Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 161(7): 1516-26, 2015 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-26091036

RESUMEN

The 2013-2015 Ebola virus disease (EVD) epidemic is caused by the Makona variant of Ebola virus (EBOV). Early in the epidemic, genome sequencing provided insights into virus evolution and transmission and offered important information for outbreak response. Here, we analyze sequences from 232 patients sampled over 7 months in Sierra Leone, along with 86 previously released genomes from earlier in the epidemic. We confirm sustained human-to-human transmission within Sierra Leone and find no evidence for import or export of EBOV across national borders after its initial introduction. Using high-depth replicate sequencing, we observe both host-to-host transmission and recurrent emergence of intrahost genetic variants. We trace the increasing impact of purifying selection in suppressing the accumulation of nonsynonymous mutations over time. Finally, we note changes in the mucin-like domain of EBOV glycoprotein that merit further investigation. These findings clarify the movement of EBOV within the region and describe viral evolution during prolonged human-to-human transmission.


Asunto(s)
Ebolavirus/genética , Ebolavirus/aislamiento & purificación , Genoma Viral , Fiebre Hemorrágica Ebola/epidemiología , Fiebre Hemorrágica Ebola/virología , Mutación , Evolución Biológica , Brotes de Enfermedades , Ebolavirus/clasificación , Fiebre Hemorrágica Ebola/transmisión , Humanos , Sierra Leona/epidemiología , Manejo de Especímenes
2.
N Engl J Med ; 386(24): 2283-2294, 2022 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-35704480

RESUMEN

BACKGROUND: In June 2019, the Bolivian Ministry of Health reported a cluster of cases of hemorrhagic fever that started in the municipality of Caranavi and expanded to La Paz. The cause of these cases was unknown. METHODS: We obtained samples for next-generation sequencing and virus isolation. Human and rodent specimens were tested by means of virus-specific real-time quantitative reverse-transcriptase-polymerase-chain-reaction assays, next-generation sequencing, and virus isolation. RESULTS: Nine cases of hemorrhagic fever were identified; four of the patients with this illness died. The etiologic agent was identified as Mammarenavirus Chapare mammarenavirus, or Chapare virus (CHAPV), which causes Chapare hemorrhagic fever (CHHF). Probable nosocomial transmission among health care workers was identified. Some patients with CHHF had neurologic manifestations, and those who survived had a prolonged recovery period. CHAPV RNA was detected in a variety of human body fluids (including blood; urine; nasopharyngeal, oropharyngeal, and bronchoalveolar-lavage fluid; conjunctiva; and semen) and in specimens obtained from captured small-eared pygmy rice rats (Oligoryzomys microtis). In survivors of CHHF, viral RNA was detected up to 170 days after symptom onset; CHAPV was isolated from a semen sample obtained 86 days after symptom onset. CONCLUSIONS: M. Chapare mammarenavirus was identified as the etiologic agent of CHHF. Both spillover from a zoonotic reservoir and possible person-to-person transmission were identified. This virus was detected in a rodent species, O. microtis. (Funded by the Bolivian Ministry of Health and others.).


Asunto(s)
Arenavirus del Nuevo Mundo , Fiebre Hemorrágica Americana , ARN Viral , Roedores , Animales , Arenavirus del Nuevo Mundo/genética , Arenavirus del Nuevo Mundo/aislamiento & purificación , Bolivia/epidemiología , Infección Hospitalaria/transmisión , Infección Hospitalaria/virología , Transmisión de Enfermedad Infecciosa , Fiebre Hemorrágica Americana/complicaciones , Fiebre Hemorrágica Americana/genética , Fiebre Hemorrágica Americana/transmisión , Fiebre Hemorrágica Americana/virología , Fiebres Hemorrágicas Virales/genética , Fiebres Hemorrágicas Virales/transmisión , Fiebres Hemorrágicas Virales/virología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Reacción en Cadena de la Polimerasa , ARN Viral/genética , ARN Viral/aislamiento & purificación , Ratas/virología , Roedores/virología , Zoonosis Virales/transmisión , Zoonosis Virales/virología
3.
Emerg Infect Dis ; 30(4): 654-664, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38526059

RESUMEN

Sporadic cases and outbreaks of Crimean-Congo hemorrhagic fever (CCHF) have been documented across Pakistan since 1976; however, data regarding the diversity of CCHF virus (CCHFV) in Pakistan is sparse. We whole-genome sequenced 36 CCHFV samples collected from persons infected in Pakistan during 2017-2020. Most CCHF cases were from Rawalpindi (n = 10), followed by Peshawar (n = 7) and Islamabad (n = 4). Phylogenetic analysis revealed the Asia-1 genotype was dominant, but 4 reassorted strains were identified. Strains with reassorted medium gene segments clustered with Asia-2 (n = 2) and Africa-2 (n = 1) genotypes; small segment reassortments clustered with the Asia-2 genotype (n = 2). Reassorted viruses showed close identity with isolates from India, Iran, and Tajikistan, suggesting potential crossborder movement of CCHFV. Improved and continuous human, tick, and animal surveillance is needed to define the diversity of circulating CCHFV strains in Pakistan and prevent transmission.


Asunto(s)
Virus de la Fiebre Hemorrágica de Crimea-Congo , Fiebre Hemorrágica de Crimea , Animales , Humanos , Fiebre Hemorrágica de Crimea/epidemiología , Filogenia , Pakistán/epidemiología , Análisis de Secuencia de ADN
4.
Emerg Infect Dis ; 30(4): 817-821, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38526320

RESUMEN

Orthohantaviruses cause hantavirus cardiopulmonary syndrome; most cases occur in the southwest region of the United States. We discuss a clinical case of orthohantavirus infection in a 65-year-old woman in Michigan and the phylogeographic link of partial viral fragments from the patient and rodents captured near the presumed site of infection.


Asunto(s)
Infecciones por Hantavirus , Orthohantavirus , Femenino , Humanos , Anciano , Michigan/epidemiología , Filogeografía , Síndrome
5.
J Virol ; 97(10): e0059023, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37750724

RESUMEN

IMPORTANCE: Ebola disease (EBOD) is a public health threat with a high case fatality rate. Most EBOD outbreaks have occurred in remote locations, but the 2013-2016 Western Africa outbreak demonstrated how devastating EBOD can be when it reaches an urban population. Here, the 2022 Sudan virus disease (SVD) outbreak in Mubende District, Uganda, is summarized, and the genetic relatedness of the new variant is evaluated. The Mubende variant exhibited 96% amino acid similarity with historic SUDV sequences from the 1970s and a high degree of conservation throughout the outbreak, which was important for ongoing diagnostics and highly promising for future therapy development. Genetic differences between viruses identified during the Mubende SVD outbreak were linked with epidemiological data to better interpret viral spread and contact tracing chains. This methodology should be used to better integrate discrete epidemiological and sequence data for future viral outbreaks.


Asunto(s)
Brotes de Enfermedades , Ebolavirus , Variación Genética , Fiebre Hemorrágica Ebola , Humanos , Brotes de Enfermedades/estadística & datos numéricos , Ebolavirus/química , Ebolavirus/clasificación , Ebolavirus/genética , Fiebre Hemorrágica Ebola/epidemiología , Fiebre Hemorrágica Ebola/transmisión , Fiebre Hemorrágica Ebola/virología , Uganda/epidemiología , Trazado de Contacto
6.
BMC Infect Dis ; 24(1): 520, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783244

RESUMEN

BACKGROUND: On 20 September 2022, Uganda declared its fifth Sudan virus disease (SVD) outbreak, culminating in 142 confirmed and 22 probable cases. The reproductive rate (R) of this outbreak was 1.25. We described persons who were exposed to the virus, became infected, and they led to the infection of an unusually high number of cases during the outbreak. METHODS: In this descriptive cross-sectional study, we defined a super-spreader person (SSP) as any person with real-time polymerase chain reaction (RT-PCR) confirmed SVD linked to the infection of ≥ 13 other persons (10-fold the outbreak R). We reviewed illness narratives for SSPs collected through interviews. Whole-genome sequencing was used to support epidemiologic linkages between cases. RESULTS: Two SSPs (Patient A, a 33-year-old male, and Patient B, a 26-year-old male) were identified, and linked to the infection of one probable and 50 confirmed secondary cases. Both SSPs lived in the same parish and were likely infected by a single ill healthcare worker in early October while receiving healthcare. Both sought treatment at multiple health facilities, but neither was ever isolated at an Ebola Treatment Unit (ETU). In total, 18 secondary cases (17 confirmed, one probable), including three deaths (17%), were linked to Patient A; 33 secondary cases (all confirmed), including 14 (42%) deaths, were linked to Patient B. Secondary cases linked to Patient A included family members, neighbours, and contacts at health facilities, including healthcare workers. Those linked to Patient B included healthcare workers, friends, and family members who interacted with him throughout his illness, prayed over him while he was nearing death, or exhumed his body. Intensive community engagement and awareness-building were initiated based on narratives collected about patients A and B; 49 (96%) of the secondary cases were isolated in an ETU, a median of three days after onset. Only nine tertiary cases were linked to the 51 secondary cases. Sequencing suggested plausible direct transmission from the SSPs to 37 of 39 secondary cases with sequence data. CONCLUSION: Extended time in the community while ill, social interactions, cross-district travel for treatment, and religious practices contributed to SVD super-spreading. Intensive community engagement and awareness may have reduced the number of tertiary infections. Intensive follow-up of contacts of case-patients may help reduce the impact of super-spreading events.


Asunto(s)
Brotes de Enfermedades , Humanos , Uganda/epidemiología , Masculino , Estudios Transversales , Adulto , Femenino , Fiebre Hemorrágica Ebola/epidemiología , Fiebre Hemorrágica Ebola/virología , Secuenciación Completa del Genoma , Ebolavirus/genética , Ebolavirus/aislamiento & purificación
7.
Emerg Infect Dis ; 29(8): 1663-1667, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37486231

RESUMEN

We identified 2 fatal cases of persons infected with hantavirus in Arizona, USA, 2020; 1 person was co-infected with SARS-CoV-2. Delayed identification of the cause of death led to a public health investigation that lasted ≈9 months after their deaths, which complicated the identification of a vector or exposure.


Asunto(s)
COVID-19 , Enfermedades Transmisibles , Infecciones por Hantavirus , Orthohantavirus , Humanos , Arizona/epidemiología , SARS-CoV-2 , Pandemias , Infecciones por Hantavirus/diagnóstico , Infecciones por Hantavirus/epidemiología
9.
Emerg Infect Dis ; 28(11): 2326-2329, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36198315

RESUMEN

Crimean-Congo hemorrhagic fever (CCHF) was detected in 2 refugees living in a refugee settlement in Kikuube district, Uganda. Investigations revealed a CCHF IgG seroprevalence of 71.3% (37/52) in goats within the refugee settlement. This finding highlights the need for a multisectoral approach to controlling CCHF in humans and animals in Uganda.


Asunto(s)
COVID-19 , Virus de la Fiebre Hemorrágica de Crimea-Congo , Fiebre Hemorrágica de Crimea , Refugiados , Animales , Humanos , Fiebre Hemorrágica de Crimea/epidemiología , Fiebre Hemorrágica de Crimea/veterinaria , Estudios Seroepidemiológicos , Uganda/epidemiología , Pandemias , Brotes de Enfermedades , Cabras , Inmunoglobulina G , Anticuerpos Antivirales
10.
Emerg Infect Dis ; 28(11): 2290-2293, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36150455

RESUMEN

Rift Valley fever, endemic or emerging throughout most of Africa, causes considerable risk to human and animal health. We report 7 confirmed Rift Valley fever cases, 1 fatal, in Kiruhura District, Uganda, during 2021. Our findings highlight the importance of continued viral hemorrhagic fever surveillance, despite challenges associated with the COVID-19 pandemic.


Asunto(s)
COVID-19 , Fiebre del Valle del Rift , Virus de la Fiebre del Valle del Rift , Animales , Humanos , Fiebre del Valle del Rift/epidemiología , COVID-19/epidemiología , Uganda/epidemiología , Pandemias , Brotes de Enfermedades
11.
J Infect Dis ; 221(Suppl 4): S460-S470, 2020 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-32108876

RESUMEN

The error-prone nature of RNA-dependent RNA polymerases drives the diversity of RNA virus populations. Arising within this diversity is a subset of defective viral genomes that retain replication competency, termed defective interfering (DI) genomes. These defects are caused by aberrant viral polymerase reinitiation on the same viral RNA template (deletion DI species) or the nascent RNA strand (copyback DI species). DI genomes have previously been shown to alter the dynamics of a viral population by interfering with normal virus replication and/or by stimulating the innate immune response. In this study, we investigated the ability of artificially produced DI genomes to inhibit Nipah virus (NiV), a highly pathogenic biosafety level 4 paramyxovirus. High multiplicity of infection passaging of both NiV clinical isolates and recombinant NiV in Vero cells generated an extensive DI population from which individual DIs were identified using next-generation sequencing techniques. Assays were established to generate and purify both naturally occurring and in silico-designed DIs as fully encapsidated, infectious virus-like particles termed defective interfering particles (DIPs). We demonstrate that several of these NiV DIP candidates reduced NiV titers by up to 4 logs in vitro. These data represent a proof-of-principle that a therapeutic application of DIPs to combat NiV infections may be an alternative source of antiviral control for this disease.


Asunto(s)
Genoma Viral , Virus Nipah/genética , Virus Nipah/fisiología , Animales , Línea Celular , Chlorocebus aethiops , Cricetinae , Virus Defectuosos , Mesocricetus , Replicación Viral/genética , Replicación Viral/fisiología
12.
J Infect Dis ; 222(8): 1311-1319, 2020 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-32484879

RESUMEN

BACKGROUND: During 2017, a multistate outbreak investigation occurred after the confirmation of Seoul virus (SEOV) infections in people and pet rats. A total of 147 humans and 897 rats were tested. METHODS: In addition to immunoglobulin (Ig)G and IgM serology and traditional reverse-transcription polymerase chain reaction (RT-PCR), novel quantitative RT-PCR primers/probe were developed, and whole genome sequencing was performed. RESULTS: Seventeen people had SEOV IgM, indicating recent infection; 7 reported symptoms and 3 were hospitalized. All patients recovered. Thirty-one facilities in 11 US states had SEOV infection, and among those with ≥10 rats tested, rat IgG prevalence ranged 2%-70% and SEOV RT-PCR positivity ranged 0%-70%. Human laboratory-confirmed cases were significantly associated with rat IgG positivity and RT-PCR positivity (P = .03 and P = .006, respectively). Genomic sequencing identified >99.5% homology between SEOV sequences in this outbreak, and these were >99% identical to SEOV associated with previous pet rat infections in England, the Netherlands, and France. Frequent trade of rats between home-based ratteries contributed to transmission of SEOV between facilities. CONCLUSIONS: Pet rat owners, breeders, and the healthcare and public health community should be aware and take steps to prevent SEOV transmission in pet rats and to humans. Biosecurity measures and diagnostic testing can prevent further infections.


Asunto(s)
Brotes de Enfermedades , Fiebre Hemorrágica con Síndrome Renal/transmisión , Enfermedades de los Roedores/transmisión , Virus Seoul/aislamiento & purificación , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Cruzamiento , Niño , Preescolar , Técnicas de Laboratorio Clínico/veterinaria , Brotes de Enfermedades/veterinaria , Genoma Viral/genética , Fiebre Hemorrágica con Síndrome Renal/diagnóstico , Fiebre Hemorrágica con Síndrome Renal/epidemiología , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Lactante , Persona de Mediana Edad , Mascotas/virología , Filogenia , Prevalencia , ARN Viral/genética , Ratas , Enfermedades de los Roedores/diagnóstico , Enfermedades de los Roedores/epidemiología , Virus Seoul/clasificación , Virus Seoul/genética , Virus Seoul/inmunología , Estados Unidos/epidemiología , Zoonosis Virales/diagnóstico , Zoonosis Virales/epidemiología , Zoonosis Virales/transmisión , Adulto Joven
13.
J Virol ; 93(13)2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30971476

RESUMEN

In 2011, ticks were collected from livestock following an outbreak of Crimean Congo hemorrhagic fever (CCHF) in Gujarat state, India. CCHF-negative Hyalomma anatolicum tick pools were passaged for virus isolation, and two virus isolates were obtained, designated Karyana virus (KARYV) and Kundal virus (KUNDV), respectively. Traditional reverse transcription-PCR (RT-PCR) identification of known viruses was unsuccessful, but a next-generation sequencing (NGS) approach identified KARYV and KUNDV as viruses in the Reoviridae family, Orbivirus and Coltivirus genera, respectively. Viral genomes were de novo assembled, yielding 10 complete segments of KARYV and 12 nearly complete segments of KUNDV. The VP1 gene of KARYV shared a most recent common ancestor with Wad Medani virus (WMV), strain Ar495, and based on nucleotide identity we demonstrate that it is a novel WMV strain. The VP1 segment of KUNDV shares a common ancestor with Colorado tick fever virus, Eyach virus, Tai Forest reovirus, and Tarumizu tick virus from the Coltivirus genus. Based on VP1, VP6, VP7, and VP12 nucleotide and amino acid identities, KUNDV is proposed to be a new species of Coltivirus Electron microscopy supported the classification of KARYV and KUNDV as reoviruses and identified replication morphology consistent with other orbi- and coltiviruses. The identification of novel tick-borne viruses carried by the CCHF vector is an important step in the characterization of their potential role in human and animal pathogenesis.IMPORTANCE Ticks and mosquitoes, as well Culicoides, can transmit viruses in the Reoviridae family. With the help of next-generation sequencing (NGS), previously unreported reoviruses such as equine encephalosis virus, Wad Medani virus (WMV), Kammavanpettai virus (KVPTV), and, with this report, KARYV and KUNDV have been discovered and characterized in India. The isolation of KUNDV and KARYV from Hyalomma anatolicum, which is a known vector for zoonotic pathogens, such as Crimean Congo hemorrhagic fever virus, Babesia, Theileria, and Anaplasma species, identifies arboviruses with the potential to transmit to humans. Characterization of KUNDV and KARYV isolated from Hyalomma ticks is critical for the development of specific serological and molecular assays that can be used to determine the association of these viruses with disease in humans and livestock.


Asunto(s)
Coltivirus/clasificación , Coltivirus/aislamiento & purificación , Virus de la Fiebre Hemorrágica de Crimea-Congo/aislamiento & purificación , Fiebre Hemorrágica de Crimea/complicaciones , Orbivirus/clasificación , Orbivirus/aislamiento & purificación , Filogenia , Garrapatas/virología , Animales , Chlorocebus aethiops , Coltivirus/genética , Culicidae/virología , Genoma Viral , Virus de la Fiebre Hemorrágica de Crimea-Congo/clasificación , Virus de la Fiebre Hemorrágica de Crimea-Congo/genética , Fiebre Hemorrágica de Crimea/epidemiología , Fiebre Hemorrágica de Crimea/virología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , India , Mosquitos Vectores/virología , Orbivirus/genética , Reoviridae/clasificación , Reoviridae/genética , Reoviridae/aislamiento & purificación , Reoviridae/ultraestructura , Células Vero , Ensayo de Placa Viral , Proteínas Virales/genética
14.
Emerg Infect Dis ; 25(6): 1241-1243, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30844358
16.
N Engl J Med ; 372(25): 2423-7, 2015 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-25950269

RESUMEN

Among the survivors of Ebola virus disease (EVD), complications that include uveitis can develop during convalescence, although the incidence and pathogenesis of EVD-associated uveitis are unknown. We describe a patient who recovered from EVD and was subsequently found to have severe unilateral uveitis during convalescence. Viable Zaire ebolavirus (EBOV) was detected in aqueous humor 14 weeks after the onset of EVD and 9 weeks after the clearance of viremia.


Asunto(s)
Humor Acuoso/virología , Ebolavirus/aislamiento & purificación , Fiebre Hemorrágica Ebola/complicaciones , Panuveítis/virología , Trastornos de la Visión/virología , Adulto , Convalecencia , Fondo de Ojo , Humanos , Masculino
17.
Emerg Infect Dis ; 23(6): 1001-1004, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28518032

RESUMEN

In September 2014, a single fatal case of Marburg virus was identified in a healthcare worker in Kampala, Uganda. The source of infection was not identified, and no secondary cases were identified. We describe the rapid identification, laboratory diagnosis, and case investigation of the third Marburg virus outbreak in Uganda.


Asunto(s)
Brotes de Enfermedades , Enfermedad del Virus de Marburg/epidemiología , Enfermedad del Virus de Marburg/prevención & control , Marburgvirus/genética , Filogenia , Adulto , Animales , Quirópteros/virología , Reservorios de Enfermedades/virología , Resultado Fatal , Humanos , Masculino , Marburgvirus/clasificación , Marburgvirus/aislamiento & purificación , Equipo de Protección Personal/estadística & datos numéricos , Uganda/epidemiología
18.
J Infect Dis ; 214(suppl 3): S333-S341, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27521366

RESUMEN

BACKGROUND: Several patients with Ebola virus disease (EVD) managed in the United States have received ZMapp monoclonal antibodies, TKM-Ebola small interfering RNA, brincidofovir, and/or convalescent plasma as investigational therapeutics. METHODS: To investigate whether treatment selected for Ebola virus (EBOV) mutations conferring resistance, viral sequencing was performed on RNA extracted from clinical blood specimens from patients with EVD following treatment, and putative viral targets were analyzed. RESULTS: We observed no major or minor EBOV mutations within regions targeted by therapeutics. CONCLUSIONS: This small subset of patients and clinical specimens suggests that evolution of resistance is not a direct consequence of antiviral treatment. As EVD antiviral treatments are introduced into wider use, it is essential that continuous viral full-genome surveillance is performed, to monitor for the emergence of escape mutations.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Antivirales/uso terapéutico , Ebolavirus/efectos de los fármacos , Genoma Viral/genética , Fiebre Hemorrágica Ebola/tratamiento farmacológico , ARN Interferente Pequeño/uso terapéutico , Convalecencia , Farmacorresistencia Viral , Ebolavirus/genética , Ebolavirus/inmunología , Evolución Molecular , Fiebre Hemorrágica Ebola/inmunología , Fiebre Hemorrágica Ebola/virología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Epidemiología Molecular , Mutación , Plasma , Análisis de Secuencia de ADN
19.
J Clin Microbiol ; 54(1): 49-58, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26491176

RESUMEN

Acute febrile illness (AFI) is associated with substantial morbidity and mortality worldwide, yet an etiologic agent is often not identified. Convalescent-phase serology is impractical, blood culture is slow, and many pathogens are fastidious or impossible to cultivate. We developed a real-time PCR-based TaqMan array card (TAC) that can test six to eight samples within 2.5 h from sample to results and can simultaneously detect 26 AFI-associated organisms, including 15 viruses (chikungunya, Crimean-Congo hemorrhagic fever [CCHF] virus, dengue, Ebola virus, Bundibugyo virus, Sudan virus, hantaviruses [Hantaan and Seoul], hepatitis E, Marburg, Nipah virus, o'nyong-nyong virus, Rift Valley fever virus, West Nile virus, and yellow fever virus), 8 bacteria (Bartonella spp., Brucella spp., Coxiella burnetii, Leptospira spp., Rickettsia spp., Salmonella enterica and Salmonella enterica serovar Typhi, and Yersinia pestis), and 3 protozoa (Leishmania spp., Plasmodium spp., and Trypanosoma brucei). Two extrinsic controls (phocine herpesvirus 1 and bacteriophage MS2) were included to ensure extraction and amplification efficiency. Analytical validation was performed on spiked specimens for linearity, intra-assay precision, interassay precision, limit of detection, and specificity. The performance of the card on clinical specimens was evaluated with 1,050 blood samples by comparison to the individual real-time PCR assays, and the TAC exhibited an overall 88% (278/315; 95% confidence interval [CI], 84% to 92%) sensitivity and a 99% (5,261/5,326, 98% to 99%) specificity. This TaqMan array card can be used in field settings as a rapid screen for outbreak investigation or for the surveillance of pathogens, including Ebola virus.


Asunto(s)
Enfermedades Transmisibles/diagnóstico , Enfermedades Transmisibles/epidemiología , Brotes de Enfermedades , Fiebre de Origen Desconocido/diagnóstico , Fiebre de Origen Desconocido/epidemiología , Técnicas de Diagnóstico Molecular/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Adulto , Monitoreo Epidemiológico , Humanos , Técnicas de Diagnóstico Molecular/normas , Reacción en Cadena en Tiempo Real de la Polimerasa/normas , Estándares de Referencia , Sensibilidad y Especificidad , Factores de Tiempo
20.
Viruses ; 16(3)2024 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-38543706

RESUMEN

Following an Argentine Hemorrhagic Fever (AHF) outbreak in the early 1990s, a rodent survey for Junín virus, a New World Clade B arenavirus, in endemic areas of Argentina was conducted. Since 1990, INEVH has been developing eco-epidemiological surveillance of rodents, inside and outside the Argentine Hemorrhagic Fever endemic area. Samples from rodents captured between 1993 and 2019 that were positive for Arenavirus infection underwent Sanger and unbiased, Illumina-based high-throughput sequencing, which yielded 5 complete and 88 partial Mammarenaviruses genomes. Previously, 11 genomes representing four species of New World arenavirus Clade C existed in public records. This work has generated 13 novel genomes, expanding the New World arenavirus Clade C to 24 total genomes. Additionally, two genomes exhibit sufficient genetic diversity to be considered a new species, as per ICTV guidelines (proposed name Mammarenavirus vellosense). The 13 novel genomes exhibited reassortment between the small and large segments in New World Mammarenaviruses. This work demonstrates that Clade C Mammarenavirus infections circulate broadly among Necromys species in the Argentine Hemorrhagic Fever endemic area; however, the risk for Clade C Mammarenavirus human infection is currently unknown.


Asunto(s)
Arenaviridae , Arenavirus , Arenavirus del Nuevo Mundo , Fiebre Hemorrágica Americana , Virus Junin , Animales , Humanos , Arenaviridae/genética , Roedores , Fiebre Hemorrágica Americana/epidemiología , Argentina/epidemiología , Arenavirus del Nuevo Mundo/genética , Virus Junin/genética , Arenavirus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA