Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Bioscience ; 68(6): 436-444, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29867253

RESUMEN

Citizen science involves a range of practices involving public participation in scientific knowledge production, but outcomes evaluation is complicated by the diversity of the goals and forms of citizen science. Publications and citations are not adequate metrics to describe citizen-science productivity. We address this gap by contributing a science products inventory (SPI) tool, iteratively developed through an expert panel and case studies, intended to support general-purpose planning and evaluation of citizen-science projects with respect to science productivity. The SPI includes a collection of items for tracking the production of science outputs and data practices, which are described and illustrated with examples. Several opportunities for further development of the initial inventory are highlighted, as well as potential for using the inventory as a tool to guide project management, funding, and research on citizen science.

2.
Bioscience ; 68(6): 436-444, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29867254

RESUMEN

Citizen science involves a range of practices involving public participation in scientific knowledge production, but outcomes evaluation is complicated by the diversity of the goals and forms of citizen science. Publications and citations are not adequate metrics to describe citizen-science productivity. We address this gap by contributing a science products inventory (SPI) tool, iteratively developed through an expert panel and case studies, intended to support general-purpose planning and evaluation of citizen-science projects with respect to science productivity. The SPI includes a collection of items for tracking the production of science outputs and data practices, which are described and illustrated with examples. Several opportunities for further development of the initial inventory are highlighted, as well as potential for using the inventory as a tool to guide project management, funding, and research on citizen science.

3.
Int J Biometeorol ; 58(4): 591-601, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24458770

RESUMEN

Phenology offers critical insights into the responses of species to climate change; shifts in species' phenologies can result in disruptions to the ecosystem processes and services upon which human livelihood depends. To better detect such shifts, scientists need long-term phenological records covering many taxa and across a broad geographic distribution. To date, phenological observation efforts across the USA have been geographically limited and have used different methods, making comparisons across sites and species difficult. To facilitate coordinated cross-site, cross-species, and geographically extensive phenological monitoring across the nation, the USA National Phenology Network has developed in situ monitoring protocols standardized across taxonomic groups and ecosystem types for terrestrial, freshwater, and marine plant and animal taxa. The protocols include elements that allow enhanced detection and description of phenological responses, including assessment of phenological "status", or the ability to track presence-absence of a particular phenophase, as well as standards for documenting the degree to which phenological activity is expressed in terms of intensity or abundance. Data collected by this method can be integrated with historical phenology data sets, enabling the development of databases for spatial and temporal assessment of changes in status and trends of disparate organisms. To build a common, spatially, and temporally extensive multi-taxa phenological data set available for a variety of research and science applications, we encourage scientists, resources managers, and others conducting ecological monitoring or research to consider utilization of these standardized protocols for tracking the seasonal activity of plants and animals.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Animales , Cambio Climático , Desarrollo de la Planta , Ciencia/métodos , Estaciones del Año
4.
Nature ; 429(6992): 651-4, 2004 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-15190350

RESUMEN

Water availability limits plant growth and production in almost all terrestrial ecosystems. However, biomes differ substantially in sensitivity of aboveground net primary production (ANPP) to between-year variation in precipitation. Average rain-use efficiency (RUE; ANPP/precipitation) also varies between biomes, supposedly because of differences in vegetation structure and/or biogeochemical constraints. Here we show that RUE decreases across biomes as mean annual precipitation increases. However, during the driest years at each site, there is convergence to a common maximum RUE (RUE(max)) that is typical of arid ecosystems. RUE(max) was also identified by experimentally altering the degree of limitation by water and other resources. Thus, in years when water is most limiting, deserts, grasslands and forests all exhibit the same rate of biomass production per unit rainfall, despite differences in physiognomy and site-level RUE. Global climate models predict increased between-year variability in precipitation, more frequent extreme drought events, and changes in temperature. Forecasts of future ecosystem behaviour should take into account this convergent feature of terrestrial biomes.


Asunto(s)
Evolución Biológica , Ecosistema , Plantas/metabolismo , Lluvia , Agua/metabolismo , Biomasa , Clima Desértico , Desecación , Desastres , Poaceae/metabolismo , Temperatura , Árboles/metabolismo , Agua/análisis
5.
Sci Total Environ ; 733: 137782, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32209235

RESUMEN

Climate change is a pervasive and growing global threat to biodiversity and ecosystems. Here, we present the most up-to-date assessment of climate change impacts on biodiversity, ecosystems, and ecosystem services in the U.S. and implications for natural resource management. We draw from the 4th National Climate Assessment to summarize observed and projected changes to ecosystems and biodiversity, explore linkages to important ecosystem services, and discuss associated challenges and opportunities for natural resource management. We find that species are responding to climate change through changes in morphology and behavior, phenology, and geographic range shifts, and these changes are mediated by plastic and evolutionary responses. Responses by species and populations, combined with direct effects of climate change on ecosystems (including more extreme events), are resulting in widespread changes in productivity, species interactions, vulnerability to biological invasions, and other emergent properties. Collectively, these impacts alter the benefits and services that natural ecosystems can provide to society. Although not all impacts are negative, even positive changes can require costly societal adjustments. Natural resource managers need proactive, flexible adaptation strategies that consider historical and future outlooks to minimize costs over the long term. Many organizations are beginning to explore these approaches, but implementation is not yet prevalent or systematic across the nation.


Asunto(s)
Cambio Climático , Ecosistema , Biodiversidad , Conservación de los Recursos Naturales , Recursos Naturales , Estados Unidos
6.
New Phytol ; 181(3): 672-82, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19032443

RESUMEN

The hypothesis that drought intensity constrains the recovery of photosynthesis from drought was tested in the C(3) woody legume Prosopis velutina, and the mechanisms underlying this constraint examined. Hydraulic status and gas exchange were measured the day before a 39 mm precipitation pulse, and up to 7 d afterwards. The experiment was conducted under rainout shelters, established on contrasting soil textures and with different vegetation cover at the Santa Rita Experimental Range in southeastern Arizona, USA. Rates of photosynthesis and stomatal conductance after re-watering, as well as the number of days necessary for photosynthesis to recover after re-watering, were negatively correlated with predawn water potential, a measure of drought intensity (R(2) = 0.83, 0.64 and 0.92, respectively). Photosynthetic recovery was incomplete when the vascular capacity for water transport had been severely impaired (percentage loss of hydraulic conductance > 80%) during the drought, which largely increased stomatal limitations. However, changes in biochemical capacity or in mesophyll conductance did not explain the observed pattern of photosynthesis recovery. Although the control that hydraulic limitations impose on photosynthesis recovery had been previously inferred, the first empirical test of this concept is reported here.


Asunto(s)
Sequías , Fabaceae/fisiología , Gases/metabolismo , Hojas de la Planta/fisiología , Prosopis/fisiología , Lluvia , Agua/fisiología , Fotosíntesis , Estomas de Plantas/fisiología , Estrés Fisiológico , Factores de Tiempo , Madera , Xilema/fisiología
7.
J Integr Plant Biol ; 50(11): 1484-96, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19017134

RESUMEN

We initiated a multi-factor global change experiment to explore the effects of infrared heat loading (HT) and water table level (WL) treatment on soil temperature (T) in bog and fen peatland mesocosms. We found that the temperature varied highly by year, month, peatland type, soil depth, HT and WL manipulations. The highest effect of HT on the temperature at 25 cm depth was found in June for the bog mesocosms (3.34-4.27 degrees C) but in May for the fen mesocosms (2.32-4.33 degrees C) over the 2-year study period. The effects of WL in the bog mesocosms were only found between August and January, with the wet mesocosms warmer than the dry mesocosms by 0.48-2.03 degrees C over the 2-year study period. In contrast, wetter fen mesocosms were generally cooler by 0.16-3.87 degrees C. Seasonal changes of temperatures elevated by the HT also varied by depth and ecosystem type, with temperature differences at 5 cm and 10 cm depth showing smaller seasonal fluctuations than those at 25 cm and 40 cm in the bog mesocosms. However, increased HT did not always lead to warmer soil, especially in the fen mesocosms. Both HT and WL manipulations have also changed the length of the non-frozen season.


Asunto(s)
Ecosistema , Suelo/análisis , Temperatura , Humedales , Agua
8.
PLoS One ; 13(9): e0202495, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30208065

RESUMEN

Warming temperatures associated with climate change can have indirect effects on migratory birds that rely on seasonally available food resources and habitats that vary across spatial and temporal scales. We used two heat-based indices of spring onset, the First Leaf Index (FLI) and the First Bloom Index (FBI), as proxies of habitat change for the period 1901 to 2012 at three spatial scales: the US National Wildlife Refuge System; the four major bird migratory flyways in North America; and the seasonal ranges (i.e., breeding and non-breeding grounds) of two migratory bird species, Blue-winged Warbler (Vermivora cyanoptera) and Whooping Crane (Grus americana). Our results show that relative to the historical range of variability, the onset of spring is now earlier in 76% of all wildlife refuges and extremely early (i.e., exceeding 95% of historical conditions) in 49% of refuges. In all flyways but the Pacific, the rate of spring advance is generally greater at higher latitudes than at lower latitudes. This differential rate of advance in spring onset is most pronounced in the Atlantic flyway, presumably because of a "warming hole" in the southeastern US. Both FLI and FBI have advanced markedly in the breeding ranges-but not the non-breeding ranges-of the two selected bird species, albeit with considerable intra-range variation. Differences among species in terms of migratory patterns and the location and extent of seasonal habitats, as well as shifts in habitat conditions over time, may complicate predictions of the vulnerability of migratory birds to climate change effects. This study provides insight into how differential shifts in the phenology of disparate but linked habitats could inform local- to landscape-scale management strategies for the conservation of migratory bird populations.


Asunto(s)
Migración Animal , Aves/fisiología , Animales , Animales Salvajes/fisiología , Cruzamiento , Cambio Climático , América del Norte , Passeriformes/fisiología , Estaciones del Año , Estados Unidos
9.
PLoS One ; 13(11): e0208348, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30475903

RESUMEN

[This corrects the article DOI: 10.1371/journal.pone.0202495.].

10.
Integr Comp Biol ; 58(1): 150-160, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29790942

RESUMEN

Citizen science is a growing phenomenon. With millions of people involved and billions of in-kind dollars contributed annually, this broad extent, fine grain approach to data collection should be garnering enthusiastic support in the mainstream science and higher education communities. However, many academic researchers demonstrate distinct biases against the use of citizen science as a source of rigorous information. To engage the public in scientific research, and the research community in the practice of citizen science, a mutual understanding is needed of accepted quality standards in science, and the corresponding specifics of project design and implementation when working with a broad public base. We define a science-based typology focused on the degree to which projects deliver the type(s) and quality of data/work needed to produce valid scientific outcomes directly useful in science and natural resource management. Where project intent includes direct contribution to science and the public is actively involved either virtually or hands-on, we examine the measures of quality assurance (methods to increase data quality during the design and implementation phases of a project) and quality control (post hoc methods to increase the quality of scientific outcomes). We suggest that high quality science can be produced with massive, largely one-off, participation if data collection is simple and quality control includes algorithm voting, statistical pruning, and/or computational modeling. Small to mid-scale projects engaging participants in repeated, often complex, sampling can advance quality through expert-led training and well-designed materials, and through independent verification. Both approaches-simplification at scale and complexity with care-generate more robust science outcomes.


Asunto(s)
Participación de la Comunidad/métodos , Proyectos de Investigación/estadística & datos numéricos , Ciencia/métodos
11.
Ecology ; 88(9): 2383-91, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17918415

RESUMEN

Invasive species are a global threat to biodiversity and the functioning of natural ecosystems. Here, we report on a two-year experiment aimed at elucidating the combined and relative effects of three key controls on plant invasions: propagule supply, soil nitrogen (N) availability, and herbivory by native insects. We focus on the exotic species Lespedeza cuneata, a Rank 1 invasive species. Propagule supply and soil N-availability interacted to control the density and foliar cover of L. cuneata. In low N plots, density and foliar cover of L. cuneata were higher in the propagule addition plots than in the plots to which propagules were not added. Surprisingly, this interaction was significant only when the abundance of herbivores was experimentally reduced. This experiment provides evidence that native insect herbivores mediate the interactive effects of propagule supply and resources on invasion by a widespread invasive plant species.


Asunto(s)
Biodiversidad , Ecosistema , Insectos/fisiología , Lespedeza/crecimiento & desarrollo , Suelo/análisis , Animales , Carbono/metabolismo , Ambiente , Lespedeza/fisiología , Nitrógeno/metabolismo , Densidad de Población , Dinámica Poblacional
12.
PLoS One ; 12(8): e0182919, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28829783

RESUMEN

PURPOSE: In support of science and society, the USA National Phenology Network (USA-NPN) maintains a rapidly growing, continental-scale, species-rich dataset of plant and animal phenology observations that with over 10 million records is the largest such database in the United States. The aim of this study was to explore the potential that exists in the broad and rich volunteer-collected dataset maintained by the USA-NPN for constructing models predicting the timing of phenological transition across species' ranges within the continental United States. Contributed voluntarily by professional and citizen scientists, these opportunistically collected observations are characterized by spatial clustering, inconsistent spatial and temporal sampling, and short temporal depth (2009-present). Whether data exhibiting such limitations can be used to develop predictive models appropriate for use across large geographic regions has not yet been explored. METHODS: We constructed predictive models for phenophases that are the most abundant in the database and also relevant to management applications for all species with available data, regardless of plant growth habit, location, geographic extent, or temporal depth of the observations. We implemented a very basic model formulation-thermal time models with a fixed start date. RESULTS: Sufficient data were available to construct 107 individual species × phenophase models. Remarkably, given the limited temporal depth of this dataset and the simple modeling approach used, fifteen of these models (14%) met our criteria for model fit and error. The majority of these models represented the "breaking leaf buds" and "leaves" phenophases and represented shrub or tree growth forms. Accumulated growing degree day (GDD) thresholds that emerged ranged from 454 GDDs (Amelanchier canadensis-breaking leaf buds) to 1,300 GDDs (Prunus serotina-open flowers). Such candidate thermal time thresholds can be used to produce real-time and short-term forecast maps of the timing of these phenophase transition. In addition, many of the candidate models that emerged were suitable for use across the majority of the species' geographic ranges. Real-time and forecast maps of phenophase transitions could support a wide range of natural resource management applications, including invasive plant management, issuing asthma and allergy alerts, and anticipating frost damage for crops in vulnerable states. IMPLICATIONS: Our finding that several viable thermal time threshold models that work across the majority of the species ranges could be constructed from the USA-NPN database provides clear evidence that great potential exists this dataset to develop more enhanced predictive models for additional species and phenophases. Further, the candidate models that emerged have immediate utility for supporting a wide range of management applications.


Asunto(s)
Biodiversidad , Bases de Datos Factuales , Modelos Teóricos , Animales , Geografía , Árboles/crecimiento & desarrollo , Estados Unidos
13.
PLoS One ; 10(10): e0140811, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26485157

RESUMEN

Recent improvements in online information communication and mobile location-aware technologies have led to the production of large volumes of volunteered geographic information. Widespread, large-scale efforts by volunteers to collect data can inform and drive scientific advances in diverse fields, including ecology and climatology. Traditional workflows to check the quality of such volunteered information can be costly and time consuming as they heavily rely on human interventions. However, identifying factors that can influence data quality, such as inconsistency, is crucial when these data are used in modeling and decision-making frameworks. Recently developed workflows use simple statistical approaches that assume that the majority of the information is consistent. However, this assumption is not generalizable, and ignores underlying geographic and environmental contextual variability that may explain apparent inconsistencies. Here we describe an automated workflow to check inconsistency based on the availability of contextual environmental information for sampling locations. The workflow consists of three steps: (1) dimensionality reduction to facilitate further analysis and interpretation of results, (2) model-based clustering to group observations according to their contextual conditions, and (3) identification of inconsistent observations within each cluster. The workflow was applied to volunteered observations of flowering in common and cloned lilac plants (Syringa vulgaris and Syringa x chinensis) in the United States for the period 1980 to 2013. About 97% of the observations for both common and cloned lilacs were flagged as consistent, indicating that volunteers provided reliable information for this case study. Relative to the original dataset, the exclusion of inconsistent observations changed the apparent rate of change in lilac bloom dates by two days per decade, indicating the importance of inconsistency checking as a key step in data quality assessment for volunteered geographic information. Initiatives that leverage volunteered geographic information can adapt this workflow to improve the quality of their datasets and the robustness of their scientific analyses.


Asunto(s)
Exactitud de los Datos , Ambiente , Flujo de Trabajo , Algoritmos , Análisis por Conglomerados , Estados Unidos
14.
Sci Data ; 2: 150038, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26306204

RESUMEN

The dataset is comprised of leafing and flowering data collected across the continental United States from 1956 to 2014 for purple common lilac (Syringa vulgaris), a cloned lilac cultivar (S. x chinensis 'Red Rothomagensis') and two cloned honeysuckle cultivars (Lonicera tatarica 'Arnold Red' and L. korolkowii 'Zabeli'). Applications of this observational dataset range from detecting regional weather patterns to understanding the impacts of global climate change on the onset of spring at the national scale. While minor changes in methods have occurred over time, and some documentation is lacking, outlier analyses identified fewer than 3% of records as unusually early or late. Lilac and honeysuckle phenology data have proven robust in both model development and climatic research.


Asunto(s)
Lonicera , Syringa , Cambio Climático , Estados Unidos
15.
New Phytol ; 161(3): 827-835, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33873709

RESUMEN

• Rising atmospheric CO2 concentrations are likely to have direct effects on terrestrial ecosystems. Here, we describe effects of elevated concentrations of CO2 on an understory plant community in terms of production and community composition. • In 2001 and 2002 total and species-specific above-ground net primary productivity (ANPP) were estimated by harvesting above-ground biomass within an understory community receiving ambient [CO2 ] and elevated [CO2 ] at Oak Ridge National Laboratory's free-air carbon dioxide enrichment (FACE) facility. • During a wet year, community composition differed between plots receiving ambient [CO2 ] and elevated [CO2 ], but total ANPP did not differ. By contrast, during a drier year, community composition did not differ, but total ANPP was greater in elevated than ambient [CO2 ] plots. These patterns were driven by the response of two codominant species, Lonicera japonica and Microstegium vimineum, both considered invasive species in the south-eastern United States. The ANPP of L. japonica was consistently greater under elevated [CO2 ], whereas the response of M. vimineum to CO2 enrichment differed between years and mediated total community response. • These data suggest that community and species responses to a future, CO2 -enriched atmosphere may be mediated by other environmental factors and will depend on individual species responses.

16.
Oecologia ; 112(2): 156-164, 1997 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28307565

RESUMEN

Stable isotope analysis was used to determine sources of water used by coexisting trees and grasses in a temperate savanna dominated by Quercus emoryi Torr. We predicted that (1) tree seedlings and bunchgrasses utilize shallow sources of soil water, (2) mature savanna trees use deeper sources of water, and (3) trees switch from shallow to deep water sources within 1 year of germination. We found that Q. emoryi trees, saplings, and seedlings (about 2 months, 1 year, and 2 years old), and the dominant bunchgrass [Trachypogon montufari (H.B.K.) Nees.] utilized seasonally available moisture from different depths within the soil profile depending on size/age relationships. Sapling and mature Q. emoryi acquired water from >50 cm deep, 2-month-old seedlings utilized water from <15 cm, and 1- and 2-year-old seedlings and grasses used water from between 20 cm and 35 cm. This suggests that very young seedlings are decoupled from grasses in this system, which may facilitate germination and early establishment of Q. emoryi within extant stands of native grasses. The potential for subsequent interaction between Q. emoryi and native grasses was evidenced by similar patterns of soil water use by 1- and 2-year-old seedlings and grasses. Q. emoryi seedlings did not switch from shallow to deep sources of soil water within 2 years of germination: water use by these seedlings apparently becomes independent of water use by grasses after 2 years of age. Finally, older trees (saplings, mature trees) use water from deeper soil layers than grasses, which may facilitate the stable coexistence of mature trees and grasses. Potential shifts in the seasonality of precipitation may alter interactions between woody plants and grasses within temperate savannas characterized by bimodal precipitation regimes: reductions in summer precipitation or soil moisture may be particularly detrimental to warm-season grasses and seedlings of Q. emoryi.

17.
Oecologia ; 128(4): 557-565, 2001 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28547401

RESUMEN

Boreal peatlands, which contain a large fraction of the world's soil organic carbon pool, may be significantly affected by changes in climate and land use, with attendant feedback to climate through changes in albedo, fluxes of energy or trace gases, and soil carbon storage. The response of peatlands to changing environmental conditions will probably be dictated in part by scale-dependent topographic heterogeneity, which is known to interact with hydrology, vegetation, nutrients, and emissions of trace gases. Because the bryophyte community can contribute the majority of aboveground production in bogs, we investigated how microscale topography affects the response of bryophyte species production and cover to warming (using overhead infrared lamps) and manipulations of water-table height within experimental mesocosms. We removed 27 intact peat monoliths (2.1-m2 surface area, 0.5-0.7 m depth) from a bog in northern Minnesota, USA, and subjected them to three warming and three water-table treatments in a fully crossed factorial design. Between 1994 and 1998, we determined annual production of the four dominant bryophyte taxa within three microtopographic zones (low, medium, and high relative to the water table). We also estimated species cover and calculated changes in topography and roughness of the bryophyte surface through time. Total production of all bryophytes, and production of the individual taxa Polytrichum strictum, Sphagnum magellanicum, and Sphagnum Section Acutifolia, were about 100% greater in low microtopographic zones than in high zones, and about 50% greater in low than in medium zones. Production of bryophytes increased along the gradient of increasing water-table heights, but in most years, total production of bryophytes was negatively correlated with height above the set water table only for the wettest water-table treatment. Although bryophyte production was unaffected by the warming treatments, the bryophyte surface flattened in proportion to the degree of warming. These results indicate that production of bryophytes is driven most strongly by the absolute and relative height of the bryophyte surface above the water table. Predicted changes in water-table height commensurate with changes in surface temperature may thus affect both production and superficial topography of bryophyte communities.

18.
PLoS One ; 5(10): e13476, 2010 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-20976104

RESUMEN

BACKGROUND: Ecological succession drives large-scale changes in ecosystem composition over time, but the mechanisms whereby climatic change might alter succession remain unresolved. Here, we asked if the effects of atmospheric and climatic change would alter tree seedling emergence and establishment in an old-field ecosystem, recognizing that small shifts in rates of seedling emergence and establishment of different species may have long-term repercussions on the transition of fields to forests in the future. METHODOLOGY/PRINCIPAL FINDINGS: We introduced seeds from three early successional tree species into constructed old-field plant communities that had been subjected for 4 years to altered temperature, precipitation, and atmospheric CO(2) regimes in an experimental facility. Our experiment revealed that different combinations of atmospheric CO(2) concentration, air temperature, and soil moisture altered seedling emergence and establishment. Treatments directly and indirectly affected soil moisture, which was the best predictor of seedling establishment, though treatment effects differed among species. CONCLUSIONS: The observed impacts, coupled with variations in the timing of seed arrival, are demonstrated as predictors of seedling emergence and establishment in ecosystems under global change.


Asunto(s)
Cambio Climático , Ecosistema , Árboles/crecimiento & desarrollo , Atmósfera , Dióxido de Carbono/análisis
19.
New Phytol ; 157(2): 171-173, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33873639
20.
Ecology ; 89(11): 3041-3048, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31766807

RESUMEN

Peatlands comprise a globally important carbon pool whose input-output budgets may be significantly altered by climate change. To experimentally determine the sensitivity of the carbon stored in peatlands to climate change, we constructed a mesocosm facility with 54 peat monoliths from a bog and fen in northern Minnesota, USA. These mesocosms were subjected to nine combinations of heat and water-table levels over eight years. Bog mesocosms initially accumulated soil carbon, with greater gains in wetter mesocosms, but after three years no further water-table effects occurred. In contrast, fen mesocosms lost or had no change in soil carbon, with the greatest losses in drier and warmer mesocosms. Changes in soil-carbon storage resulted in concomitant changes in water-table depth, so that water-table depths were similar to those in the natural source sites by the end of the experiment regardless of the initial treatment. These results were primarily due to water-table effects on Sphagnum moss production in the bog mesocosms and to a more complicated suite of warming and water-table effects on production and decomposition in the fen mesocosms. We show that different kinds of peatlands will rapidly gain or lose carbon following hydrological disturbance until they return to their characteristic ("equilibrium") water-table levels. Our results illustrate the potential for a rapid homeostatic response of these ecosystems to future climate change at small spatial scales. Climate change will likely also interact with other carbon cycle-hydrological feedbacks at the scale of the entire peatland over longer time frames and larger spatial scales.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA