. Elastomeric ligatures incorporating DMAHDM have shown great potential for application in preventing enamel demineralization, providing a new strategy to solve this issue during fixed orthodontics.


Asunto(s)
Esmalte Dental , Elastómeros , Desmineralización Dental , Desmineralización Dental/prevención & control , Animales , Elastómeros/química , Ratas , Esmalte Dental/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Metacrilatos/química , Metacrilatos/farmacología , Aparatos Ortodóncicos , Biopelículas/efectos de los fármacos , Masculino
3.
Int J Mol Sci ; 25(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38892101

RESUMEN

The central dogma treats the ribosome as a molecular machine that reads one mRNA codon at a time as it adds each amino acid to its growing peptide chain. However, this and previous studies suggest that ribosomes actually perceive pairs of adjacent codons as they take three-nucleotide steps along the mRNA. We examined GNN codons, which we find are surprisingly overrepresented in eukaryote protein-coding open reading frames (ORFs), especially immediately after NNU codons. Ribosome profiling experiments in yeast revealed that ribosomes with NNU at their aminoacyl (A) site have particularly elevated densities when NNU is immediately followed (3') by a GNN codon, indicating slower mRNA threading of the NNU codon from the ribosome's A to peptidyl (P) sites. Moreover, if the assessment was limited to ribosomes that have only recently arrived at the next codon, by examining 21-nucleotide ribosome footprints (21-nt RFPs), elevated densities were observed for multiple codon classes when followed by GNN. This striking translation slowdown at adjacent 5'-NNN GNN codon pairs is likely mediated, in part, by the ribosome's CAR surface, which acts as an extension of the A-site tRNA anticodon during ribosome translocation and interacts through hydrogen bonding and pi stacking with the GNN codon. The functional consequences of 5'-NNN GNN codon adjacency are expected to influence the evolution of protein coding sequences.


Asunto(s)
Codón , Sistemas de Lectura Abierta , Biosíntesis de Proteínas , ARN Mensajero , Ribosomas , Codón/genética , Ribosomas/metabolismo , Ribosomas/genética , Sistemas de Lectura Abierta/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Anticodón/genética
4.
Nat Mater ; 21(5): 533-539, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35256791

RESUMEN

Quantum dot (QD) solids are an emerging platform for developing a range of optoelectronic devices. Thus, understanding exciton dynamics is essential towards developing and optimizing QD devices. Here, using transient absorption microscopy, we reveal the initial exciton dynamics in QDs with femtosecond timescales. We observe high exciton diffusivity (~102 cm2 s-1) in lead chalcogenide QDs within the first few hundred femtoseconds after photoexcitation followed by a transition to a slower regime (~10-1-1 cm2 s-1). QD solids with larger interdot distances exhibit higher initial diffusivity and a delayed transition to the slower regime, while higher QD packing density and heterogeneity accelerate this transition. The fast transport regime occurs only in materials with exciton Bohr radii much larger than the QD sizes, suggesting the transport of delocalized excitons in this regime and a transition to slower transport governed by exciton localization. These findings suggest routes to control the optoelectronic properties of QD solids.


Asunto(s)
Puntos Cuánticos , Compuestos de Selenio
5.
Langmuir ; 39(13): 4799-4808, 2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-36940205

RESUMEN

Controlling the dispersibility of nanocrystalline inorganic quantum dots (QDs) within organic semiconductor (OSC):QD nanocomposite films is critical for a wide range of optoelectronic devices. This work demonstrates how small changes to the OSC host molecule can have a dramatic detrimental effect on QD dispersibility within the host organic semiconductor matrix as quantified by grazing incidence X-ray scattering. It is commonplace to modify QD surface chemistry to enhance QD dispersibility within an OSC host. Here, an alternative route toward optimizing QD dispersibilities is demonstrated, which dramatically improves QD dispersibilities through blending two different OSCs to form a fully mixed OSC matrix phase.

6.
Clin Oral Investig ; 26(2): 1517-1530, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34392408

RESUMEN

OBJECTIVES: A previous study showed that the combination of poly(amido amine) (PAMAM) and rechargeable composites with nanoparticles of amorphous calcium phosphate (NACP) induced dentin remineralization in an acidic solution with no initial calcium (Ca) and phosphate (P) ions, mimicking the oral condition of individuals with dry mouths. However, the frequent fluid challenge in the oral cavity may decrease the remineralization capacity. Therefore, the objective of the present study was to investigate the remineralization efficacy on dentin in an acid solution via PAMAM + NACP after fluid challenges for the first time. METHODS: The NACP nanocomposite was stored in a pH 4 solution for 77 days to exhaust its Ca and P ions and then recharged. Demineralized dentin samples were divided into four groups: (1) control dentin, (2) dentin coated with PAMAM, (3) dentin with recharged NACP composite, and (4) dentin with PAMAM + recharged NACP. PAMAM-coated dentin was shaken in phosphate-buffered saline for 77 days to desorb PAMAM from dentin. Samples were treated in pH 4 lactic acid with no initial Ca and P ions for 42 days. RESULTS: After 77 days of fluid challenge, PAMAM failed to prevent dentin demineralization in lactic acid. The recharged NACP nanocomposite raised the pH to above 6.5 and re-released more than 6.0 and 4.0 mmol/L Ca and P ions daily, respectively, which inhibited further demineralization. In contrast, the PAMAM + NACP combined method induced great dentin remineralization and restored the dentin microhardness to 0.54 ± 0.04 GPa, which approached that of sound dentin (P = 0.426, P > 0.05). CONCLUSIONS: The PAMAM + NACP combination achieved dentin remineralization in an acid solution with no initial Ca and P ions, even after severe fluid challenges. CLINICAL RELEVANCE: The novel PAMAM + NACP has a strong and sustained remineralization capability to inhibit secondary caries, even for individuals with dry mouths.


Asunto(s)
Nanocompuestos , Remineralización Dental , Aminas , Antibacterianos , Biopelículas , Fosfatos de Calcio , Dentina , Humanos , Iones
7.
Clin Oral Investig ; 26(1): 313-323, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34110495

RESUMEN

OBJECTIVES: This study aimed to develop an antibacterial and calcium (Ca) and phosphate (P) rechargeable adhesive and investigate the effects of dimethylaminododecyl methacrylate (DMAHDM) and nanoparticles of amorphous calcium phosphate (NACP) on dentin bonding, biofilm response, and repeated Ca and P ion recharge and re-release capability for the first time. MATERIALS AND METHODS: Pyromellitic glycerol dimethacrylate (PMGDM), ethoxylated bisphenol A dimethacrylate (EBPADMA), 2-hydroxyethyl methacrylate (HEMA), and bisphenol A glycidyl dimethacrylate (BisGMA) formed the adhesive (PEHB). Three groups were tested: (1) Scotchbond (SBMP, 3 M) control, (2) PEHB + 30% NACP, and (3) PEHB + 30% NACP + 5% DMAHDM. Specimens were tested for dentin shear bond strength, and Ca and P ion release, recharge, and re-release. Biofilm lactic acid production and colony-forming units (CFU) on resins were analyzed. RESULTS: The four groups had similar dentin shear bond strengths (p > 0.1). Adhesive with DMAHDM showed significant decrease in metabolic activity, lactic acid production, and biofilm CFU (p < 0.05). The adhesives containing NACP released high levels of Ca and P ions initially and after being recharged. CONCLUSION: This study developed the first Ca and P ion-rechargeable and antibacterial adhesive, achieving strong antibacterial activity and Ca and P ion recharge and re-release for long-term remineralization. CLINICAL RELEVANCE: Considering the restoration-tooth bonded interface being the weak link and recurrent caries at the margins being the primary reason for restoration failures, this novel calcium phosphate-rechargeable and antibacterial adhesive is promising for a wide range of tooth-restoration applications to inhibit caries.


Asunto(s)
Caries Dental , Cementos Dentales , Antibacterianos/farmacología , Biopelículas , Fosfatos de Calcio/farmacología , Caries Dental/tratamiento farmacológico , Caries Dental/prevención & control , Humanos , Metacrilatos/farmacología
8.
Clin Oral Investig ; 26(4): 3637-3650, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35066688

RESUMEN

OBJECTIVE: The bonding interface of dental filling therapy is the weak point in resisting secondary caries. Adhesives containing nanoparticles of amorphous calcium phosphate (NACP) and dimethylaminohexadecyl methacrylate (DMAHDM) have been demonstrated in vitro to prevent bacteria from producing acid and to promote tooth remineralization. The present study aimed to evaluate the efficacy of adhesive with NACP and DMAHDM to prevent secondary caries in vivo. MATERIALS AND METHODS: Artificial cavities were created on the first molar on both sides of the maxillary in a rat model. One side was treated with adhesive containing NACP + DMAHDM, while on the other side, a commercial adhesive served as control. After 24 days of cariogenic feeding, the degree of secondary caries was evaluated by micro-CT and a modified Keyes scoring method. Quantitative real-time PCR (qPCR) and colony-forming unit (CFU) counts were used to evaluate the antibacterial efficacy of the materials. Biocompatibility was also investigated. RESULTS: In the rat model, the adhesive with NACP + DMAHDM showed excellent biocompatibility and effectively decreased the amount of bacteria. The experimental group demonstrated excellent remineralization effectiveness, with a lower modified Keyes score and mineral loss of 34.16 ± 2.13 vol% µm, compared with 77.44 ± 7.22 vol% µm in the control group, according to micro-CT (P < 0.05), showing excellent capacity to inhibit secondary caries. CONCLUSIONS: The NACP-DMAHDM-containing adhesive exhibited good performance in preventing secondary caries in vivo. CLINICAL RELEVANCE: Adhesives containing NACP and DMAHDM have great potential for use in clinical dentistry to prevent secondary caries by inhibiting bacterial growth and promoting remineralization.


Asunto(s)
Biopelículas , Susceptibilidad a Caries Dentarias , Animales , Antibacterianos/farmacología , Fosfatos de Calcio/farmacología , Cementos Dentales/farmacología , Metacrilatos/farmacología , Metilaminas , Ratas , Remineralización Dental/métodos
9.
Int J Mol Sci ; 23(3)2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35163343

RESUMEN

The ribosome CAR interaction surface behaves as an extension of the decoding center A site and has H-bond interactions with the +1 codon, which is next in line to enter the A site. Through molecular dynamic simulations, we investigated the codon sequence specificity of this CAR-mRNA interaction and discovered a strong preference for GCN codons, suggesting that there may be a sequence-dependent layer of translational regulation dependent on the CAR interaction surface. Dissection of the CAR-mRNA interaction through nucleotide substitution experiments showed that the first nucleotide of the +1 codon dominates over the second nucleotide position, consistent with an energetically favorable zipper-like activity that emanates from the A site through the CAR-mRNA interface. Moreover, the CAR/+1 codon interaction is affected by the identity of nucleotide 3 of +1 GCN codons, which influences the stacking of G and C. Clustering analysis suggests that the A-site decoding center adopts different neighborhood substates that depend on the identity of the +1 codon.


Asunto(s)
Simulación de Dinámica Molecular , Ribosomas , Codón/genética , Nucleótidos/análisis , ARN Mensajero/química , Ribosomas/química , Ribosomas/genética
10.
Int J Mol Sci ; 23(24)2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36555544

RESUMEN

Bone tissue engineering is a promising approach that uses seed-cell-scaffold drug delivery systems to reconstruct bone defects caused by trauma, tumors, or other diseases (e.g., periodontitis). Metformin, a widely used medication for type II diabetes, has the ability to enhance osteogenesis and angiogenesis by promoting cell migration and differentiation. Metformin promotes osteogenic differentiation, mineralization, and bone defect regeneration via activation of the AMP-activated kinase (AMPK) signaling pathway. Bone tissue engineering depends highly on vascular networks for adequate oxygen and nutrition supply. Metformin also enhances vascular differentiation via the AMPK/mechanistic target of the rapamycin kinase (mTOR)/NLR family pyrin domain containing the 3 (NLRP3) inflammasome signaling axis. This is the first review article on the effects of metformin on stem cells and bone tissue engineering. In this paper, we review the cutting-edge research on the effects of metformin on bone tissue engineering. This includes metformin delivery via tissue engineering scaffolds, metformin-induced enhancement of various types of stem cells, and metformin-induced promotion of osteogenesis, angiogenesis, and its regulatory pathways. In addition, the dental, craniofacial, and orthopedic applications of metformin in bone repair and regeneration are also discussed.


Asunto(s)
Diabetes Mellitus Tipo 2 , Metformina , Humanos , Materiales Biocompatibles/farmacología , Ingeniería de Tejidos , Metformina/farmacología , Metformina/uso terapéutico , Osteogénesis , Proteínas Quinasas Activadas por AMP , Andamios del Tejido , Diferenciación Celular , Regeneración Ósea
11.
Int J Mol Sci ; 23(21)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36361925

RESUMEN

Persistent apical periodontitis is a critical challenge for endodontists. Developing root canal filling materials with continuous antibacterial effects and tightly sealed root canals are essential strategies to avoid the failure of root canal therapy and prevent persistent apical periodontitis. We modified the EndoREZ root canal sealer with the antibacterial material dimethylaminododecyl methacrylate (DMADDM) and magnetic nanoparticles (MNPs). The mechanical properties of the modified root canal sealer were tested. The biocompatibility of this sealer was verified in vitro and in vivo. Multispecies biofilms were constructed to assess the antibacterial effects of the modified root canal sealer. We applied magnetic fields and examined the extent of root canal sealer penetration in vitro and in vivo. The results showed that EndoREZ sealer containing 2.5% DMADDM and 1% MNP had biological safety and apical sealing ability. In addition, the modified sealer could increase the sealer penetration range and exert significant antibacterial effects on multispecies biofilms under an external magnetic field. According to the in vivo study, the apices of the root canals with the sealer containing 2.5% DMADDM and 1% MNP showed no significant resorption and exhibited only a slight increase in the periodontal ligament space, with a good inhibitory effect on persistent apical periodontitis.


Asunto(s)
Nanopartículas de Magnetita , Periodontitis Periapical , Materiales de Obturación del Conducto Radicular , Humanos , Cavidad Pulpar , Nanopartículas de Magnetita/uso terapéutico , Materiales de Obturación del Conducto Radicular/farmacología , Periodontitis Periapical/prevención & control , Antibacterianos/farmacología
12.
Int J Mol Sci ; 23(18)2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36142516

RESUMEN

The objectives of this study were to investigate the effects of a novel method using flavonoids to inhibit Streptococcus mutans (S. mutans), Candida albicans (C. albicans) and dual-species biofilms and to protect enamel hardness in a biofilm-based caries model for the first time. Several flavonoids, including baicalein, naringenin and catechin, were tested. Gold-standard chlorhexidine (CHX) and untreated (UC) groups served as controls. Optimal concentrations were determined by cytotoxicity assay. Biofilm MTT, colony-forming-units (CFUs), biofilm biomass, lactic acid and polysaccharide production were evaluated. Real-time-polymerase-chain reaction (qRT-PCR) was used to determine gene expressions in biofilms. Demineralization of human enamel was induced via S. mutans-C. albicans biofilms, and enamel hardness was measured. Compared to CHX and UC groups, the baicalein group achieved the greatest reduction in S. mutans, C. albicans and S. mutans-C. albicans biofilms, yielding the least metabolic activity, polysaccharide synthesis and lactic acid production (p < 0.05). The biofilm CFU was decreased in baicalein group by 5 logs, 4 logs, 5 logs, for S. mutans, C. albicans and S. mutans-C. albicans biofilms, respectively, compared to UC group. When tested in a S. mutans-C. albicans in vitro caries model, the baicalein group substantially reduced enamel demineralization under biofilms, yielding an enamel hardness that was 2.75 times greater than that of UC group. Hence, the novel baicalein method is promising to inhibit dental caries by reducing biofilm formation and protecting enamel hardness.


Asunto(s)
Catequina , Caries Dental , Biopelículas , Candida albicans , Catequina/farmacología , Clorhexidina/farmacología , Caries Dental/prevención & control , Esmalte Dental , Flavanonas , Flavonoides/farmacología , Flavonoides/uso terapéutico , Dureza , Humanos , Ácido Láctico/farmacología , Polisacáridos/farmacología , Streptococcus mutans
13.
J Law Med ; 29(1): 37-49, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35362277

RESUMEN

This article deals with the nature of regulation by government and private institutions in Australia of the provision of health services in particular of complementary and alternative medicine (CAM). The primary questions considered are whether the current regulation of CAM practice in Australia is focused on the public interest and if it provides sound regulation based upon efficiency (greater competition in the health care market); and effectiveness (if it deals with regulatory gaps, protection of public health, flexibility, proportionality and parsimony). This article includes a historical review of the regulatory structure for CAM and an analysis of how it has developed over decades to a more mature position.


Asunto(s)
Terapias Complementarias , Australia , Salud Pública
14.
Clin Oral Investig ; 25(9): 5375-5390, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33891172

RESUMEN

OBJECTIVES: Dental caries is closely associated with acid-producing bacteria, and Streptococcus mutans is one of the primary etiological agents. Bacterial accumulation and dental demineralization lead to destruction of bonding interface, thus limiting the longevity of composite. The present study investigated remineralization effectiveness of adhesive containing nanoparticles of amorphous calcium phosphate (NACP) in a stimulated oral biofilm environment. METHODS: The enamel blocks were immersed in demineralization solution for 72 h to imitate artificial initial carious lesion and then subjected to a Streptococcus mutans biofilm for 24 h. All the samples then underwent 4-h demineralization in brain heart infusion broth with sucrose (BHIS) and 20-h remineralization in artificial saliva (AS) for 7 days. The daily pH of BHIS after 4-h incubation, lactic acid production, colony-forming unit (CFU) count, and content of calcium (Ca) and phosphate (P) in biofilm were evaluated. Meanwhile, the remineralization effectiveness of enamel was analyzed by X-ray diffraction (XRD), surface microhardness testing, transverse microradiography (TMR) and scanning electron microscopy (SEM). RESULTS: The NACP adhesive released abundant Ca and P, achieved acid neutralization, reduced lactic acid production, and lowered CFU count (P < 0.05). Enamel treated with NACP adhesive demonstrated the best remineralization effectiveness with remineralization value of 52.29 ± 4.79% according to TMR. Better microhardness recovery of cross sections and ample mineral deposits were also observed in NACP group. CONCLUSIONS: The NACP adhesive exhibited good performance in remineralizing initial enamel lesion with cariogenic biofilm. SIGNIFICANCE: The NACP adhesive is promising to be applied for the protection of bonding interface, prevention of secondary caries, and longevity prolonging of the restoration.


Asunto(s)
Caries Dental , Nanopartículas , Antibacterianos , Biopelículas , Fosfatos de Calcio , Caries Dental/tratamiento farmacológico , Susceptibilidad a Caries Dentarias , Cementos Dentales , Humanos , Metacrilatos , Remineralización Dental
15.
Int J Mol Sci ; 22(3)2021 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-33572867

RESUMEN

The ribosome CAR interaction surface is hypothesized to provide a layer of translation regulation through hydrogen-bonding to the +1 mRNA codon that is next to enter the ribosome A site during translocation. The CAR surface consists of three residues, 16S/18S rRNA C1054, A1196 (E. coli 16S numbering), and R146 of yeast ribosomal protein Rps3. R146 can be methylated by the Sfm1 methyltransferase which is downregulated in stressed cells. Through molecular dynamics analysis, we show here that methylation of R146 compromises the integrity of CAR by reducing the cation-pi stacking of the R146 guanidinium group with A1196, leading to reduced CAR hydrogen-bonding with the +1 codon. We propose that ribosomes assembled under stressed conditions have unmethylated R146, resulting in elevated CAR/+1 codon interactions, which tunes translation levels in response to the altered cellular context.


Asunto(s)
Arginina/metabolismo , ARN Mensajero/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo , Enlace de Hidrógeno , Metilación , Modelos Moleculares , ARN Ribosómico 16S/metabolismo , ARN Ribosómico 18S/metabolismo , Proteínas Ribosómicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
Int J Mol Sci ; 22(22)2021 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-34830243

RESUMEN

(1) Background: Vascularization remains a critical challenge in bone tissue engineering. The objective of this study was to prevascularize calcium phosphate cement (CPC) scaffold by co-culturing human periodontal ligament stem cells (hPDLSCs) and human umbilical vein endothelial cells (hUVECs) for the first time; (2) Methods: hPDLSCs and/or hUVECs were seeded on CPC scaffolds. Three groups were tested: (i) hUVEC group (hUVECs on CPC); (ii) hPDLSC group (hPDLSCs on CPC); (iii) co-culture group (hPDLSCs + hUVECs on CPC). Osteogenic differentiation, bone mineral synthesis, and microcapillary-like structures were evaluated; (3) Results: Angiogenic gene expressions of co-culture group were 6-9 fold those of monoculture. vWF expression of co-culture group was 3 times lower than hUVEC-monoculture group. Osteogenic expressions of co-culture group were 2-3 folds those of the hPDLSC-monoculture group. ALP activity and bone mineral synthesis of co-culture were much higher than hPDLSC-monoculture group. Co-culture group formed capillary-like structures at 14-21 days. Vessel length and junction numbers increased with time; (4) Conclusions: The hUVECs + hPDLSCs co-culture on CPC scaffold achieved excellent osteogenic and angiogenic capability in vitro for the first time, generating prevascularized networks. The hPDLSCs + hUVECs co-culture had much better osteogenesis and angiogenesis than monoculture. CPC scaffolds prevacularized via hPDLSCs + hUVECs are promising for dental, craniofacial, and orthopedic applications.


Asunto(s)
Fosfatos de Calcio/farmacología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Neovascularización Fisiológica/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Células Madre/efectos de los fármacos , Ingeniería de Tejidos/métodos , Actinas/genética , Actinas/metabolismo , Fosfatasa Alcalina/genética , Fosfatasa Alcalina/metabolismo , Antígenos CD/genética , Antígenos CD/metabolismo , Biomarcadores/metabolismo , Cementos para Huesos/farmacología , Huesos/irrigación sanguínea , Huesos/citología , Huesos/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Técnicas de Cocultivo , Expresión Génica , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Ligamento Periodontal/citología , Ligamento Periodontal/metabolismo , Células Madre/citología , Células Madre/metabolismo , Andamios del Tejido , Venas Umbilicales/citología , Venas Umbilicales/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor de von Willebrand/genética , Factor de von Willebrand/metabolismo
17.
Soft Matter ; 16(34): 7970-7981, 2020 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-32766663

RESUMEN

Nanocrystal quantum dots (QD) functionalised with active organic ligands hold significant promise as solar energy conversion materials, capable of multiexcitonic processes that could improve the efficiencies of single-junction photovoltaic devices. Small-angle X-ray and neutron scattering (SAXS and SANS) were used to characterize the structure of lead sulphide QDs post ligand-exchange with model acene-carboxylic acid ligands (benzoic acid, hydrocinnamic acid and naphthoic acid). Results demonstrate that hydrocinnamic acid and naphthoic acid ligated QDs form monolayer ligand shells, whilst benzoic acid ligated QDs possess ligand shells thicker than a monolayer. Further, the formation of a range of nanocomposite materials through the self-assembly of such acene-ligated QDs with an organic small-molecule semiconductor [5,12-bis((triisopropylsilyl)ethynyl)tetracene (TIPS-Tc)] is investigated. These materials are representative of a wider set of functional solar energy materials; here the focus is on structural studies, and their optoelectronic function is not investigated. As TIPS-Tc concentrations are increased, approaching the solubility limit, SANS data show that QD fractal-like features form, with structures possibly consistent with a diffusion limited aggregation mechanism. These, it is likely, act as heterogeneous nucleation agents for TIPS-Tc crystallization, generating agglomerates containing both QDs and TIPS-Tc. Within the TIPS-Tc crystals there seem to be three distinct QD morphologies: (i) at the crystallite centre (fractal-like QD aggregates acting as nucleating agents), (ii) trapped within the growing crystallite (giving rise to QD features ordered as sticky hard spheres), and (iii) a population of aggregate QDs at the periphery of the crystalline interface that were expelled from the growing TIPS-Tc crystal. Exposure of the QD:TIPS-Tc crystals to DMF vapour, a solvent known to be able to strip ligands from QDs, alters the spacing between PbS-hydrocinnamic acid and PbS-naphthoic acid ligated QD aggregate features. In contrast, for PbS-benzoic acid ligated QDs, DMF vapour exposure promotes the formation of ordered QD colloidal crystal type phases. This work thus demonstrates how different QD ligand chemistries control the interactions between QDs and an organic small molecule, leading to widely differing self-assembly processes. It highlights the unique capabilities of multiscale X-ray and neutron scattering in characterising such composite materials.

18.
Int J Mol Sci ; 21(17)2020 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-32887330

RESUMEN

Secondary caries often occurs at the tooth-composite margins. This study developed a novel bioactive composite containing DMAHDM (dimethylaminohexadecyl methacrylate) and NACP (nanoparticles of amorphous calcium phosphate), inhibiting caries at the enamel restoration margins in an in vitro saliva-derived biofilm secondary caries model for the first time. Four composites were tested: (1) Heliomolar nanocomposite, (2) 0% DMAHDM + 0% NACP, (3) 3% DMAHDM + 0% NACP, (D) 3% DMAHDM + 30% NACP. Saliva-derived biofilms were tested for antibacterial effects of the composites. Bovine enamel restorations were cultured with biofilms, Ca and P ion release of nanocomposite and enamel hardness at the enamel restoration margins was measured. Incorporation of DMAHDM and NACP into composite did not affect the mechanical properties (p > 0.05). The biofilms' CFU (colony-forming units) were reduced by 2 logs via DMAHDM (p < 0.05). Ca and P ion release of the nanocomposite was increased at cariogenic low pH. Enamel hardness at the margins for DMAHDM group was 25% higher than control (p < 0.05). With DMAHDM + NACP, the enamel hardness was the greatest and about 50% higher than control (p < 0.05). Therefore, the novel composite containing DMAHDM and NACP was strongly antibacterial and inhibited enamel demineralization, resulting in enamel hardness at the margins under biofilms that approached the hardness of healthy enamel.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Fosfatos de Calcio/farmacología , Caries Dental/prevención & control , Esmalte Dental/efectos de los fármacos , Nanocompuestos/química , Saliva/microbiología , Animales , Biopelículas/crecimiento & desarrollo , Bovinos , Caries Dental/microbiología , Caries Dental/patología , Esmalte Dental/microbiología , Esmalte Dental/patología , Modelos Animales de Enfermedad , Dureza , Técnicas In Vitro
19.
Int J Mol Sci ; 21(20)2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-33076241

RESUMEN

Caries-related biofilms and associated complications are significant threats in dentistry, especially when biofilms grow over dental restorations. The inhibition of cariogenic biofilm associated with the onset of carious lesions is crucial for preventing disease recurrence after treatment. This in vitro study defined optimized parameters for using a photosensitizer, toluidine blue O (TBO), activated via a red light-emitting diode (LED)-based wireless device to control the growth of cariogenic biofilms. The effect of TBO concentrations (50, 100, 150, and 200 µg/mL) exposed to light or incubated in the dark was investigated in successive cytotoxicity assays. Then, a mature Streptococcus mutans biofilm model under sucrose challenge was treated with different TBO concentrations (50, 100, and 150 µg/mL), different light energy doses (36, 108, and 180 J/cm2), and different incubation times before irradiation (1, 3, and 5 min). The untreated biofilm, irradiation with no TBO, and TBO incubation with no activation represented the controls. After treatments, biofilms were analyzed via S. mutans colony-forming units (CFUs) and live/dead assay. The percentage of cell viability was within the normal range compared to the control when 50 and 100 µg/mL of TBO were used. Increasing the TBO concentration and energy dose was associated with biofilm inhibition (p < 0.001), while increasing incubation time did not contribute to bacterial elimination (p > 0.05). Irradiating the S. mutans biofilm via 100 µg/mL of TBO and ≈180 J/cm2 energy dose resulted in ≈3-log reduction and a higher amount of dead/compromised S. mutans colonies in live/dead assay compared to the control (p < 0.001). The light energy dose and TBO concentration optimized the bacterial elimination of S. mutans biofilms. These results provide a perspective on the determining parameters for highly effective photo-killing of caries-related biofilms and display the limitations imposed by the toxicity of the antibacterial photodynamic therapy's chemical components. Future studies should support investigations on new approaches to improve or overcome the constraints of opportunities offered by photodynamic inactivation of caries-related biofilms.


Asunto(s)
Biopelículas/efectos de la radiación , Luces de Curación Dental , Caries Dental/terapia , Streptococcus mutans/efectos de la radiación , Animales , Recuento de Colonia Microbiana , Caries Dental/microbiología , Relación Dosis-Respuesta en la Radiación , Ratones , Fármacos Fotosensibilizantes/efectos adversos , Células RAW 264.7 , Streptococcus mutans/patogenicidad , Streptococcus mutans/fisiología , Cloruro de Tolonio/efectos adversos
20.
Nanomedicine ; 21: 102069, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31351236

RESUMEN

The objectives of this study were to incorporate iron oxide nanoparticles (IONPs) into calcium phosphate cement (CPC) to enhance bone engineering, and to investigate the effects of IONPs as a liquid or powder on stem cells using IONP-CPC scaffold for the first time. IONP-CPCs were prepared by adding 1% IONPs as liquid or powder. Human dental pulp stem cells (hDPSCs) were seeded. Subcutaneous implantation in mice was investigated. IONP-CPCs had better cell spreading, and greater ALP activity and bone mineral synthesis, than CPC control. Subcutaneous implantation for 6 weeks showed good biocompatibility for all groups. In conclusion, incorporating IONPs in liquid or powder form both substantially enhanced hDPSCs on IONP-CPC scaffold and exhibited excellent biocompatibility. IONP incorporation as a liquid was better than IONP powder in promoting osteogenic differentiation of hDPSCs. Incorporating IONPs and chitosan lactate together in CPC enhanced osteogenesis of hDPSCs more than using either alone.


Asunto(s)
Fosfatos de Calcio , Células Inmovilizadas , Pulpa Dental/metabolismo , Compuestos Férricos , Nanopartículas/química , Osteogénesis , Trasplante de Células Madre , Células Madre/metabolismo , Andamios del Tejido/química , Animales , Fosfatos de Calcio/química , Fosfatos de Calcio/farmacología , Células Inmovilizadas/citología , Células Inmovilizadas/metabolismo , Células Inmovilizadas/trasplante , Pulpa Dental/citología , Compuestos Férricos/química , Compuestos Férricos/farmacología , Xenoinjertos , Humanos , Masculino , Ratones , Células Madre/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA