Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cell ; 173(2): 443-455.e12, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29576450

RESUMEN

Hereditary xerocytosis is thought to be a rare genetic condition characterized by red blood cell (RBC) dehydration with mild hemolysis. RBC dehydration is linked to reduced Plasmodium infection in vitro; however, the role of RBC dehydration in protection against malaria in vivo is unknown. Most cases of hereditary xerocytosis are associated with gain-of-function mutations in PIEZO1, a mechanically activated ion channel. We engineered a mouse model of hereditary xerocytosis and show that Plasmodium infection fails to cause experimental cerebral malaria in these mice due to the action of Piezo1 in RBCs and in T cells. Remarkably, we identified a novel human gain-of-function PIEZO1 allele, E756del, present in a third of the African population. RBCs from individuals carrying this allele are dehydrated and display reduced Plasmodium infection in vitro. The existence of a gain-of-function PIEZO1 at such high frequencies is surprising and suggests an association with malaria resistance.


Asunto(s)
Anemia Hemolítica Congénita/patología , Población Negra/genética , Hidropesía Fetal/patología , Canales Iónicos/genética , Malaria/patología , Alelos , Anemia Hemolítica Congénita/genética , Animales , Deshidratación , Modelos Animales de Enfermedad , Eritrocitos/citología , Eritrocitos/metabolismo , Eliminación de Gen , Genotipo , Humanos , Hidropesía Fetal/genética , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/deficiencia , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/genética , Canales Iónicos/química , Malaria/genética , Malaria/parasitología , Malaria/prevención & control , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Plasmodium berghei/crecimiento & desarrollo , Plasmodium berghei/patogenicidad , Linfocitos T/citología , Linfocitos T/metabolismo
2.
Mol Cell ; 77(2): 294-309.e9, 2020 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-31784358

RESUMEN

Mutations in the methyl-DNA-binding repressor protein MeCP2 cause the devastating neurodevelopmental disorder Rett syndrome. It has been challenging to understand how MeCP2 regulates transcription because MeCP2 binds broadly across the genome and MeCP2 mutations are associated with widespread small-magnitude changes in neuronal gene expression. We demonstrate here that MeCP2 represses nascent RNA transcription of highly methylated long genes in the brain through its interaction with the NCoR co-repressor complex. By measuring the rates of transcriptional initiation and elongation directly in the brain, we find that MeCP2 has no measurable effect on transcriptional elongation, but instead represses the rate at which Pol II initiates transcription of highly methylated long genes. These findings suggest a new model of MeCP2 function in which MeCP2 binds broadly across highly methylated regions of DNA, but acts at transcription start sites to attenuate transcriptional initiation.


Asunto(s)
Metilación de ADN/genética , Proteína 2 de Unión a Metil-CpG/genética , Proteínas Represoras/genética , Transcripción Genética/genética , Animales , Encéfalo/fisiología , ADN/genética , Masculino , Ratones , Ratones Noqueados , Mutación/genética , Neuronas/fisiología , ARN/genética , Síndrome de Rett/genética
3.
Proc Natl Acad Sci U S A ; 120(44): e2310344120, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37871205

RESUMEN

Mutations in MECP2 give rise to Rett syndrome (RTT), an X-linked neurodevelopmental disorder that results in broad cognitive impairments in females. While the exact etiology of RTT symptoms remains unknown, one possible explanation for its clinical presentation is that loss of MECP2 causes miswiring of neural circuits due to defects in the brain's capacity to respond to changes in neuronal activity and sensory experience. Here, we show that MeCP2 is phosphorylated at four residues in the mouse brain (S86, S274, T308, and S421) in response to neuronal activity, and we generate a quadruple knock-in (QKI) mouse line in which all four activity-dependent sites are mutated to alanines to prevent phosphorylation. QKI mice do not display overt RTT phenotypes or detectable gene expression changes in two brain regions. However, electrophysiological recordings from the retinogeniculate synapse of QKI mice reveal that while synapse elimination is initially normal at P14, it is significantly compromised at P20. Notably, this phenotype is distinct from the synapse refinement defect previously reported for Mecp2 null mice, where synapses initially refine but then regress after the third postnatal week. We thus propose a model in which activity-induced phosphorylation of MeCP2 is critical for the proper timing of retinogeniculate synapse maturation specifically during the early postnatal period.


Asunto(s)
Proteína 2 de Unión a Metil-CpG , Síndrome de Rett , Femenino , Ratones , Animales , Fosforilación , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Encéfalo/metabolismo , Sinapsis/metabolismo , Neuronas/metabolismo , Ratones Noqueados , Modelos Animales de Enfermedad
4.
Nature ; 554(7693): 481-486, 2018 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-29261642

RESUMEN

Piezo1 and Piezo2 are mechanically activated ion channels that mediate touch perception, proprioception and vascular development. Piezo proteins are distinct from other ion channels and their structure remains poorly defined, which impedes detailed study of their gating and ion permeation properties. Here we report a high-resolution cryo-electron microscopy structure of the mouse Piezo1 trimer. The detergent-solubilized complex adopts a three-bladed propeller shape with a curved transmembrane region containing at least 26 transmembrane helices per protomer. The flexible propeller blades can adopt distinct conformations, and consist of a series of four-transmembrane helical bundles that we term Piezo repeats. Carboxy-terminal domains line the central ion pore, and the channel is closed by constrictions in the cytosol. A kinked helical beam and anchor domain link the Piezo repeats to the pore, and are poised to control gating allosterically. The structure provides a foundation to dissect further how Piezo channels are regulated by mechanical force.


Asunto(s)
Microscopía por Crioelectrón , Canales Iónicos/química , Canales Iónicos/ultraestructura , Animales , Sitios de Unión , Activación del Canal Iónico , Canales Iónicos/genética , Canales Iónicos/metabolismo , Lípidos , Ratones , Modelos Moleculares , Mutación , Docilidad , Dominios Proteicos , Solubilidad
6.
Proc Natl Acad Sci U S A ; 115(50): 12817-12822, 2018 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-30482854

RESUMEN

PIEZO1 is a cation channel that is activated by mechanical forces such as fluid shear stress or membrane stretch. PIEZO1 loss-of-function mutations in patients are associated with congenital lymphedema with pleural effusion. However, the mechanistic link between PIEZO1 function and the development or function of the lymphatic system is currently unknown. Here, we analyzed two mouse lines lacking PIEZO1 in endothelial cells (via Tie2Cre or Lyve1Cre) and found that they exhibited pleural effusion and died postnatally. Strikingly, the number of lymphatic valves was dramatically reduced in these mice. Lymphatic valves are essential for ensuring proper circulation of lymph. Mechanical forces have been implicated in the development of lymphatic vasculature and valve formation, but the identity of mechanosensors involved is unknown. Expression of FOXC2 and NFATc1, transcription factors known to be required for lymphatic valve development, appeared normal in Tie2Cre;Piezo1cKO mice. However, the process of protrusion in the valve leaflets, which is associated with collective cell migration, actin polymerization, and remodeling of cell-cell junctions, was impaired in Tie2Cre;Piezo1cKO mice. Consistent with these genetic findings, activation of PIEZO1 by Yoda1 in cultured lymphatic endothelial cells induced active remodeling of actomyosin and VE-cadherin+ cell-cell adhesion sites. Our analysis provides evidence that mechanically activated ion channel PIEZO1 is a key regulator of lymphatic valve formation.


Asunto(s)
Canales Iónicos/metabolismo , Linfangiogénesis/fisiología , Sistema Linfático/metabolismo , Sistema Linfático/fisiología , Vasos Linfáticos/metabolismo , Vasos Linfáticos/fisiología , Actomiosina/metabolismo , Animales , Antígenos CD/metabolismo , Cadherinas/metabolismo , Adhesión Celular/fisiología , Movimiento Celular/fisiología , Células Endoteliales/metabolismo , Células Endoteliales/fisiología , Factores de Transcripción Forkhead/metabolismo , Uniones Intercelulares/metabolismo , Uniones Intercelulares/fisiología , Transporte Iónico/fisiología , Ratones , Factores de Transcripción NFATC/metabolismo , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo
7.
bioRxiv ; 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37461668

RESUMEN

Mutations in MECP2 give rise to Rett syndrome (RTT), an X-linked neurodevelopmental disorder that results in broad cognitive impairments in females. While the exact etiology of RTT symptoms remains unknown, one possible explanation for its clinical presentation is that loss of MeCP2 causes miswiring of neural circuits due to defects in the brain's capacity to respond to changes in neuronal activity and sensory experience. Here we show that MeCP2 is phosphorylated at four residues in the brain (S86, S274, T308, and S421) in response to neuronal activity, and we generate a quadruple knock-in (QKI) mouse line in which all four activity-dependent sites are mutated to alanines to prevent phosphorylation. QKI mice do not display overt RTT phenotypes or detectable gene expression changes in two brain regions. However, electrophysiological recordings from the retinogeniculate synapse of QKI mice reveal that while synapse elimination is initially normal at P14, it is significantly compromised at P20. Notably, this phenotype is distinct from that previously reported for Mecp2 null mice, where synapses initially refine but then regress after the third postnatal week. We thus propose a model in which activity-induced phosphorylation of MeCP2 is critical for the proper timing of retinogeniculate synapse maturation specifically during the early postnatal period. SIGNIFICANCE STATEMENT: Rett syndrome (RTT) is an X-linked neurodevelopmental disorder that predominantly affects girls. RTT is caused by loss of function mutations in a single gene MeCP2. Girls with RTT develop normally during their first year of life, but then experience neurological abnormalities including breathing and movement difficulties, loss of speech, and seizures. This study investigates the function of the MeCP2 protein in the brain, and how MeCP2 activity is modulated by sensory experience in early life. Evidence is presented that sensory experience affects MeCP2 function, and that this is required for synaptic pruning in the brain. These findings provide insight into MeCP2 function, and clues as to what goes awry in the brain when the function of MeCP2 is disrupted.

8.
Elife ; 72018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30382938

RESUMEN

Mechanically activated (MA) ion channels convert physical forces into electrical signals, and are essential for eukaryotic physiology. Despite their importance, few bona-fide MA channels have been described in plants and animals. Here, we show that various members of the OSCA and TMEM63 family of proteins from plants, flies, and mammals confer mechanosensitivity to naïve cells. We conclusively demonstrate that OSCA1.2, one of the Arabidopsis thaliana OSCA proteins, is an inherently mechanosensitive, pore-forming ion channel. Our results suggest that OSCA/TMEM63 proteins are the largest family of MA ion channels identified, and are conserved across eukaryotes. Our findings will enable studies to gain deep insight into molecular mechanisms of MA channel gating, and will facilitate a better understanding of mechanosensory processes in vivo across plants and animals.


Asunto(s)
Secuencia Conservada , Evolución Molecular , Activación del Canal Iónico , Canales Iónicos/genética , Canales Iónicos/metabolismo , Mecanotransducción Celular , Animales , Arabidopsis , Fenómenos Biofísicos , Gadolinio/farmacología , Células HEK293 , Humanos , Liposomas , Concentración Osmolar
9.
Elife ; 72018 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-30095067

RESUMEN

SWELL1 (LRRC8A) is the only essential subunit of the Volume Regulated Anion Channel (VRAC), which regulates cellular volume homeostasis and is activated by hypotonic solutions. SWELL1, together with four other LRRC8 family members, potentially forms a vastly heterogeneous cohort of VRAC channels with different properties; however, SWELL1 alone is also functional. Here, we report a high-resolution cryo-electron microscopy structure of full-length human homo-hexameric SWELL1. The structure reveals a trimer of dimers assembly with symmetry mismatch between the pore-forming domain and the cytosolic leucine-rich repeat (LRR) domains. Importantly, mutational analysis demonstrates that a charged residue at the narrowest constriction of the homomeric channel is an important pore determinant of heteromeric VRAC. Additionally, a mutation in the flexible N-terminal portion of SWELL1 affects pore properties, suggesting a putative link between intracellular structures and channel regulation. This structure provides a scaffold for further dissecting the heterogeneity and mechanism of activation of VRAC.


Asunto(s)
Proteínas de la Membrana/química , Multimerización de Proteína/genética , Relación Estructura-Actividad , Canales Aniónicos Dependientes del Voltaje/química , Aminoácidos/química , Aminoácidos/genética , Células HeLa , Humanos , Proteínas de la Membrana/genética , Familia de Multigenes , Mutación , Estructura Cuaternaria de Proteína , Canales Aniónicos Dependientes del Voltaje/genética
10.
Cell Rep ; 16(4): 928-938, 2016 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-27396338

RESUMEN

A longstanding mystery has been the absence of cytoplasmic intermediate filaments (IFs) from Drosophila despite their importance in other organisms. In the course of characterizing the in vivo expression and functions of Drosophila Tropomyosin (Tm) isoforms, we discovered an essential but unusual product of the Tm1 locus, Tm1-I/C, which resembles an IF protein in some respects. Like IFs, Tm1-I/C spontaneously forms filaments in vitro that are intermediate in diameter between F-actin and microtubules. Like IFs but unlike canonical Tms, Tm1-I/C contains N- and C-terminal low-complexity domains flanking a central coiled coil. In vivo, Tm1-I/C forms cytoplasmic filaments that do not associate with F-actin or canonical Tms. Tm1-I/C is essential for collective border cell migration, in epithelial cells for proper cytoarchitecture, and in the germline for the formation of germ plasm. These results suggest that flies have evolved a distinctive type of cytoskeletal filament from Tm.


Asunto(s)
Drosophila/metabolismo , Filamentos Intermedios/metabolismo , Tropomiosina/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animales , Movimiento Celular/fisiología , Citoesqueleto/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/fisiología , Femenino , Células Germinativas/metabolismo , Células Germinativas/fisiología , Microtúbulos/metabolismo , Isoformas de Proteínas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA