Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
PLoS Genet ; 6(3): e1000881, 2010 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-20333234

RESUMEN

Drosophila Lnk is the single ancestral orthologue of a highly conserved family of structurally-related intracellular adaptor proteins, the SH2B proteins. As adaptors, they lack catalytic activity but contain several protein-protein interaction domains, thus playing a critical role in signal transduction from receptor tyrosine kinases to form protein networks. Physiological studies of SH2B function in mammals have produced conflicting data. However, a recent study in Drosophila has shown that Lnk is an important regulator of the insulin/insulin-like growth factor (IGF)-1 signaling (IIS) pathway during growth, functioning in parallel to the insulin receptor substrate, Chico. As this pathway also has an evolutionary conserved role in the determination of organism lifespan, we investigated whether Lnk is required for normal lifespan in Drosophila. Phenotypic analysis of mutants for Lnk revealed that loss of Lnk function results in increased lifespan and improved survival under conditions of oxidative stress and starvation. Starvation resistance was found to be associated with increased metabolic stores of carbohydrates and lipids indicative of impaired metabolism. Biochemical and genetic data suggest that Lnk functions in both the IIS and Ras/Mitogen activated protein Kinase (MapK) signaling pathways. Microarray studies support this model, showing transcriptional feedback onto genes in both pathways as well as indicating global changes in both lipid and carbohydrate metabolism. Finally, our data also suggest that Lnk itself may be a direct target of the IIS responsive transcription factor, dFoxo, and that dFoxo may repress Lnk expression. We therefore describe novel functions for a member of the SH2B protein family and provide the first evidence for potential mechanisms of SH2B regulation. Our findings suggest that IIS signaling in Drosophila may require the activity of a second intracellular adaptor, thereby yielding fundamental new insights into the functioning and role of the IIS pathway in ageing and metabolism.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Longevidad/fisiología , Estrés Oxidativo , Animales , Tamaño Corporal , Drosophila melanogaster/genética , Femenino , Fertilidad , Regulación de la Expresión Génica , Insulina/metabolismo , Sistema de Señalización de MAP Quinasas/genética , Masculino , Mutación/genética , Estrés Oxidativo/genética , Regiones Promotoras Genéticas/genética , Unión Proteica , Caracteres Sexuales , Inanición , Transcripción Genética , Proteínas ras/metabolismo
2.
PLoS Genet ; 5(8): e1000596, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19680438

RESUMEN

Insulin/insulin-like growth factor signaling (IIS) plays a pivotal role in the regulation of growth at the cellular and the organismal level during animal development. Flies with impaired IIS are developmentally delayed and small due to fewer and smaller cells. In the search for new growth-promoting genes, we identified mutations in the gene encoding Lnk, the single fly member of the SH2B family of adaptor molecules. Flies lacking lnk function are viable but severely reduced in size. Furthermore, lnk mutants display phenotypes reminiscent of reduced IIS, such as developmental delay, female sterility, and accumulation of lipids. Genetic epistasis analysis places lnk downstream of the insulin receptor (InR) and upstream of phosphoinositide 3-kinase (PI3K) in the IIS cascade, at the same level as chico (encoding the single fly insulin receptor substrate [IRS] homolog). Both chico and lnk mutant larvae display a similar reduction in IIS activity as judged by the localization of a PIP(3) reporter and the phosphorylation of protein kinase B (PKB). Furthermore, chico; lnk double mutants are synthetically lethal, suggesting that Chico and Lnk fulfill independent but partially redundant functions in the activation of PI3K upon InR stimulation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Insulina/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Familia de Multigenes , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Secuencia de Aminoácidos , Animales , Tamaño Corporal , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/química , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Insulina/genética , Proteínas Sustrato del Receptor de Insulina , Péptidos y Proteínas de Señalización Intracelular/genética , Datos de Secuencia Molecular , Mutación , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Alineación de Secuencia , Dominios Homologos src
3.
PLoS One ; 3(1): e1447, 2008 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-18197257

RESUMEN

BACKGROUND: Activation of cell surface receptors transduces extracellular signals into cellular responses such as proliferation, differentiation and survival. However, as important as the activation of these receptors is their appropriate spatial and temporal down-regulation for normal development and tissue homeostasis. The Cbl family of E3-ubiquitin ligases plays a major role for the ligand-dependent inactivation of receptor tyrosine kinases (RTKs), most notably the Epidermal Growth Factor Receptor (EGFR) through ubiquitin-mediated endocytosis and lysosomal degradation. METHODOLOGY/PRINCIPAL FINDINGS: Here, we report the mutant phenotypes of Drosophila cbl (D-cbl) during eye development. D-cbl mutants display overgrowth, inhibition of apoptosis, differentiation defects and increased ommatidial spacing. Using genetic interaction and molecular markers, we show that most of these phenotypes are caused by increased activity of the Drosophila EGFR. Our genetic data also indicate a critical role of ubiquitination for D-cbl function, consistent with biochemical models. CONCLUSIONS/SIGNIFICANCE: These data may provide a mechanistic model for the understanding of the oncogenic activity of mammalian cbl genes.


Asunto(s)
Apoptosis/fisiología , Diferenciación Celular/fisiología , Proteínas de Drosophila/fisiología , Ojo/embriología , Proteínas Proto-Oncogénicas c-cbl/fisiología , Animales , Drosophila , Proteínas de Drosophila/genética , Receptores ErbB/metabolismo , Inmunohistoquímica , Mutación , Proteínas Proto-Oncogénicas c-cbl/genética
4.
Development ; 132(24): 5343-52, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16280349

RESUMEN

Incorrectly specified or mis-specified cells often undergo cell death or are transformed to adopt a different cell fate during development. The underlying cause for this distinction is largely unknown. In many developmental mutants in Drosophila, large numbers of mis-specified cells die synchronously, providing a convenient model for analysis of this phenomenon. The maternal mutant bicoid is particularly useful model with which to address this issue because its mutant phenotype is a combination of both transformation of tissue (acron to telson) and cell death in the presumptive head and thorax regions. We show that a subset of these mis-specified cells die through an active gene-directed process involving transcriptional upregulation of the cell death inducer hid. Upregulation of hid also occurs in oskar mutants and other segmentation mutants. In hid bicoid double mutants, mis-specified cells in the presumptive head and thorax survive and continue to develop, but they are transformed to adopt a different cell fate. We provide evidence that the terminal torso signaling pathway protects the mis-specified telson tissue in bicoid mutants from hid-induced cell death, whereas mis-specified cells in the head and thorax die, presumably because equivalent survival signals are lacking. These data support a model whereby mis-specification can be tolerated if a survival pathway is provided, resulting in cellular transformation.


Asunto(s)
Proteínas de Drosophila/fisiología , Drosophila/fisiología , Proteínas de Homeodominio/fisiología , Neuropéptidos/fisiología , Proteínas Tirosina Quinasas Receptoras/fisiología , Transactivadores/fisiología , Animales , Tipificación del Cuerpo , Caspasas/metabolismo , Muerte Celular/fisiología , Diferenciación Celular/fisiología , Supervivencia Celular , Drosophila/embriología , Drosophila/genética , Proteínas de Drosophila/biosíntesis , Proteínas de Drosophila/genética , Embrión no Mamífero/citología , Embrión no Mamífero/fisiología , Activación Enzimática , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Mutación , Neuropéptidos/biosíntesis , Neuropéptidos/genética , Proteínas Tirosina Quinasas Receptoras/genética , Transducción de Señal , Transactivadores/genética
5.
Nature ; 421(6920): 279-82, 2003 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-12508118

RESUMEN

Germ cells preserve an individual's genetic information and transmit it to the next generation. Early in development germ cells are set aside and undergo a specialized developmental programme, a hallmark of which is the migration from their site of origin to the future gonad. In Drosophila, several factors have been identified that control germ-cell migration to their target tissues; however, the germ-cell chemoattractant or its receptor have remained unknown. Here we apply genetics and in vivo imaging to show that odysseus, a zebrafish homologue of the G-protein-coupled chemokine receptor Cxcr4, is required specifically in germ cells for their chemotaxis. odysseus mutant germ cells are able to activate the migratory programme, but fail to undergo directed migration towards their target tissue, resulting in randomly dispersed germ cells. SDF-1, the presumptive cognate ligand for Cxcr4, shows a similar loss-of-function phenotype and can recruit germ cells to ectopic sites in the embryo, thus identifying a vertebrate ligand-receptor pair guiding migratory germ cells at all stages of migration towards their target.


Asunto(s)
Quimiotaxis , Células Germinativas/citología , Células Germinativas/metabolismo , Receptores CXCR4/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo , Animales , Quimiocina CXCL12 , Quimiocinas CXC/genética , Quimiocinas CXC/metabolismo , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Mutación/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores CXCR4/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA