RESUMEN
PURPOSE: Chronic kidney disease (CKD) is a risk factor for ischemic and bleeding events with dual antiplatelet therapy after percutaneous coronary intervention (PCI). Whether the presence of CYP2C19 loss of function (LOF) alleles modifies this risk, and whether a genotype-guided (GG) escalation of P2Y12 inhibitor therapy post PCI is safe in this population is unclear. METHODS: This was a post hoc analysis of randomized patients in TAILOR PCI. Patients were divided into two groups based on estimated glomerular filtration rate (eGFR) threshold of < 60 ml/min/1.73 m2 for CKD (n = 539) and non-CKD (n = 4276). The aggregate of cardiovascular death, stroke, myocardial infarction, stent thrombosis, and severe recurrent coronary ischemia at 12-months post-PCI was assessed as the primary endpoint. Secondary endpoint was major or minor bleeding. RESULTS: Mean (standard deviation) eGFR among patients with CKD was 49.5 (8.4) ml/min/1.72 m2. Among all patients, there was no significant interaction between randomized strategy and CKD status for any endpoint. Among LOF carriers, the interaction between randomized strategy and CKD status on composite ischemic outcome was not significant (p = 0.2). GG strategy was not associated with an increased risk of bleeding in either CKD group. CONCLUSIONS: In this exploratory analysis, escalation of P2Y12 inhibitor therapy following a GG strategy did not reduce the primary outcome in CKD. However, P2Y12 inhibitor escalation following a GG strategy was not associated with increased bleeding risk in CKD. Larger studies in CKD are needed. CLINICAL TRIAL REGISTRATION: https://clinicaltrials.gov/ct2/show/NCT01742117?term=TAILOR-PCI&draw=2&rank=1 . NCT01742117.
RESUMEN
DNA analyses from forensic casework samples commonly result in complex DNA profiles. Often, these profiles consist of multiple contributors and display multiple stochastic events such as peak height imbalance, allelic or locus drop-out, allelic drop-in, and excessive or indistinguishable stutter. This increased complexity has established a need for more sophisticated methods of DNA mixture interpretation. This study compares the effectiveness of statistical models in the interpretation of artificially created low template two person mixed DNA profiles at varying proportions and template quantities. Two binary models (combined probability of inclusion and random match probability), a semicontinuous (Lab retriever), and continuous model (STRmix™) were compared. Generally, as the sophistication of the models increases, the power of discrimination increases. Differences in discrimination often correlate to each model's ability to use observed data effectively. Binary models require static thresholds resulting in unused data and outliers that may lead to difficult or incorrect interpretation. Semicontinuous and continuous models eliminate the stochastic threshold, however Lab Retriever does not account for stochastic events beyond drop-out and drop-in leading to possible less effective use of the data. STRmix™ incorporates all stochastic events listed above into the calculation making the most effective use of the observed data.
Asunto(s)
ADN/análisis , Genética Forense/métodos , Modelos Genéticos , Dermatoglifia del ADN/métodos , Femenino , Humanos , Masculino , Análisis de Secuencia de ADN/métodosRESUMEN
Improvements to the DNA analysis of fired cartridge cases have been made in recent years, yet successful analysis of this important evidence type remains difficult. In this study, we describe both a novel device for the collection and transport of fired cartridge cases and a new DNA recovery method that incorporates a rinse-and-swab technique. This technique combines two different types of swabs and a rinse solution with additives that reduce the degradative effects that copper has on DNA. The new recovery method yielded approximately threefold more DNA than the traditional double swab method and reduced the evidence of degradation. After validation, we estimated the real-world success rate of obtaining DNA profiles suitable for comparison with the rinse-and-swab method by testing over 100 cartridge cases collected from crime scenes. Approximately 67 % of the time (8 of 12), at least one DNA profile suitable for comparison was obtained from fired cartridge cases assumed to be associated with a single firearm using the collection device and the rinse-and-swab method when the fired cartridge cases were collected within 24â¯h.
Asunto(s)
ADN/aislamiento & purificación , Armas de Fuego , Genética Forense/métodos , Manejo de Especímenes/métodos , Animales , Bovinos , Dermatoglifia del ADN , Humanos , Oligopéptidos , Reacción en Cadena de la Polimerasa , Albúmina SéricaRESUMEN
Modern interpretation strategies typically require an assignment of the number of contributors (N) to a DNA profile. This can prove to be a difficult task, particularly when dealing with higher order mixtures or mixtures where one or more contributors have donated low amounts of DNA. Differences in the assigned N at interpretation can lead to differences in the likelihood ration (LR). If the number of contributors cannot reasonably be assigned, then an interpretation of the profile may not be able to be progressed. In this study, we investigate mixed DNA profiles of varying complexity and interpret them altering the assigned N. We assign LRs for true- and non- contributors and compare the results given different assignments of N over a range of mixture proportions. When a component of a mixture had a proportion of at least 10%, a ratio of at least 1.5:1 to the next highest component, and a DNA amount (as determined by STRmix™) of at least 50 rfu, the LR of the component for a true contributor was not significantly affected by varying N and was therefore suitable for interpretation and the assignment of an LR. LRs produced for minor contributors were found to vary significantly as the assigned N was changed. These heuristics may be used to identify profiles suitable for interpretation.