Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Revista
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Small ; 18(49): e2204638, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36310146

RESUMEN

Although tremendous progress has recently been made in quasi-2D perovskite light-emitting diodes (PeLEDs), the performance of red PeLEDs emitting at ≈650-660 nm, which have wide prospects for application in photodynamic therapy, is still limited by an inefficient energy transfer process between the quasi-2D perovskite layers. Herein, a symmetric molecule of 3,3'-(9H-fluorene-9,9-diyl)dipropanamide (FDPA) is designed and developed with two functional acylamino groups and incorporated into the quasi-2D perovskites as the additive for achieving high-performance red PeLEDs. It is demonstrated that the agent can simultaneously diminish the van der Waals gaps between individual perovskite layers and passivate uncoordinated Pb2+ related defects at the surface and grain boundaries of the quasi-2D perovskites, which truly results in an efficient energy transfer in the quasi-2D perovskite films. Consequently, the red PeLEDs emitting at 653 nm with a peak external quantum efficiency of 18.5% and a maximum luminance of 2545 cd m-2 are achieved, which is among the best performing red quasi-2D PeLEDs emitting at ≈650-660 nm. This work opens a way to further improve the electroluminescence performance of red PeLEDs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA