Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Environ Manage ; 260: 110149, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32090841

RESUMEN

Waste materials from coal mining and consumer products can pose significant risks to the environment. Residual coal deposits lead to the formation of acid drainage and release of contaminants, causing negative changes in soil and aquatic systems. Low density polyethylene (LDPE) polymers are an environmental concern due to their high useage, and slow degradation in the environment. In this study both waste materials were used to develop a composite to mitigate the environmental impacts of coal mining waste (CMW). The composite material was produced in different formulations (0-80 % wt CMW), and samples were tested for formation of acid drainage and release of contaminants. Chemical characterisation of the CMW and leachate of the composite materials was performed by X-ray fluorescence and atomic absorption spectrometry. Ecotoxicological effects in soil and water were investigated using standard tests with the earthworm, Eisenia fetida, the collembolan, Folsomia candida and the bacterium, Aliivibrio fischeri. Composites with 20 % wt LDPE showed a 50% increase in the pH value of the leachate compared to the CMW leachate. Iron, aluminium and sulfate concentrations were lower in leachates of the composite materials, and a reduction in the ecotoxicological impact on the tested organisms was observed. The hydrophobic nature of the composite's polymeric matrix as well its physical properties contributed to a better coating of the coal residue particles, blocking the contact with water and reducing the environmental risks of CMW. These results show that the production of composite material is a viable alternative route for treating coal and LDPE waste.


Asunto(s)
Minas de Carbón , Animales , Brasil , Carbón Mineral , Ambiente , Minería , Polietileno , Reciclaje
2.
Stroke ; 50(2): 298-304, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30661490

RESUMEN

Background and Purpose- We sought to explore the effect of genetic imbalance on functional outcome after ischemic stroke (IS). Methods- Copy number variation was identified in high-density single-nucleotide polymorphism microarray data of IS patients from the CADISP (Cervical Artery Dissection and Ischemic Stroke Patients) and SiGN (Stroke Genetics Network)/GISCOME (Genetics of Ischaemic Stroke Functional Outcome) networks. Genetic imbalance, defined as total number of protein-coding genes affected by copy number variations in an individual, was compared between patients with favorable (modified Rankin Scale score of 0-2) and unfavorable (modified Rankin Scale score of ≥3) outcome after 3 months. Subgroup analyses were confined to patients with imbalance affecting ohnologs-a class of dose-sensitive genes, or to those with imbalance not affecting ohnologs. The association of imbalance with outcome was analyzed by logistic regression analysis, adjusted for age, sex, stroke subtype, stroke severity, and ancestry. Results- The study sample comprised 816 CADISP patients (age 44.2±10.3 years) and 2498 SiGN/GISCOME patients (age 67.7±14.2 years). Outcome was unfavorable in 122 CADISP and 889 SiGN/GISCOME patients. Multivariate logistic regression analysis revealed that increased genetic imbalance was associated with less favorable outcome in both samples (CADISP: P=0.0007; odds ratio=0.89; 95% CI, 0.82-0.95 and SiGN/GISCOME: P=0.0036; odds ratio=0.94; 95% CI, 0.91-0.98). The association was independent of age, sex, stroke severity on admission, stroke subtype, and ancestry. On subgroup analysis, imbalance affecting ohnologs was associated with outcome (CADISP: odds ratio=0.88; 95% CI, 0.80-0.95 and SiGN/GISCOME: odds ratio=0.93; 95% CI, 0.89-0.98) whereas imbalance without ohnologs lacked such an association. Conclusions- Increased genetic imbalance was associated with poorer functional outcome after IS in both study populations. Subgroup analysis revealed that this association was driven by presence of ohnologs in the respective copy number variations, suggesting a causal role of the deleterious effects of genetic imbalance.


Asunto(s)
Isquemia Encefálica/genética , Dosificación de Gen , Adulto , Anciano , Isquemia Encefálica/rehabilitación , Cromosomas Humanos/genética , Estudios de Seguimiento , Duplicación de Gen , Genotipo , Humanos , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Recuperación de la Función , Índice de Severidad de la Enfermedad
3.
Anal Bioanal Chem ; 411(10): 2057-2069, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30734083

RESUMEN

Ecotoxicological screening of surface waters can involve multiple analyses using multiple bioassay and chemical analytical methods that require enriched samples to reach low concentrations. Such broad screening of the same sample necessitates sufficient sample volume-typically several liters-to produce a sufficient amount of enriched sample. Often, this is achieved by performing parallel solid-phase extractions (SPE) where extracts are combined into a pool-this is a laborious process. In this study, we first validated our existing SPE method for the chemical recovery of an extended set of compounds. We spiked four estrogenic compounds and 11 herbicides to samples from independent rivers (1 L) and wastewater treatment plant effluents (0.5 L). Then, we investigated the effect of increased sample loading of the SPE cartridges on both chemical and biological recoveries by comparing the validated volumes with four times larger sample volumes (i.e., 4 L river water and 2 L effluent). Samples were analyzed by LC-MS/MS and three bioassays: an estrogen receptor transactivation assay (ERα-CALUX), the combined algae test, and a bacterial bioluminescence inhibition assay. Our existing SPE method was found to be suitable for enriching the extended set of estrogens and herbicides in river water and effluents with near to perfect chemical recoveries (~ 100%), except for the herbicide metribuzin (46 ± 19%). In the large volume river and effluent samples, the biological activities and concentrations of the spiked compounds were between 87 and 104% of those measured with the lower sample loading, which is adequate. In addition, the ratio between the large and original volume SPE method for the non-target endpoint (bacterial bioluminescence inhibition) was acceptable (on average 82 ± 9%). Results indicate that our current water extraction method can be applied to up to four times larger sample volumes, resulting in four times more extract volumes, without significant reductions in recoveries for the tested estrogens and herbicides. Graphical abstract ᅟ.


Asunto(s)
Monitoreo del Ambiente/métodos , Estrógenos/aislamiento & purificación , Herbicidas/aislamiento & purificación , Extracción en Fase Sólida/métodos , Contaminantes Químicos del Agua/aislamiento & purificación , Bacterias/efectos de los fármacos , Chlorophyta/efectos de los fármacos , Cromatografía Liquida/métodos , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Estrógenos/toxicidad , Herbicidas/toxicidad , Ríos/química , Espectrometría de Masas en Tándem/métodos , Pruebas de Toxicidad/métodos , Aguas Residuales/análisis , Contaminantes Químicos del Agua/toxicidad
4.
J Sports Sci ; 37(2): 180-187, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29912617

RESUMEN

Activation of the hamstrings has been discussed as a measure for reducing strain on the ACL during jump landings in alpine skiing. The current study tested the hypothesis that hamstring and quadriceps activation can be voluntarily increased by the athlete. Specifically, two different instructions - to increase hamstring activation or to increase upper-leg co-contraction - were compared to normal landings. Eight members of the German national and junior national squad in freestyle skiing (age 19.6 ± 3.8 years; weight 66.1 ± 13.2 kg; height 172.2 ± 7.7 cm) performed 12 jump landings on a prepared run, 4 with no specific instruction, 4 with the instruction to generally activate the thigh muscles, and 4 with the instruction to specifically activate the hamstrings. Electromyographic (EMG) signals were recorded on the biceps femoris (BF), semitendinosus (ST), vastus lateralis (VL), rectus femoris (RF) and vastus medialis (VM). EMG activation levels were integrated over three landing phases and analysed with a repeated measures ANOVA. The instruction produced a significant main effect in ST (p = .026), VM (p = .032) and RF (p = .001). Contrary to previous research, the current study suggests that hamstring muscle activation levels can be voluntarily increased during jump landing, particularly in co-activation with its antagonists.


Asunto(s)
Músculos Isquiosurales/fisiología , Músculo Cuádriceps/fisiología , Esquí/fisiología , Adolescente , Lesiones del Ligamento Cruzado Anterior/prevención & control , Fenómenos Biomecánicos , Electromiografía , Femenino , Humanos , Articulación de la Rodilla/fisiología , Masculino , Contracción Muscular/fisiología , Proyectos Piloto , Ejercicio Pliométrico , Autoevaluación (Psicología) , Adulto Joven
5.
Crit Rev Toxicol ; 47(6): 509-535, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28425344

RESUMEN

Despite frequent field observations of impaired immune response and increased disease incidence in contaminant-exposed wildlife populations, immunotoxic effects are rarely considered in ecotoxicological risk assessment. The aim of this study was to review the literature on immunotoxic effects of chemicals in fish to quantitatively evaluate (i) which experimental approaches were used to assess immunotoxic effects, (ii) whether immune markers exist to screen for potential immunotoxic activities of chemicals, and (iii) how predictive those parameters are for adverse alterations of fish immunocompetence and disease resistance. A total of 241 publications on fish immunotoxicity were quantitatively analyzed. The main conclusions included: (i) To date, fish immunotoxicology focused mainly on innate immune responses and immunosuppressive effects. (ii) In numerous studies, the experimental conditions are poorly documented, as for instance age or sex of the fish or the rationale for the selected exposure conditions is often missing. (iii) Although a broad variety of parameters were used to assess immunotoxicity, the rationale for the choice of measured parameters was often not given, remaining unclear how they link to the suspected immunotoxic mode of action of the chemicals. (iv) At the current state of knowledge, it is impossible to identify a set of immune parameters that could reliably screen for immunotoxic potentials of chemicals. (v) Similarly, in fish immunotoxicology there is insufficient understanding of how and when chemical-induced modulations of molecular/cellular immune changes relate to adverse alterations of fish immunocompetence, although this would be crucial to include immunotoxicity in ecotoxicological risk assessment.


Asunto(s)
Peces/inmunología , Pruebas de Toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Biomarcadores , Sistema Inmunológico/efectos de los fármacos
6.
Ecotoxicol Environ Saf ; 115: 250-6, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25725458

RESUMEN

Estuarine systems are among the most impacted ecosystems due to anthropogenic contaminants; however, they present unique challenges to toxicity testing with regard to varying water quality parameters. The euryhaline amphipod species, Hyalella azteca, is widely used in toxicity testing and well suited for testing estuarine water samples. Nevertheless, the influence of relevant water quality parameters on test endpoints must be quantified in order to efficiently use this species for routine monitoring. Here, we studied the influence of five water quality parameters: electrical conductivity, pH, un-ionized ammonia, dissolved oxygen and temperature, on H. azteca survival in a water column toxicity test. A model was developed to quantify and predict the independent and interacting effects of water quality variables on 10-day survival. The model allows simultaneous assessment of multiple potential predictors recorded during the tests. Data used for modeling came from 1089 tests performed on ambient water samples over a period of three years (2006-2008). The final model reflects significant effects of predictors and their two-way interactions. The effect of each level of all predictors on survival probability of H. azteca was examined by comparing levels of each predictor at a time, while holding all others at their lowest (reference) level. This study showed that predictors of survival in water column tests should not be evaluated in isolation in the interpretation of H. azteca water column tests. Our model provides a useful tool to predict expected control survival based on relevant water quality parameters, and thus enables the use of H. azteca tests for toxicity monitoring in estuaries with a wide range of water quality conditions.


Asunto(s)
Anfípodos/efectos de los fármacos , Estuarios , Contaminantes del Agua/toxicidad , Calidad del Agua , Amoníaco/análisis , Animales , Ecosistema , Conductividad Eléctrica , Modelos Logísticos , Oxígeno/análisis , Temperatura , Pruebas de Toxicidad , Agua/química
7.
Environ Sci Technol ; 48(3): 1940-56, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24369993

RESUMEN

Thousands of organic micropollutants and their transformation products occur in water. Although often present at low concentrations, individual compounds contribute to mixture effects. Cell-based bioassays that target health-relevant biological endpoints may therefore complement chemical analysis for water quality assessment. The objective of this study was to evaluate cell-based bioassays for their suitability to benchmark water quality and to assess efficacy of water treatment processes. The selected bioassays cover relevant steps in the toxicity pathways including induction of xenobiotic metabolism, specific and reactive modes of toxic action, activation of adaptive stress response pathways and system responses. Twenty laboratories applied 103 unique in vitro bioassays to a common set of 10 water samples collected in Australia, including wastewater treatment plant effluent, two types of recycled water (reverse osmosis and ozonation/activated carbon filtration), stormwater, surface water, and drinking water. Sixty-five bioassays (63%) showed positive results in at least one sample, typically in wastewater treatment plant effluent, and only five (5%) were positive in the control (ultrapure water). Each water type had a characteristic bioanalytical profile with particular groups of toxicity pathways either consistently responsive or not responsive across test systems. The most responsive health-relevant endpoints were related to xenobiotic metabolism (pregnane X and aryl hydrocarbon receptors), hormone-mediated modes of action (mainly related to the estrogen, glucocorticoid, and antiandrogen activities), reactive modes of action (genotoxicity) and adaptive stress response pathway (oxidative stress response). This study has demonstrated that selected cell-based bioassays are suitable to benchmark water quality and it is recommended to use a purpose-tailored panel of bioassays for routine monitoring.


Asunto(s)
Bioensayo , Agua Potable/análisis , Aguas Residuales/análisis , Contaminantes Químicos del Agua/análisis , Calidad del Agua/normas , Animales , Australia , Benchmarking , Carbón Orgánico/análisis , Agua Potable/normas , Estrógenos/análisis , Filtración , Técnicas In Vitro , Reciclaje , Pruebas de Toxicidad , Agua/análisis , Purificación del Agua , Pez Cebra
8.
Artículo en Inglés | MEDLINE | ID: mdl-38780110

RESUMEN

In environmental risk assessment either for registration purposes or for retrospective assessments of monitoring data, the hazard assessment is predominantly based on effect data from ecotoxicity studies. Most regulatory frameworks require studies used for risk assessment to be evaluated for reliability and relevance. Historically, the Klimisch methodology was used in many regulatory procedures where reliability needed to be evaluated. More recently, the Criteria for Reporting and Evaluating Ecotoxicity Data (CRED) have been developed for aquatic ecotoxicity studies, providing more detailed guidance on the evaluation and reporting of not only the reliability but also the relevance of a scientific study. Here, we discuss the application of the CRED methodology for assessing sediment and soil ecotoxicity studies, addressing important sediment- and soil-specific criteria that should be included as part of the CRED evaluation system. We also provide detailed recommendations for the design and reporting of sediment and soil toxicity studies that can be used by scientists and researchers wishing to contribute ecotoxicological data for effect assessments carried out within regulatory frameworks. Integr Environ Assess Manag 2024;00:1-13. © 2024 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).

9.
Environ Sci Technol ; 47(4): 2008-17, 2013 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-23305567

RESUMEN

Triclosan (TCS), a high volume chemical widely used in consumer products, is a known aquatic contaminant found in fish inhabiting polluted watersheds. Mammalian studies have recently demonstrated that TCS disrupts signaling between the ryanodine receptor (RyR) and the dihydropyridine receptor (DHPR), two proteins essential for excitation-contraction (EC) coupling in striated muscle. We investigated the swimming behavior and expression of EC coupling proteins in larval fathead minnows (Pimephales promelas) exposed to TCS for up to 7 days. Concentrations as low as 75 µg L(-1) significantly altered fish swimming activity after 1 day; which was consistent after 7 days of exposure. The mRNA transcription and protein levels of RyR and DHPR (subunit CaV1.1) isoforms changed in a dose and time dependent manner. Crude muscle homogenates from exposed larvae did not display any apparent changes in receptor affinity toward known radioligands. In nonexposed crude muscle homogenates, TCS decreased the binding of [(3)H]PN20-110 to the DHPR and decreased the binding of [(3)H]-ryanodine to the RyR, demonstrating a direct impact at the receptor level. These results support TCS's impact on muscle function in vertebrates further exemplifying the need to re-evaluate the risks this pollutant poses to aquatic environments.


Asunto(s)
Antiinfecciosos Locales/toxicidad , Conducta Animal/efectos de los fármacos , Cyprinidae , Acoplamiento Excitación-Contracción/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Triclosán/toxicidad , Animales , Biomarcadores/metabolismo , Canales de Calcio Tipo L/metabolismo , Expresión Génica/efectos de los fármacos , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Natación , Contaminantes Químicos del Agua/toxicidad
10.
J Funct Morphol Kinesiol ; 8(1)2023 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-36648899

RESUMEN

Literature reports superior performance when focusing one's attention during a movement on environmental effects of that movement (external focus, EF) compared to focusing on the moving body (internal focus, IF). Nevertheless, IF instructions still play an important role in the daily practice of coaches, trainers, and therapists. The current review compiles evidence for focus-of-attention concepts on movement form corrections and technique training. Reviews on the topic and selected additional papers addressing the effect of attentional focus on movement form or on kinetic, kinematic or muscle activity data were included. Both EF and IF instructions affect movement form. The reviews revealed that IF instructions seem to be better applicable to direct movement form changes than EF instructions. In contrast, EF instructions better facilitate optimization within the whole-body coordination, often resulting in better performance outcomes not directly linked to movement pattern changes. Several studies discuss focus-of-attention effects in the context of the optimal feedback control theory expanding on the constrained action hypothesis. In summary, EF and IF instructions both affect form and performance of movements, however, their relative efficacy is situation dependent. The often-purported superiority of EF over IF instructions cannot be generalized to all application contexts.

11.
Artículo en Inglés | MEDLINE | ID: mdl-37048038

RESUMEN

Safe mountain hiking requires precise control of dynamic foot-ground interactions. In addition to vision and vestibular afferents, limb proprioception, sensorimotor control loops, and reflex responses are used to adapt to the specific nature of the ground contact. Diminished leg dexterity and balance during downhill walking is usually attributed to fatigue. We investigated the supplementary hypothesis that the eccentric contractions inherent to downhill walking can also disrupt muscle proprioception, as well as the sensorimotor control loops and reflex responses that depend on it. In this study, we measured leg dexterity (LD), anterior-posterior (AP) and medio-lateral (ML) bipedal balance, and maximal voluntary leg extension strength in young and healthy participants before and after 30 min of simulated downhill walking at a natural pace on a treadmill at a 20° decline. Post-pre comparisons of LD (p < 0.001) and AP balance (p = 0.001) revealed significant reductions in dynamic foot-ground interactions after eccentric exercise without an accompanying reduction in leg extension strength. We conclude that eccentric contractions during downhill walking can disrupt the control of dynamic foot-ground interactions independently of fatigue. We speculate that mountaineering safety could be improved by increasing conscious attention to compensate for unadjusted proprioception weighting, especially in the descent.


Asunto(s)
Músculo Esquelético , Caminata , Humanos , Músculo Esquelético/fisiología , Caminata/fisiología , Contracción Muscular/fisiología , Pierna/fisiología , Fatiga
12.
Environ Sci Technol ; 46(16): 9106-11, 2012 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-22881714

RESUMEN

To evaluate the potential role of endocrine disruption in the decline of pelagic fishes in the San Francisco Bay Delta of California, various surface water samples were collected, extracted, and found to elicit estrogenic activity in laboratory fish. Chemical analysis of the estrogenic samples indicated 2 pesticides (bifenthrin, diuron), 2 alkyphenols (AP), and mixtures of 2 types of alkyphenol polyethoxylates (APEOs). Evaluation of estrogenic activity was further characterized by in vitro bioassays using rainbow trout hepatocytes (Oncorhynchus mykiss) and in vivo studies with Japanese medaka (Oryzias latipes). In the in vitro bioassays, hepatocytes exposed to the pesticides alone or in combination with the AP/APEO mixtures at concentrations observed in surface waters failed to show estrogenic activity (induction of vitelloginin mRNA). In the in vivo bioassays, medaka exposed to individual pesticides or to AP/APEO alone did not have elevated VTG at ambient concentrations. However, when the pesticides were combined with AP/APEOs in the 7-day exposure a significant increase in VTG was observed. Exposure to a 5-fold higher concentration of the AP/APEO mixture alone also significantly induced VTG. In contrast to earlier studies with permethrin, biotransformation of bifenthrin to estrogenic metabolites was not observed in medaka liver microsomes and cytochrome P450 was not induced with AP/APEO treatment. These results showed that mixtures of pesticides with significantly different modes of action and AP/APEOs at environmentally relevant concentrations may be associated with estrogenic activity measured in water extracts and feral fish that have been shown to be in population decline in the San Francisco Bay Delta.


Asunto(s)
Estrógenos/química , Plaguicidas/química , Tensoactivos/química , Contaminantes Químicos del Agua/química , Animales , Secuencia de Bases , Cartilla de ADN , Peces , Reacción en Cadena de la Polimerasa , San Francisco
13.
Environ Sci Technol ; 46(11): 6081-7, 2012 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-22587496

RESUMEN

The health condition of out-migrating juvenile salmonids can influence migration success. Physical damage, pathogenic infection, contaminant exposure, and immune system status can affect survival probability. The present study is part of a wider investigation of out-migration success in juvenile steelhead (Oncorhynchus mykiss) and focuses on the application of molecular profiling to assess sublethal effects of environmental stressors in field-collected fish. We used a suite of genes in O. mykiss to specifically assess responses that could be directly related to steelhead health condition during out-migration. These biomarkers were used on juvenile steelhead captured in the Snake River, a tributary of the Columbia River, in Washington, USA, and were applied on gill and anterior head kidney tissue to assess immune system responses, pathogen-defense (NRAMP, Mx, CXC), general stress (HSP70), metal-binding (metallothionein-A), and xenobiotic metabolism (Cyp1a1) utilizing quantitative polymerase chain reaction (PCR) technology. Upon capture, fish were ranked according to visual external physical conditions into good, fair, poor, and bad categories; gills and kidney tissues were then dissected and preserved for gene analyses. Transcription responses were tissue-specific for gill and anterior head kidney with less significant responses in gill tissue than in kidney. Significant differences between the condition ranks were attributed to NRAMP, MX, CXC, and Cyp1a1 responses. Gene profiling correlated gene expression with pathogen presence, and results indicated that gene profiling can be a useful tool for identifying specific pathogen types responsible for disease. Principal component analysis (PCA) further correlated these responses with specific health condition categories, strongly differentiating good, poor, and bad condition ranks. We conclude that molecular profiling is an informative and useful tool that could be applied to indicate and monitor numerous population-level parameters of management interest.


Asunto(s)
Salud Ambiental , Monitoreo del Ambiente , Perfilación de la Expresión Génica , Salud , Oncorhynchus mykiss/genética , Ríos , Transcripción Genética , Animales , Análisis por Conglomerados , Análisis de Componente Principal , Washingtón
14.
Br J Sports Med ; 46(15): 1065-71, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22968156

RESUMEN

BACKGROUND: Epidemiological studies have shown a high incidence of anterior cruciate ligament (ACL) injuries among competitive alpine skiers. Little is known regarding modifiable risk factors in young skiers. There are still uncertainties in gender-related risk factors. OBJECTIVE: The purpose of this study was to determine the relationship between ACL injuries and internal risk factors. METHODS: Retrospective data analyses were performed based on a group of 175 female and 195 male alpine ski racers between the ages of 14 and 19 years. The athletes underwent physical testing annually from 1996 to 2006. Z score transformations normalised the age groups. Multivariate binary logistic regressions were calculated for men and women separately to detect significant predictors of ACL ruptures. t Tests were computed to reveal the differences in test scores between injured and non-injured athletes. RESULTS: A total of 57 (15%) ACL injuries occurred. The female-male risk ratio (RR) was higher in females (2.3, 95% CI 1.3 to 4.2). Z scores for relative leg force, ratio of absolute core flexion to extension force, relative core strength and reactive strength index were predictive variables for men. Z scores of all of these predictive variables except relative leg force were higher in the non-injured group. The ratios of absolute flexion to extension force and absolute core strength were predictive covariates for women. Z scores for absolute core strength were higher in the non-injured group. CONCLUSIONS: The risk of ACL injury was greater in female athletes. The findings suggest that core strength is a predominant critical factor for ACL injuries in young ski racers.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Aptitud Física/fisiología , Esquí/lesiones , Adolescente , Distribución por Edad , Antropometría , Estudios de Casos y Controles , Prueba de Esfuerzo/métodos , Femenino , Humanos , Estudios Longitudinales , Masculino , Factores de Riesgo , Rotura/etiología , Factores Sexuales , Adulto Joven
15.
Ecotoxicology ; 21(8): 2409-18, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22975895

RESUMEN

The presence of phytoplankton, like other particulate organic matter, can interfere with the effects of hydrophobic contaminants such as pyrethroid pesticides. However, the reduction or elimination of toxicity by algae added as food during testing is not taken into account in standard US EPA whole effluent toxicity (WET) zooplankton tests. On the other hand, WET test conditions may overestimate toxicity of such compounds in highly productive surface waters with high concentrations of detritus and other particulate matter. In addition, WET tests do not measure impaired swimming ability or predator avoidance behavior as an indicator of increased mortality risk. This study used a modified version of the US EPA WET Ceriodaphnia dubia acute test to investigate the effects of phytoplankton on toxicity of the pyrethroid insecticide, esfenvalerate. Animals were exposed simultaneously to different concentrations of esfenvalerate and green algae (Pseudokirchneriella subcapitata). Mortality and predation risk were recorded after 4 and 24 h. Algae at or below concentrations specified in the WET protocol significantly reduced mortality. Regardless, organisms exposed to esfenvalerate were unable to avoid simulated predation in the presence of algae at any concentration. After 12 h, esfenvalerate adsorbed to algae represented 68-99 % of the total amount recovered. The proportion of algae-bound insecticide increased with algal concentration indicating that conclusions drawn from toxicity tests in which algae are added as food must be interpreted with caution as the dissolved fraction of such hydrophobic contaminants is reduced. Additionally, our results strongly suggest that the EPA should consider adding ecologically-relevant endpoints such as swimming behavior to standard WET protocols.


Asunto(s)
Chlorophyta/metabolismo , Cladóceros/efectos de los fármacos , Exposición a Riesgos Ambientales , Insecticidas/toxicidad , Nitrilos/toxicidad , Piretrinas/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Chlorophyta/crecimiento & desarrollo , Cladóceros/fisiología , Dieta , Monitoreo del Ambiente , Cadena Alimentaria , Insecticidas/metabolismo , Actividad Motora , Nitrilos/metabolismo , Piretrinas/metabolismo , Contaminantes Químicos del Agua/metabolismo
16.
Sensors (Basel) ; 12(9): 12741-71, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23112741

RESUMEN

Ecotoxicology faces the challenge of assessing and predicting the effects of an increasing number of chemical stressors on aquatic species and ecosystems. Herein we review currently applied tools in ecological risk assessment, combining information on exposure with expected biological effects or environmental water quality standards; currently applied effect-based tools are presented based on whether exposure occurs in a controlled laboratory environment or in the field. With increasing ecological relevance the reproducibility, specificity and thus suitability for standardisation of methods tends to diminish. We discuss the use of biomarkers in ecotoxicology including ecotoxicogenomics-based endpoints, which are becoming increasingly important for the detection of sublethal effects. Carefully selected sets of biomarkers allow an assessment of exposure to and effects of toxic chemicals, as well as the health status of organisms and, when combined with chemical analysis, identification of toxicant(s). The promising concept of "adverse outcome pathways (AOP)" links mechanistic responses on the cellular level with whole organism, population, community and potentially ecosystem effects and services. For most toxic mechanisms, however, practical application of AOPs will require more information and the identification of key links between responses, as well as key indicators, at different levels of biological organization, ecosystem functioning and ecosystem services.


Asunto(s)
Ecotoxicología/métodos , Monitoreo del Ambiente/métodos , Calidad del Agua , Ecología/métodos , Ecosistema , Medición de Riesgo
17.
Fish Physiol Biochem ; 38(4): 1107-1116, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22252335

RESUMEN

The striped bass (Morone saxatilis) supports a valuable recreational fishery and is among the most important piscivorous fish of the San Francisco Estuary. This species has suffered a significant decline in numbers over the past decades, and there is indication that contaminants are important contributors. Polycyclic aromatic hydrocarbons (PAHs) and polyhalogenated aromatic hydrocarbons (PHAHs) including PCBs and dioxins are widespread in the estuary, they typically bioaccumulate through trophic levels, reaching highest levels in top predators and are known to affect the fish health and development. The aim of this study was to investigate the dynamics of cytochrome P4501A (Cyp1a) induction simultaneously at different levels of biological organization (RNA transcription and protein synthesis) as a biomarker of exposure to PAHs and PHAHs. We utilized ß-naphthoflavone (BNF) as a model PAH to induce Cyp1a responses in juvenile striped bass in both dose-response and time-response assessments and determined Cyp1a mRNA and protein levels. Significant responses were measured in both systems at 10 mg ΒΝF kg⁻¹, a concentration used for time-response studies. Messenger RNA levels peaked at 6 h post-injection, while protein levels increased progressively with time, significantly peaking at 96 h post-injection; both remaining elevated throughout the duration of the test (8 days). Our data suggest that rapid induction of gene transcription following exposure and subsequent cumulative protein synthesis could provide a useful means of identifying temporal variants in exposure to Cyp1a inducers in Morone saxatilis. The potential application of this combined Cyp1a gene and protein biomarker in this species for field studies is discussed.


Asunto(s)
Lubina/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Proteínas de Peces/metabolismo , beta-naftoflavona/toxicidad , Animales , Biomarcadores/metabolismo , Relación Dosis-Respuesta a Droga , Monitoreo del Ambiente , Hidrocarburos Policíclicos Aromáticos/toxicidad , ARN Mensajero/metabolismo , Factores de Tiempo , Xenobióticos/toxicidad
18.
Front Bioeng Biotechnol ; 10: 1006670, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36483769

RESUMEN

A growing number of studies apply Principal Component Analysis (PCA) on whole-body kinematic data to facilitate an analysis of posture changes in human movement. An unanswered question is, how much the PCA outcomes depend on the chosen measurement device. This study aimed to assess the internal consistency of PCA outcomes from treadmill walking motion capture data simultaneously collected through laboratory-grade optical motion capture and field-suitable inertial-based motion tracking. Data was simultaneously collected using VICON (whole-body plug-in gait marker positions) and Xsens (body segment positions) from 20 participants during 2-min treadmill walking. Using PCA, Principal Movements (PMs) were determined using two commonly used practices: on an individual and a grouped basis. For both, correlation matrices were used to determine internal consistency between outcomes from either measurement system for each PM. Both individual and grouped approach showed excellent internal consistency between outcomes from the two systems among the lower order PMs. For the individual analysis, high correlations were only found along the diagonal of the correlation matrix while the grouped analysis also showed high off-diagonal correlations. These results have important implications for future application of PCA in terms of the independence of the resulting PM data, the way group-differences are expressed in higher-order PMs and the interpretation of movement complexity. Concluding, while PCA-outcomes from the two systems start to deviate in the higher order PMs, excellent internal consistency was found in the lower order PMs which already represent about 98% of the variance in the dataset.

19.
Sci Total Environ ; 815: 152621, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-34968598

RESUMEN

Mental illnesses affect more than 150 million people in Europe and lead to an increasing consumption of neuroactive drugs during the last twenty years. The antipsychotic compound, clozapine, is one of the most used psychotropic drugs worldwide, with potentially negative consequences for the aquatic environment. Hence, the objectives of the study presented here were the quantification of clozapine induced changes in swimming behavior of exposed Danio rerio embryos and the elucidation of the molecular effects on the serotonergic and dopaminergic systems. Yolk-sac larvae were exposed to different concentrations (0.2 mg/L, 0.4 mg/L, 0.8 mg/L, 1.6 mg/L, 3.2 mg/L and 6.4 mg/L) of clozapine for 116 h post-fertilization, and changes in the swimming behavior of the larvae were assessed. Further, quantitative real-time PCR was performed to analyze the expression of selected genes. The qualitative evaluation of changes in the swimming behavior of D. rerio larvae revealed a significant decrease of the average swimming distance and velocity in the light-dark transition test, with more than a 36% reduction at the highest exposure concentration of 6.4 mg/L. Furthermore, the total larval body length was reduced at the highest concentration. An in-depth analysis based on expression of selected target genes of the serotonin (slc6a4a) and dopamine (drd2a) system showed an upregulation at a concentration of 1.6 mg/L and above. In addition, a lower increase in expression was detected for biomarkers of general stress (adra1a and cyp1a2). Our data show that exposure to clozapine during development inhibits swimming activity of zebrafish larvae, which could, in part, be due to disruption of the serotonin- and dopamine system.


Asunto(s)
Clozapina , Preparaciones Farmacéuticas , Contaminantes Químicos del Agua , Animales , Organismos Acuáticos , Clozapina/toxicidad , Embrión no Mamífero , Expresión Génica , Humanos , Larva , Natación , Contaminantes Químicos del Agua/toxicidad , Pez Cebra/genética
20.
Motor Control ; 26(1): 144-167, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34920414

RESUMEN

Best practice in skill acquisition has been informed by motor control theories. The main aim of this study is to screen existing literature on a relatively novel theory, Optimal Feedback Control Theory (OFCT), and to assess how OFCT concepts can be applied in sports and motor learning research. Based on 51 included studies with on average a high methodological quality, we found that different types of training seem to appeal to different control processes within OFCT. The minimum intervention principle (founded in OFCT) was used in many of the reviewed studies, and further investigation might lead to further improvements in sport skill acquisition. However, considering the homogenous nature of the tasks included in the reviewed studies, these ideas and their generalizability should be tested in future studies.


Asunto(s)
Tutoría , Deportes , Retroalimentación , Humanos , Destreza Motora
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA