RESUMEN
The Zika epidemic in the Americas has challenged surveillance and control. As the epidemic appears to be waning, it is unclear whether transmission is still ongoing, which is exacerbated by discrepancies in reporting. To uncover locations with lingering outbreaks, we investigated travel-associated Zika cases to identify transmission not captured by reporting. We uncovered an unreported outbreak in Cuba during 2017, a year after peak transmission in neighboring islands. By sequencing Zika virus, we show that the establishment of the virus was delayed by a year and that the ensuing outbreak was sparked by long-lived lineages of Zika virus from other Caribbean islands. Our data suggest that, although mosquito control in Cuba may initially have been effective at mitigating Zika virus transmission, such measures need to be maintained to be effective. Our study highlights how Zika virus may still be "silently" spreading and provides a framework for understanding outbreak dynamics. VIDEO ABSTRACT.
Asunto(s)
Epidemias , Genómica/métodos , Infección por el Virus Zika/epidemiología , Aedes/virología , Animales , Cuba/epidemiología , Humanos , Incidencia , Control de Mosquitos , Filogenia , ARN Viral/química , ARN Viral/metabolismo , Análisis de Secuencia de ARN , Viaje , Indias Occidentales/epidemiología , Virus Zika/clasificación , Virus Zika/genética , Virus Zika/aislamiento & purificación , Infección por el Virus Zika/transmisión , Infección por el Virus Zika/virologíaRESUMEN
Bacteriophage T4 is a classic model system for studying the mechanisms of DNA processing. A key protein in T4 DNA processing is the gp32 single-stranded DNA-binding protein. gp32 has two key functions: it binds cooperatively to single-stranded DNA (ssDNA) to protect it from nucleases and remove regions of secondary structure, and it recruits proteins to initiate DNA processes including replication and repair. Dda is a T4 helicase recruited by gp32, and we purified and crystallized a gp32-Dda-ssDNA complex. The low-resolution structure revealed how the C-terminus of gp32 engages Dda. Analytical ultracentrifugation analyses were consistent with the crystal structure. An optimal Dda binding peptide from the gp32 C-terminus was identified using surface plasmon resonance. The crystal structure of the Dda-peptide complex was consistent with the corresponding interaction in the gp32-Dda-ssDNA structure. A Dda-dependent DNA unwinding assay supported the structural conclusions and confirmed that the bound gp32 sequesters the ssDNA generated by Dda. The structure of the gp32-Dda-ssDNA complex, together with the known structure of the gp32 body, reveals the entire ssDNA binding surface of gp32. gp32-Dda-ssDNA complexes in the crystal are connected by the N-terminal region of one gp32 binding to an adjacent gp32, and this provides key insights into this interaction.
RESUMEN
MOTIVATION: In metagenomics, the study of environmentally associated microbial communities from their sampled DNA, one of the most fundamental computational tasks is that of determining which genomes from a reference database are present or absent in a given sample metagenome. Existing tools generally return point estimates, with no associated confidence or uncertainty associated with it. This has led to practitioners experiencing difficulty when interpreting the results from these tools, particularly for low-abundance organisms as these often reside in the "noisy tail" of incorrect predictions. Furthermore, few tools account for the fact that reference databases are often incomplete and rarely, if ever, contain exact replicas of genomes present in an environmentally derived metagenome. RESULTS: We present solutions for these issues by introducing the algorithm YACHT: Yes/No Answers to Community membership via Hypothesis Testing. This approach introduces a statistical framework that accounts for sequence divergence between the reference and sample genomes, in terms of ANI, as well as incomplete sequencing depth, thus providing a hypothesis test for determining the presence or absence of a reference genome in a sample. After introducing our approach, we quantify its statistical power and how this changes with varying parameters. Subsequently, we perform extensive experiments using both simulated and real data to confirm the accuracy and scalability of this approach. AVAILABILITY AND IMPLEMENTATION: The source code implementing this approach is available via Conda and at https://github.com/KoslickiLab/YACHT. We also provide the code for reproducing experiments at https://github.com/KoslickiLab/YACHT-reproducibles.
Asunto(s)
Metagenoma , Microbiota , Microbiota/genética , Algoritmos , Programas Informáticos , Análisis de Secuencia de ADN/métodos , Metagenómica/métodosRESUMEN
BACKGROUND: CALCRL (calcitonin receptor-like) protein is an important mediator of the endothelial fluid shear stress response, which is associated with the genetic risk of coronary artery disease. In this study, we functionally characterized the noncoding regulatory elements carrying coronary artery disease that risks single-nucleotide polymorphisms and studied their role in the regulation of CALCRL expression in endothelial cells. METHODS: To functionally characterize the coronary artery disease single-nucleotide polymorphisms harbored around the gene CALCRL, we applied an integrative approach encompassing statistical, transcriptional (RNA-seq), and epigenetic (ATAC-seq [transposase-accessible chromatin with sequencing], chromatin immunoprecipitation assay-quantitative polymerase chain reaction, and electromobility shift assay) analyses, alongside luciferase reporter assays, and targeted gene and enhancer perturbations (siRNA and clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated 9) in human aortic endothelial cells. RESULTS: We demonstrate that the regulatory element harboring rs880890 exhibits high enhancer activity and shows significant allelic bias. The A allele was favored over the G allele, particularly under shear stress conditions, mediated through alterations in the HSF1 (heat shock factor 1) motif and binding. CRISPR deletion of rs880890 enhancer resulted in downregulation of CALCRL expression, whereas HSF1 knockdown resulted in a significant decrease in rs880890-enhancer activity and CALCRL expression. A significant decrease in HSF1 binding to the enhancer region in endothelial cells was observed under disturbed flow compared with unidirectional flow. CALCRL knockdown and variant perturbation experiments indicated the role of CALCRL in mediating eNOS (endothelial nitric oxide synthase), APLN (apelin), angiopoietin, prostaglandins, and EDN1 (endothelin-1) signaling pathways leading to a decrease in cell proliferation, tube formation, and NO production. CONCLUSIONS: Overall, our results demonstrate the existence of an endothelial-specific HSF (heat shock factor)-regulated transcriptional enhancer that mediates CALCRL expression. A better understanding of CALCRL gene regulation and the role of single-nucleotide polymorphisms in the modulation of CALCRL expression could provide important steps toward understanding the genetic regulation of shear stress signaling responses.
Asunto(s)
Proteína Similar al Receptor de Calcitonina , Enfermedad de la Arteria Coronaria , Células Endoteliales , Elementos de Facilitación Genéticos , Polimorfismo de Nucleótido Simple , Estrés Mecánico , Humanos , Células Endoteliales/metabolismo , Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/metabolismo , Enfermedad de la Arteria Coronaria/patología , Proteína Similar al Receptor de Calcitonina/genética , Proteína Similar al Receptor de Calcitonina/metabolismo , Factores de Transcripción del Choque Térmico/genética , Factores de Transcripción del Choque Térmico/metabolismo , Mecanotransducción Celular , Células Cultivadas , Regulación de la Expresión Génica , Unión Proteica , Predisposición Genética a la Enfermedad , Sitios de UniónRESUMEN
Pantothenate kinase-associated neurodegeneration (PKAN) is characterized by a motor disorder with combinations of dystonia, parkinsonism, and spasticity, leading to premature death. PKAN is caused by mutations in the PANK2 gene that result in loss or reduction of PANK2 protein function. PANK2 is one of three kinases that initiate and regulate coenzyme A biosynthesis from vitamin B5, and the ability of BBP-671, an allosteric activator of pantothenate kinases, to enter the brain and elevate coenzyme A was investigated. The metabolic stability, protein binding, and membrane permeability of BBP-671 all suggest that it has the physical properties required to cross the blood-brain barrier. BBP-671 was detected in plasma, liver, cerebrospinal fluid, and brain following oral administration in rodents, demonstrating the ability of BBP-671 to penetrate the brain. The pharmacokinetic and pharmacodynamic properties of orally administered BBP-671 evaluated in cannulated rats showed that coenzyme A (CoA) concentrations were elevated in blood, liver, and brain. BBP-671 elevation of whole-blood acetyl-CoA served as a peripheral pharmacodynamic marker and provided a suitable method to assess target engagement. BBP-671 treatment elevated brain coenzyme A concentrations and improved movement and body weight in a PKAN mouse model. Thus, BBP-671 crosses the blood-brain barrier to correct the brain CoA deficiency in a PKAN mouse model, resulting in improved locomotion and survival and providing a preclinical foundation for the development of BBP-671 as a potential treatment of PKAN. SIGNIFICANCE STATEMENT: The blood-brain barrier represents a major hurdle for drugs targeting brain metabolism. This work describes the pharmacokinetic/pharmacodynamic properties of BBP-671, a pantothenate kinase activator. BBP-671 crosses the blood-brain barrier to correct the neuron-specific coenzyme A (CoA) deficiency and improve motor function in a mouse model of pantothenate kinase-associated neurodegeneration. The central role of CoA and acetyl-CoA in intermediary metabolism suggests that pantothenate kinase activators may be useful in modifying neurological metabolic disorders.
Asunto(s)
Neurodegeneración Asociada a Pantotenato Quinasa , Ratones , Animales , Ratas , Neurodegeneración Asociada a Pantotenato Quinasa/tratamiento farmacológico , Neurodegeneración Asociada a Pantotenato Quinasa/genética , Acetilcoenzima A/metabolismo , Acetilcoenzima A/uso terapéutico , Coenzima A/metabolismo , Modelos Animales de Enfermedad , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Encéfalo/metabolismoRESUMEN
BACKGROUND: DNA hypomethylation at the F2RL3 (F2R like thrombin or trypsin receptor 3) locus has been associated with both smoking and atherosclerotic cardiovascular disease; whether these smoking-related associations form a pathway to disease is unknown. F2RL3 encodes protease-activated receptor 4, a potent thrombin receptor expressed on platelets. Given the role of thrombin in platelet activation and the role of thrombus formation in myocardial infarction, alterations to this biological pathway could be important for ischemic cardiovascular disease. METHODS: We conducted multiple independent experiments to assess whether DNA hypomethylation at F2RL3 in response to smoking is associated with risk of myocardial infarction via changes to platelet reactivity. Using cohort data (N=3205), we explored the relationship between smoking, DNA hypomethylation at F2RL3, and myocardial infarction. We compared platelet reactivity in individuals with low versus high DNA methylation at F2RL3 (N=41). We used an in vitro model to explore the biological response of F2RL3 to cigarette smoke extract. Finally, a series of reporter constructs were used to investigate how differential methylation could impact F2RL3 gene expression. RESULTS: Observationally, DNA methylation at F2RL3 mediated an estimated 34% of the smoking effect on increased risk of myocardial infarction. An association between methylation group (low/high) and platelet reactivity was observed in response to PAR4 (protease-activated receptor 4) stimulation. In cells, cigarette smoke extract exposure was associated with a 4.9% to 9.3% reduction in DNA methylation at F2RL3 and a corresponding 1.7-(95% CI, 1.2-2.4, P=0.04) fold increase in F2RL3 mRNA. Results from reporter assays suggest the exon 2 region of F2RL3 may help control gene expression. CONCLUSIONS: Smoking-induced epigenetic DNA hypomethylation at F2RL3 appears to increase PAR4 expression with potential downstream consequences for platelet reactivity. Combined evidence here not only identifies F2RL3 DNA methylation as a possible contributory pathway from smoking to cardiovascular disease risk but from any feature potentially influencing F2RL3 regulation in a similar manner.
Asunto(s)
Plaquetas/metabolismo , Epigénesis Genética , Infarto del Miocardio/genética , Receptores de Trombina/genética , Anciano , Metilación de ADN , Femenino , Humanos , Masculino , Persona de Mediana Edad , Infarto del Miocardio/sangre , Infarto del Miocardio/epidemiología , Receptores de Trombina/metabolismo , Fumar/epidemiologíaRESUMEN
Proteoglycans are differentially expressed in different atherosclerotic plaque phenotypes, with biglycan and decorin characteristic of ruptured plaques and versican and hyaluronan more prominent in eroded plaques. Following plaque disruption, the exposure of extracellular matrix (ECM) proteins triggers platelet adhesion and thrombus formation. In this study, the impact of differential plaque composition on platelet function and thrombus formation was investigated. Platelet adhesion, activation and thrombus formation under different shear stress conditions were assessed in response to individual proteoglycans and composites representing different plaque phenotypes. The results demonstrated that all the proteoglycans tested mediated platelet adhesion but not platelet activation, and the extent of adhesion observed was significantly lower than that observed with type I and type III collagens. Thrombus formation upon the rupture and erosion ECM composites was significantly reduced (p < 0.05) compared to relevant collagen alone, indicating that proteoglycans negatively regulate platelet collagen responses. This was supported by results demonstrating that the addition of soluble biglycan or decorin to whole blood markedly reduced thrombus formation on type I collagen (p < 0.05). Interestingly, thrombus formation upon the erosion composite displayed aspirin sensitivity, whereas the rupture composite was intensive to aspirin, having implications for current antiplatelet therapy regimes. In conclusion, differential platelet responses and antiplatelet efficacy are observed on ECM composites phenotypic of plaque rupture and erosion. Proteoglycans inhibit thrombus formation and may offer a novel plaque-specific approach to limit arterial thrombosis.
Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Trombosis , Humanos , Biglicano , Decorina , Proteínas de la Matriz Extracelular , Aspirina , Colágeno Tipo IRESUMEN
The cationic lipid 1,2-dioleoyl-3-trimethylammonium propane (DOTAP) is one of the original synthetic cationic lipids used for the liposomal transfection of oligonucleotides in gene therapy. The key structural element of DOTAP is its quaternary ammonium headgroup that is responsible for interactions with both nucleic acids and target cell membranes. Because these interactions are fundamental to the design of a major class of transfection lipids, it is important to understand the structure of DOTAP and how it interacts with halide counterions. Here, we use x-ray and neutron diffraction techniques to examine the structure of DOTAP and how chloride (Cl-) and iodide (I-) counterions alter the hydration properties of the DOTAP headgroup. A problem of particular interest is the poor solubility of DOTAP/I- in water solutions. Our results show that the poor solubility results from very tight binding of the I- counterion to the headgroup and the consequent expulsion of water. The structural principles we report here are important for assessing the suitability of DOTAP and its quaternary ammonium derivatives for transfection.
Asunto(s)
Liposomas , Propano , Liposomas/química , Compuestos de Amonio Cuaternario/química , Ácidos Grasos Monoinsaturados/química , Agua , Cationes/químicaRESUMEN
Fatty acid kinase (Fak) is a two-component enzyme that generates acyl-phosphate for phospholipid synthesis. Fak consists of a kinase domain protein (FakA) that phosphorylates a fatty acid enveloped by a fatty acid binding protein (FakB). The structural basis for FakB function has been established, but little is known about FakA. Here, we used limited proteolysis to define three separate FakA domains: the amino terminal FakA_N, the central FakA_L, and the carboxy terminal FakA_C. The isolated domains lack kinase activity, but activity is restored when FakA_N and FakA_L are present individually or connected as FakA_NL. The X-ray structure of the monomeric FakA_N captures the product complex with ADP and two Mg2+ ions bound at the nucleotide site. The FakA_L domain encodes the dimerization interface along with conserved catalytic residues Cys240, His282, and His284. AlphaFold analysis of FakA_L predicts the catalytic residues are spatially clustered and pointing away from the dimerization surface. Furthermore, the X-ray structure of FakA_C shows that it consists of two subdomains that are structurally related to FakB. Analytical ultracentrifugation demonstrates that FakA_C binds FakB, and site-directed mutagenesis confirms that a positively charged wedge on FakB meshes with a negatively charged groove on FakA_C. Finally, small angle X-ray scattering analysis is consistent with freely rotating FakA_N and FakA_C domains tethered by flexible linkers to FakA_L. These data reveal specific roles for the three independently folded FakA protein domains in substrate binding and catalysis.
Asunto(s)
Staphylococcus aureus , Proteínas Bacterianas/metabolismo , Sitios de Unión , Catálisis , Cristalografía por Rayos X , Ácidos Grasos/metabolismo , Humanos , Infecciones Estafilocócicas , Staphylococcus aureus/enzimología , Staphylococcus aureus/metabolismoRESUMEN
Fatty acid (FA) transfer proteins extract FA from membranes and sequester them to facilitate their movement through the cytosol. Detailed structural information is available for these soluble protein-FA complexes, but the structure of the protein conformation responsible for FA exchange at the membrane is unknown. Staphylococcus aureus FakB1 is a prototypical bacterial FA transfer protein that binds palmitate within a narrow, buried tunnel. Here, we define the conformational change from a "closed" FakB1 state to an "open" state that associates with the membrane and provides a path for entry and egress of the FA. Using NMR spectroscopy, we identified a conformationally flexible dynamic region in FakB1, and X-ray crystallography of FakB1 mutants captured the conformation of the open state. In addition, molecular dynamics simulations show that the new amphipathic α-helix formed in the open state inserts below the phosphate plane of the bilayer to create a diffusion channel for the hydrophobic FA tail to access the hydrocarbon core and place the carboxyl group at the phosphate layer. The membrane binding and catalytic properties of site-directed mutants were consistent with the proposed membrane docked structure predicted by our molecular dynamics simulations. Finally, the structure of the bilayer-associated conformation of FakB1 has local similarities with mammalian FA binding proteins and provides a conceptual framework for how these proteins interact with the membrane to create a diffusion channel from the FA location in the bilayer to the protein interior.
Asunto(s)
Proteínas Bacterianas , Proteínas de Unión a Ácidos Grasos , Ácidos Grasos , Animales , Proteínas Bacterianas/metabolismo , Proteínas de Unión a Ácidos Grasos/metabolismo , Ácidos Grasos/metabolismo , Ligandos , Mamíferos/metabolismo , Membranas/química , Membranas/metabolismo , Fosfatos/metabolismo , Conformación Proteica , Staphylococcus aureus/química , Staphylococcus aureus/metabolismoRESUMEN
The YidC family of proteins are membrane insertases that catalyze the translocation of the periplasmic domain of membrane proteins via a hydrophilic groove located within the inner leaflet of the membrane. All homologs have a strictly conserved, positively charged residue in the center of this groove. In Bacillus subtilis, the positively charged residue has been proposed to be essential for interacting with negatively charged residues of the substrate, supporting a hypothesis that YidC catalyzes insertion via an early-step electrostatic attraction mechanism. Here, we provide data suggesting that the positively charged residue is important not for its charge but for increasing the hydrophilicity of the groove. We found that the positively charged residue is dispensable for Escherichia coli YidC function when an adjacent residue at position 517 was hydrophilic or aromatic, but was essential when the adjacent residue was apolar. Additionally, solvent accessibility studies support the idea that the conserved positively charged residue functions to keep the top and middle of the groove sufficiently hydrated. Moreover, we demonstrate that both the E. coli and Streptococcus mutans YidC homologs are functional when the strictly conserved arginine is replaced with a negatively charged residue, provided proper stabilization from neighboring residues. These combined results show that the positively charged residue functions to maintain a hydrophilic microenvironment in the groove necessary for the insertase activity, rather than to form electrostatic interactions with the substrates.
Asunto(s)
Proteínas de Escherichia coli , Proteínas de Transporte de Membrana , Bacillus subtilis/enzimología , Membrana Celular/metabolismo , Escherichia coli/química , Escherichia coli/enzimología , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Relación Estructura-ActividadRESUMEN
OBJECTIVE: The aim of this study was to compare patient-reported urinary, bowel, and sexual functioning of ALaCaRT Trial participants randomized to open or laparoscopic surgery for rectal cancer. SUMMARY BACKGROUND DATA: The primary endpoint, noninferiority of laparoscopic surgical resection adequacy, was not established. METHODS: Participants completed QLQ-CR29 at baseline, 3, and 12 months post-surgery. Additionally, women completed Rosen's Female Sexual Functioning Index (FSFI). Men completed the International Index of Erectile Function (IIEF) and QLQ-PR25. We compared the proportions of participants in each group who experienced moderate/severe symptoms/dysfunction at each time-point and compared mean difference scores from baseline to 12 months between groups. All analyses were intention-to-treat. Sexual functioning analyses included only the participants who expressed sexual interest at baseline. RESULTS: Baseline PRO compliance of 475 randomized participants was 88%. At 12 months, a lower proportion of open surgery participants experienced moderate-severe fecal incontinence and sore skin, compared to Laparoscopic participants, and a lower proportion of men randomized to open surgery experienced moderate-severe urinary symptoms. There were no differences at 3 months for bowel or urinary symptoms. Sexual functioning among sexually interested participants was similar between groups at 3 and 12 months; however, a lower proportion of women reported moderate to severe sexual dissatisfaction at 3 months in the open as compared to the laparoscopic group, (Rebecca.mercieca@sydney.edu.au., 95% CI 0.03-0.39). DISCUSSION: Despite the slightly lower proportions of open surgery participants self-reporting moderate-severe symptoms for 3 of 16 urinary/bowel domains, and lack of differences in sexual domains, it remains difficult to recommend one surgical approach over another for rectal resection.
Asunto(s)
Laparoscopía , Proctectomía , Neoplasias del Recto , Masculino , Femenino , Humanos , Neoplasias del Recto/cirugía , Recto/cirugía , Proctectomía/efectos adversos , Medición de Resultados Informados por el PacienteRESUMEN
As of March 7, 2023, a total of 30,235 confirmed and probable monkeypox (mpox) cases were reported in the United States, predominantly among cisgender men§ who reported recent sexual contact with another man (1). Although most mpox cases during the current outbreak have been self-limited, cases of severe illness and death have been reported (2-4). During May 10, 2022-March 7, 2023, 38 deaths among persons with probable or confirmed mpox¶ (1.3 per 1,000 mpox cases) were reported to CDC and classified as mpox-associated (i.e., mpox was listed as a contributing or causal factor). Among the 38 mpox-associated deaths, 94.7% occurred in cisgender men (median age = 34 years); 86.8% occurred in non-Hispanic Black or African American (Black) persons. The median interval from symptom onset to death was 68 days (IQR = 50-86 days). Among 33 decedents with available information, 93.9% were immunocompromised because of HIV. Public health actions to prevent mpox deaths include integrated testing, diagnosis, and early treatment for mpox and HIV, and ensuring equitable access to both mpox and HIV prevention and treatment, such as antiretroviral therapy (ART) (5).
Asunto(s)
Mpox , Adulto , Humanos , Masculino , Negro o Afroamericano , Brotes de Enfermedades , Mpox/mortalidad , Salud Pública , Estados Unidos/epidemiologíaRESUMEN
Propionic acidemia (PA, OMIM 606054) is a devastating inborn error of metabolism arising from mutations that reduce the activity of the mitochondrial enzyme propionyl-CoA carboxylase (PCC). The defects in PCC reduce the concentrations of nonesterified coenzyme A (CoASH), thus compromising mitochondrial function and disrupting intermediary metabolism. Here, we use a hypomorphic PA mouse model to test the effectiveness of BBP-671 in correcting the metabolic imbalances in PA. BBP-671 is a high-affinity allosteric pantothenate kinase activator that counteracts feedback inhibition of the enzyme to increase the intracellular concentration of CoA. Liver CoASH and acetyl-CoA are depressed in PA mice and BBP-671 treatment normalizes the cellular concentrations of these two key cofactors. Hepatic propionyl-CoA is also reduced by BBP-671 leading to an improved intracellular C3:C2-CoA ratio. Elevated plasma C3:C2-carnitine ratio and methylcitrate, hallmark biomarkers of PA, are significantly reduced by BBP-671. The large elevations of malate and α-ketoglutarate in the urine of PA mice are biomarkers for compromised tricarboxylic acid cycle activity and BBP-671 therapy reduces the amounts of both metabolites. Furthermore, the low survival of PA mice is restored to normal by BBP-671. These data show that BBP-671 relieves CoA sequestration, improves mitochondrial function, reduces plasma PA biomarkers, and extends the lifespan of PA mice, providing the preclinical foundation for the therapeutic potential of BBP-671.
Asunto(s)
Acidemia Propiónica , Ratones , Animales , Acidemia Propiónica/genética , Metilmalonil-CoA Descarboxilasa/genética , Metilmalonil-CoA Descarboxilasa/metabolismo , Modelos Animales de Enfermedad , Mitocondrias/metabolismo , CarnitinaRESUMEN
Bruton tyrosine kinase (BTK) is expressed in B cells and innate immune cells, acting as an essential signaling element in multiple immune cell pathways. Selective BTK inhibition has the potential to target multiple immune-mediated disease pathways. Rilzabrutinib is an oral, reversible, covalent BTK inhibitor designed for immune-mediated diseases. We examined the pharmacodynamic profile of rilzabrutinib and its preclinical mechanisms of action. In addition to potent and selective BTK enzyme and cellular activity, rilzabrutinib inhibited activation and inflammatory activities of B cells and innate cells such as macrophages, basophils, mast cells, and neutrophils, without cell death (in human and rodent assay systems). Rilzabrutinib demonstrated dose-dependent improvement of clinical scores and joint pathology in a rat model of collagen-induced arthritis and demonstrated reductions in autoantibody-mediated FcγR signaling in vitro and in vivo, with blockade of rat Arthus reaction, kidney protection in mouse Ab-induced nephritis, and reduction in platelet loss in mouse immune thrombocytopenia. Additionally, rilzabrutinib inhibited IgE-mediated, FcεR-dependent immune mechanisms in human basophils and mast cell-dependent mouse models. In canines with naturally occurring pemphigus, rilzabrutinib treatment resulted in rapid clinical improvement demonstrated by anti-inflammatory effects visible within 2 wk and all animals proceeding to complete or substantial disease control. Rilzabrutinib is characterized by reversible covalent BTK binding, long BTK residence time with low systemic exposure, and multiple mechanistic and biological effects on immune cells. Rilzabrutinib's unique characteristics and promising efficacy and safety profile support clinical development of rilzabrutinib for a broad array of immune-mediated diseases.
Asunto(s)
Agammaglobulinemia Tirosina Quinasa/antagonistas & inhibidores , Antiinflamatorios/uso terapéutico , Basófilos/inmunología , Plaquetas/inmunología , Riñón/patología , Mastocitos/inmunología , Nefritis/tratamiento farmacológico , Pénfigo/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Púrpura Trombocitopénica Idiopática/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Perros , Evaluación Preclínica de Medicamentos , Humanos , Inmunoglobulina E/metabolismo , Riñón/efectos de los fármacos , Ratones , Ratones de la Cepa 129RESUMEN
Zika virus (ZIKV) is causing an unprecedented epidemic linked to severe congenital abnormalities. In July 2016, mosquito-borne ZIKV transmission was reported in the continental United States; since then, hundreds of locally acquired infections have been reported in Florida. To gain insights into the timing, source, and likely route(s) of ZIKV introduction, we tracked the virus from its first detection in Florida by sequencing ZIKV genomes from infected patients and Aedes aegypti mosquitoes. We show that at least 4 introductions, but potentially as many as 40, contributed to the outbreak in Florida and that local transmission is likely to have started in the spring of 2016-several months before its initial detection. By analysing surveillance and genetic data, we show that ZIKV moved among transmission zones in Miami. Our analyses show that most introductions were linked to the Caribbean, a finding corroborated by the high incidence rates and traffic volumes from the region into the Miami area. Our study provides an understanding of how ZIKV initiates transmission in new regions.
Asunto(s)
Infección por el Virus Zika/epidemiología , Infección por el Virus Zika/virología , Virus Zika/genética , Aedes/virología , Animales , Región del Caribe/epidemiología , Brotes de Enfermedades/estadística & datos numéricos , Femenino , Florida/epidemiología , Genoma Viral/genética , Humanos , Incidencia , Epidemiología Molecular , Mosquitos Vectores/virología , Virus Zika/aislamiento & purificación , Infección por el Virus Zika/transmisiónRESUMEN
The endonuclease activity within the influenza virus cap-snatching process is a proven therapeutic target. The anti-influenza drug baloxavir is highly effective, but is associated with resistance mutations that threaten its clinical efficacy. The endonuclease resides within the N-terminal domain of the PA subunit (PAN) of the influenza RNA dependent RNA polymerase, and we report here complexes of PAN with RNA and DNA oligonucleotides to understand its specificity and the structural basis of baloxavir resistance mutations. The RNA and DNA oligonucleotides bind within the substrate binding groove of PAN in a similar fashion, explaining the ability of the enzyme to cleave both substrates. The individual nucleotides occupy adjacent conserved pockets that flank the two-metal active site. However, the 2' OH of the RNA ribose moieties engage in additional interactions that appear to optimize the binding and cleavage efficiency for the natural substrate. The major baloxavir resistance mutation at position 38 is at the core of the substrate binding site, but structural studies and modeling suggest that it maintains the necessary virus fitness via compensating interactions with RNA. These studies will facilitate the development of new influenza therapeutics that spatially match the substrate and are less likely to elicit resistance mutations.
Asunto(s)
Endorribonucleasas/química , Subtipo H1N1 del Virus de la Influenza A/enzimología , Proteínas Virales/química , Antivirales/química , ADN/química , Dibenzotiepinas/química , Endorribonucleasas/metabolismo , Modelos Moleculares , Morfolinas/química , Piridonas/química , ARN/química , Especificidad por Sustrato , Triazinas/química , Proteínas Virales/metabolismoRESUMEN
BACKGROUND: Canine non-neoplastic aural polypoid masses (APMs) are uncommon, with few published studies. OBJECTIVES: The aim of this retrospective study was to characterise the clinical presentation, diagnostic imaging and histopathological results for APMs submitted as aural inflammatory polyps (AIPs). ANIMALS: Twenty dogs with APMs evaluated at a veterinary teaching hospital. MATERIALS AND METHODS: Cases were selected by searching computerised medical records from 2000 to 2020, using keywords 'canine', 'aural/otic polyp' and 'aural/otic inflammatory mass'. Histological samples and medical records were reviewed. RESULTS: In 14 of 20 dogs, external ear canal masses were characterised by keratinised squamous epithelium with or without adnexa. Tympanic bulla origin was confirmed in four of 20 dogs by the presence of cuboidal to ciliated columnar epithelium, with or without squamous epithelium. The site of origin could not be determined in two dogs. Diagnostic imaging (MRI or CT) confirmed APM presence in 14 of 20 dogs. Otitis media was diagnosed in four of four tympanic bulla APMs and seven of 13 ear canal APMs. In 18 of 20 dogs, debulking, traction avulsion, and total ear canal ablation and bulla osteotomy led to APM resolution in two of eight, four of six and four of four dogs, respectively. CONCLUSIONS AND CLINICAL RELEVANCE: Type of epithelium was a key feature in determining the APM origin, and interpretation in conjunction with video otoscopy and diagnostic imaging was crucial. Canine APMs more commonly arose from the ear canal. Tympanic bulla APMs and APMs of undetermined origin were comparable to feline AIPs. Regardless of APM origin site, debulking had the greatest likelihood of recurrence.
Asunto(s)
Carcinoma de Células Escamosas , Enfermedades de los Gatos , Enfermedades de los Perros , Enfermedades del Oído , Neoplasias del Oído , Animales , Gatos , Perros , Estudios Retrospectivos , Vesícula/veterinaria , Hospitales Veterinarios , Hospitales de Enseñanza , Inflamación/veterinaria , Enfermedades del Oído/veterinaria , Neoplasias del Oído/veterinaria , Carcinoma de Células Escamosas/veterinaria , Enfermedades de los Perros/diagnóstico por imagen , Enfermedades de los Perros/cirugía , Enfermedades de los Gatos/diagnósticoRESUMEN
The vascular extracellular matrix (ECM) produced by endothelial and smooth muscle cells is composed of collagens and glycoproteins and plays an integral role in regulating the structure and function of the vascular wall. Alteration in the expression of these proteins is associated with endothelial dysfunction and has been implicated in the development and progression of atherosclerosis. The ECM composition of atherosclerotic plaques varies depending on plaque phenotype and vulnerability, with distinct differences observed between ruptured and erodes plaques. Moreover, the thrombi on the exposed ECM are diverse in structure and composition, suggesting that the best antithrombotic approach may differ depending on plaque phenotype. This review provides a comprehensive overview of the role of proteoglycans in atherogenesis and thrombosis. It discusses the differential expression of the proteoglycans in different plaque phenotypes and the potential impact on platelet function and thrombosis. Finally, the review highlights the importance of this concept in developing a targeted approach to antithrombotic treatments to improve clinical outcomes in cardiovascular disease.
Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Trombosis , Humanos , Proteoglicanos/metabolismo , Fibrinolíticos/uso terapéutico , Placa Aterosclerótica/metabolismoRESUMEN
Ambient PM2.5 (particles less than 2.5 µm in diameter) is monitored in many countries including Australia. Occasionally PM2.5 instruments may report negative measurements, although in realty the ambient air can never contain negative amounts of particles. Some negative readings are caused by instrument faults or procedural errors, thus can be simply invalidated from air quality reporting. There are occasions, however, when negative readings occur due to other factors including technological or procedural limitations. Treatment of such negative data requires consideration of factors such as measurement uncertainty, instrument noise and risk for significant bias in air quality reporting. There is very limited documentation on handling negative PM2.5 data in the literature. This paper demonstrates how a threshold is determined for controlling negative hourly PM2.5 readings in the New South Wales (NSW) air quality data system. The investigation involved a review of thresholds used in different data systems and an assessment of instrument measurement uncertainties, zero air test data and impacts on key reporting statistics when applying different thresholds to historical datasets. The results show that a threshold of -10.0 µg/m3 appears optimal for controlling negative PM2.5 data in public reporting. This choice is consistent with the measurement uncertainty estimates and the zero air test data statistics calculated for the NSW Air Quality Monitoring Network, and is expected not to have significant impacts on key compliance reporting statistics such as data availability and annual average pollution levels. The analysis can be useful for air quality monitoring in other Australian jurisdictions or wider context.