Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Genes Dev ; 33(11-12): 718-732, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30975721

RESUMEN

The stationary phase promoter specificity subunit σS (RpoS) is delivered to the ClpXP machinery for degradation dependent on the adaptor RssB. This adaptor-specific degradation of σS provides a major point for regulation and transcriptional reprogramming during the general stress response. RssB is an atypical response regulator and the only known ClpXP adaptor that is inhibited by multiple but dissimilar antiadaptors (IraD, IraP, and IraM). These are induced by distinct stress signals and bind to RssB in poorly understood manners to achieve stress-specific inhibition of σS turnover. Here we present the first crystal structure of RssB bound to an antiadaptor, the DNA damage-inducible IraD. The structure reveals that RssB adopts a compact closed architecture with extensive interactions between its N-terminal and C-terminal domains. The structural data, together with mechanistic studies, suggest that RssB plasticity, conferred by an interdomain glutamate-rich flexible linker, is critical for regulation of σS degradation. Structural modulation of interdomain linkers may thus constitute a general strategy for tuning response regulators.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Escherichia coli/química , Factor sigma/química , Factor sigma/metabolismo , Factores de Transcripción/química , Proteínas Bacterianas/química , Cristalografía por Rayos X , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Conformación Proteica , Conformación Proteica en Hélice alfa , Dominios Proteicos , Estabilidad Proteica , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismo
2.
Annu Rev Microbiol ; 75: 719-739, 2021 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-34375543

RESUMEN

Heat shock protein 90 (Hsp90) is a molecular chaperone that folds and remodels proteins, thereby regulating the activity of numerous substrate proteins. Hsp90 is widely conserved across species and is essential in all eukaryotes and in some bacteria under stress conditions. To facilitate protein remodeling, bacterial Hsp90 collaborates with the Hsp70 molecular chaperone and its cochaperones. In contrast, the mechanism of protein remodeling performed by eukaryotic Hsp90 is more complex, involving more than 20 Hsp90 cochaperones in addition to Hsp70 and its cochaperones. In this review, we focus on recent progress toward understanding the basic mechanisms of bacterial Hsp90-mediated protein remodeling and the collaboration between Hsp90 and Hsp70. We describe the universally conserved structure and conformational dynamics of these chaperones and their interactions with one another and with client proteins. The physiological roles of Hsp90 in Escherichia coli and other bacteria are also discussed. We anticipate that the information gained from exploring the mechanism of the bacterial chaperone system will provide a framework for understanding the more complex eukaryotic Hsp90 system.


Asunto(s)
Proteínas Bacterianas , Proteínas HSP90 de Choque Térmico , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/química , Proteínas HSP90 de Choque Térmico/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Unión Proteica
3.
Nat Rev Mol Cell Biol ; 14(10): 617-29, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24061228

RESUMEN

Protein quality control within the cell requires the interplay of many molecular chaperones and proteases. When this quality control system is disrupted, polypeptides follow pathways leading to misfolding, inactivity and aggregation. Among the repertoire of molecular chaperones are remarkable proteins that forcibly untangle protein aggregates, called disaggregases. Structural and biochemical studies have led to new insights into how these proteins collaborate with co-chaperones and utilize ATP to power protein disaggregation. Understanding how energy-dependent protein disaggregating machines function is universally important and clinically relevant, as protein aggregation is linked to medical conditions such as Alzheimer's disease, Parkinson's disease, amyloidosis and prion diseases.


Asunto(s)
Chaperonas Moleculares/genética , Péptido Hidrolasas/metabolismo , Enfermedades por Prión/genética , Proteínas/química , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Amiloidosis/genética , Amiloidosis/patología , Humanos , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Enfermedades por Prión/patología , Conformación Proteica , Pliegue de Proteína , Desplegamiento Proteico , Proteínas/genética , Proteínas/metabolismo , Control de Calidad
4.
J Biol Chem ; 299(1): 102826, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36572186

RESUMEN

Hsp90 is a molecular chaperone that participates in protein folding, activation, and stabilization of substrate proteins. Since many diseases, including cancer, neurodegenerative diseases, and metabolic diseases, are caused by protein misfolding, drugs that inhibit Hsp90 are being pursued as potential targets for treatments. In the recent JBC Editor's Pick by Donahue et al., the authors show that diptoindonesin G is a new Hsp90 inhibitor that promotes degradation of the estrogen receptor, an Hsp90 client, without inducing the heat shock response.


Asunto(s)
Benzofuranos , Proteínas HSP90 de Choque Térmico , Humanos , Benzofuranos/farmacología , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP90 de Choque Térmico/química , Pliegue de Proteína
5.
J Biol Chem ; 299(12): 105440, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37949227

RESUMEN

In enterobacteria such as Escherichia coli, the general stress response is mediated by σs, the stationary phase dissociable promoter specificity subunit of RNA polymerase. σs is degraded by ClpXP during active growth in a process dependent on the RssB adaptor, which is thought to be stimulated by the phosphorylation of a conserved aspartate in its N-terminal receiver domain. Here we present the crystal structure of full-length RssB bound to a beryllofluoride phosphomimic. Compared to the structure of RssB bound to the IraD anti-adaptor, our new RssB structure with bound beryllofluoride reveals conformational differences and coil-to-helix transitions in the C-terminal region of the RssB receiver domain and in the interdomain segmented helical linker. These are accompanied by masking of the α4-ß5-α5 (4-5-5) "signaling" face of the RssB receiver domain by its C-terminal domain. Critically, using hydrogen-deuterium exchange mass spectrometry, we identify σs-binding determinants on the 4-5-5 face, implying that this surface needs to be unmasked to effect an interdomain interface switch and enable full σs engagement and hand-off to ClpXP. In activated receiver domains, the 4-5-5 face is often the locus of intermolecular interactions, but its masking by intramolecular contacts upon phosphorylation is unusual, emphasizing that RssB is a response regulator that undergoes atypical regulation.


Asunto(s)
Proteínas de Unión al ADN , Endopeptidasa Clp , Proteínas de Escherichia coli , Escherichia coli , Proteolisis , Factor sigma , Factores de Transcripción , Cristalografía por Rayos X , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Endopeptidasa Clp/química , Endopeptidasa Clp/metabolismo , Activación Enzimática , Escherichia coli/química , Escherichia coli/enzimología , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Espectrometría de Masas de Intercambio de Hidrógeno-Deuterio , Fosforilación , Dominios Proteicos , Factor sigma/química , Factor sigma/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo
6.
Proc Natl Acad Sci U S A ; 116(25): 12285-12294, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31160467

RESUMEN

Heat shock protein 90 (Hsp90) is a highly conserved molecular chaperone involved in ATP-dependent client protein remodeling and activation. It also functions as a protein holdase, binding and stabilizing clients in an ATP-independent process. Hsp90 remodels over 300 client proteins and is essential for cell survival in eukaryotes. In bacteria, Hsp90 is a highly abundant protein, although very few clients have been identified and it is not essential for growth in many bacterial species. We previously demonstrated that in Escherichia coli, Hsp90 causes cell filamentation when expressed at high levels. Here, we have explored the cause of filamentation and identified a potentially important client of E. coli Hsp90 (Hsp90Ec), FtsZ. We observed that FtsZ, a bacterial tubulin homolog essential for cell division, fails to assemble into FtsZ rings (divisomes) in cells overexpressing Hsp90Ec Additionally, Hsp90Ec interacts with FtsZ and inhibits polymerization of FtsZ in vitro, in an ATP-independent holding reaction. The FtsZ-Hsp90Ec interaction involves residues in the client-binding region of Hsp90Ec and in the C-terminal tail of FtsZ, where many cell-division proteins and regulators interact. We observed that E. coli deleted for the Hsp90Ec gene htpG turn over FtsZ more rapidly than wild-type cells. Additionally, the length of ΔhtpG cells is reduced compared to wild-type cells. Altogether, these results suggest that Hsp90Ec is a modulator of cell division, and imply that the polypeptide-holding function of Hsp90 may be a biologically important chaperone activity.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas del Citoesqueleto/metabolismo , Escherichia coli/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Tubulina (Proteína)/metabolismo , División Celular , Proteínas HSP90 de Choque Térmico/fisiología , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/fisiología
7.
Mol Cell ; 52(5): 611-2, 2013 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-24332174

RESUMEN

In this issue of Molecular Cell, Aarke et al. (2013) identify a toxin-antitoxin system in Caulobacter crescentus that acts by a unique mechanism. The toxin, which blocks DNA replication, is constitutively degraded by ClpXP, and this degradation requires the antitoxin, a ClpXP adaptor.


Asunto(s)
Antitoxinas/genética , Antitoxinas/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Replicación del ADN/genética
8.
Mol Cell ; 49(3): 464-73, 2013 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-23260660

RESUMEN

The heat shock protein 90 (Hsp90) family of heat shock proteins is an abundantly expressed and highly conserved family of ATP-dependent molecular chaperones. Hsp90 facilitates remodeling and activation of hundreds of proteins. In this study, we developed a screen to identify Hsp90-defective mutants in E. coli. The mutations obtained define a region incorporating residues from the middle and C-terminal domains of E. coli Hsp90. The mutant proteins are defective in chaperone activity and client binding in vitro. We constructed homologous mutations in S. cerevisiae Hsp82 and identified several that caused defects in chaperone activity in vivo and in vitro. However, the Hsp82 mutant proteins were less severely defective in client binding to a model substrate than the corresponding E. coli mutant proteins. Our results identify a region in Hsp90 important for client binding in E. coli Hsp90 and suggest an evolutionary divergence in the mechanism of client interaction by bacterial and yeast Hsp90.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas HSP90 de Choque Térmico/química , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Aminoácidos/metabolismo , Escherichia coli/citología , Datos de Secuencia Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutación/genética , Unión Proteica , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/citología , Relación Estructura-Actividad
9.
Proc Natl Acad Sci U S A ; 115(10): E2210-E2219, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29463764

RESUMEN

Heat shock protein 90 (Hsp90) is a highly conserved ATP-dependent molecular chaperone that is essential in eukaryotes. It is required for the activation and stabilization of more than 200 client proteins, including many kinases and steroid hormone receptors involved in cell-signaling pathways. Hsp90 chaperone activity requires collaboration with a subset of the many Hsp90 cochaperones, including the Hsp70 chaperone. In higher eukaryotes, the collaboration between Hsp90 and Hsp70 is indirect and involves Hop, a cochaperone that interacts with both Hsp90 and Hsp70. Here we show that yeast Hsp90 (Hsp82) and yeast Hsp70 (Ssa1), directly interact in vitro in the absence of the yeast Hop homolog (Sti1), and identify a region in the middle domain of yeast Hsp90 that is required for the interaction. In vivo results using Hsp90 substitution mutants showed that several residues in this region were important or essential for growth at high temperature. Moreover, mutants in this region were defective in interaction with Hsp70 in cell lysates. In vitro, the purified Hsp82 mutant proteins were defective in direct physical interaction with Ssa1 and in protein remodeling in collaboration with Ssa1 and cochaperones. This region of Hsp90 is also important for interactions with several Hsp90 cochaperones and client proteins, suggesting that collaboration between Hsp70 and Hsp90 in protein remodeling may be modulated through competition between Hsp70 and Hsp90 cochaperones for the interaction surface.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Secuencias de Aminoácidos , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/química , Proteínas HSP90 de Choque Térmico/genética , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Modelos Moleculares , Mutación , Unión Proteica , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
10.
Genes Dev ; 27(24): 2722-35, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-24352426

RESUMEN

RpoS, an RNA polymerase σ factor, controls the response of Escherichia coli and related bacteria to multiple stress responses. During nonstress conditions, RpoS is rapidly degraded by ClpXP, mediated by the adaptor protein RssB, a member of the response regulator family. In response to stress, RpoS degradation ceases. Small anti-adaptor proteins--IraP, IraM, and IraD, each made under a different stress condition--block RpoS degradation. RssB mutants resistant to either IraP or IraM were isolated and analyzed in vivo and in vitro. Each of the anti-adaptors is unique in its interaction with RssB and sensitivity to RssB mutants. One class of mutants defined an RssB N-terminal region close to the phosphorylation site and critical for interaction with IraP but unnecessary for IraM and IraD function. A second class, in the RssB C-terminal PP2C-like domain, led to activation of RssB function. These mutants allowed the response regulator to act in the absence of phosphorylation but did not abolish interaction with anti-adaptors. This class of mutants is broadly resistant to the anti-adaptors and bears similarity to constitutively activated mutants found in a very different PP2C protein. The mutants provide insight into how the anti-adaptors perturb RssB response regulator function and activation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/genética , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Factores de Transcripción/genética , Proteínas Bacterianas/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Mutación , Fosforilación , Estructura Terciaria de Proteína/genética , Factores de Transcripción/metabolismo
11.
J Biol Chem ; 294(6): 2109-2120, 2019 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-30401745

RESUMEN

Heat shock proteins 90 (Hsp90) and 70 (Hsp70) are two families of highly conserved ATP-dependent molecular chaperones that fold and remodel proteins. Both are important components of the cellular machinery involved in protein homeostasis and participate in nearly every cellular process. Although Hsp90 and Hsp70 each carry out some chaperone activities independently, they collaborate in other cellular remodeling reactions. In eukaryotes, both Hsp90 and Hsp70 function with numerous Hsp90 and Hsp70 co-chaperones. In contrast, bacterial Hsp90 and Hsp70 are less complex; Hsp90 acts independently of co-chaperones, and Hsp70 uses two co-chaperones. In this review, we focus on recent progress toward understanding the basic mechanisms of Hsp90-mediated protein remodeling and the collaboration between Hsp90 and Hsp70, with an emphasis on bacterial chaperones. We describe the structure and conformational dynamics of these chaperones and their interactions with each other and with client proteins. The physiological roles of Hsp90 in Escherichia coli and other bacteria are also discussed. We anticipate that the information gained from exploring the mechanism of the bacterial chaperone system will provide the groundwork for understanding the more complex eukaryotic Hsp90 system and its modulation by Hsp90 co-chaperones.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Pliegue de Proteína , Animales , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/genética , Humanos
12.
PLoS Genet ; 10(10): e1004720, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25329162

RESUMEN

Hsp100 family chaperones of microorganisms and plants cooperate with the Hsp70/Hsp40/NEF system to resolubilize and reactivate stress-denatured proteins. In yeast this machinery also promotes propagation of prions by fragmenting prion polymers. We previously showed the bacterial Hsp100 machinery cooperates with the yeast Hsp40 Ydj1 to support yeast thermotolerance and with the yeast Hsp40 Sis1 to propagate [PSI+] prions. Here we find these Hsp40s similarly directed specific activities of the yeast Hsp104-based machinery. By assessing the ability of Ydj1-Sis1 hybrid proteins to complement Ydj1 and Sis1 functions we show their C-terminal substrate-binding domains determined distinctions in these and other cellular functions of Ydj1 and Sis1. We find propagation of [URE3] prions was acutely sensitive to alterations in Sis1 activity, while that of [PIN+] prions was less sensitive than [URE3], but more sensitive than [PSI+]. These findings support the ideas that overexpressing Ydj1 cures [URE3] by competing with Sis1 for interaction with the Hsp104-based disaggregation machine, and that different prions rely differently on activity of this machinery, which can explain the various ways they respond to alterations in chaperone function.


Asunto(s)
Proteínas del Choque Térmico HSP40/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sitios de Unión , Endopeptidasa Clp , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Glutatión Peroxidasa/genética , Glutatión Peroxidasa/metabolismo , Proteínas del Choque Térmico HSP40/genética , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutación , Factores de Terminación de Péptidos/genética , Factores de Terminación de Péptidos/metabolismo , Priones/genética , Priones/metabolismo , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/genética
13.
Proc Natl Acad Sci U S A ; 108(20): 8206-11, 2011 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-21525416

RESUMEN

Molecular chaperones are proteins that assist the folding, unfolding, and remodeling of other proteins. In eukaryotes, heat shock protein 90 (Hsp90) proteins are essential ATP-dependent molecular chaperones that remodel and activate hundreds of client proteins with the assistance of cochaperones. In Escherichia coli, the activity of the Hsp90 homolog, HtpG, has remained elusive. To explore the mechanism of action of E. coli Hsp90, we used in vitro protein reactivation assays. We found that E. coli Hsp90 promotes reactivation of heat-inactivated luciferase in a reaction that requires the prokaryotic Hsp70 chaperone system, known as the DnaK system. An Hsp90 ATPase inhibitor, geldanamycin, inhibits luciferase reactivation demonstrating the importance of the ATP-dependent chaperone activity of E. coli Hsp90 during client protein remodeling. Reactivation also depends upon the ATP-dependent chaperone activity of the DnaK system. Our results suggest that the DnaK system acts first on the client protein, and then E. coli Hsp90 and the DnaK system collaborate synergistically to complete remodeling of the client protein. Results indicate that E. coli Hsp90 and DnaK interact in vivo and in vitro, providing additional evidence to suggest that E. coli Hsp90 and the DnaK system function together.


Asunto(s)
Proteínas de Escherichia coli/fisiología , Proteínas HSP70 de Choque Térmico/fisiología , Proteínas HSP90 de Choque Térmico/fisiología , Renaturación de Proteína , Adenosina Trifosfatasas/metabolismo , Proteínas de Escherichia coli/química , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP90 de Choque Térmico/química , Luciferasas/química , Modelos Moleculares , Unión Proteica , Desnaturalización Proteica , Pliegue de Proteína , Estructura Cuaternaria de Proteína
14.
Proc Natl Acad Sci U S A ; 108(17): 6915-20, 2011 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-21474779

RESUMEN

Yeast Hsp104 and its bacterial homolog, ClpB, are Clp/Hsp100 molecular chaperones and AAA+ ATPases. Hsp104 and ClpB collaborate with the Hsp70 and DnaK chaperone systems, respectively, to retrieve and reactivate stress-denatured proteins from aggregates. The action of Hsp104 and ClpB in promoting cell survival following heat stress is species-specific: Hsp104 cannot function in bacteria and ClpB cannot act in yeast. To determine the regions of Hsp104 and ClpB necessary for this specificity, we tested chimeras of Hsp104 and ClpB in vivo and in vitro. We show that the Hsp104 and ClpB middle domains dictate the species-specificity of Hsp104 and ClpB for cell survival at high temperature. In protein reactivation assays in vitro, chimeras containing the Hsp104 middle domain collaborate with Hsp70 and those with the ClpB middle domain function with DnaK. The region responsible for the specificity is within helix 2 and helix 3 of the middle domain. Additionally, several mutants containing amino acid substitutions in helix 2 of the ClpB middle domain are defective in protein disaggregation in collaboration with DnaK. In a bacterial two-hybrid assay, DnaK interacts with ClpB and with chimeras that have the ClpB middle domain, implying that species-specificity is due to an interaction between DnaK and the middle domain of ClpB. Our results suggest that the interaction between Hsp70/DnaK and helix 2 of the middle domain of Hsp104/ClpB determines the specificity required for protein disaggregation both in vivo and in vitro, as well as for cellular thermotolerance.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas HSP70 de Choque Térmico/química , Proteínas de Choque Térmico/química , Proteínas de Saccharomyces cerevisiae/química , Endopeptidasa Clp , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Estructura Secundaria de Proteína , Proteínas Recombinantes de Fusión , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
Trends Biochem Sci ; 34(1): 40-8, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19008106

RESUMEN

Heat-shock protein 104 (Hsp104) and caseinolytic peptidase B (ClpB), members of the AAA+ superfamily, are molecular machines involved in disaggregating insoluble protein aggregates, a process not long ago thought to be impossible. During extreme stress they are essential for cell survival. In addition, Hsp104 regulates prion assembly and disassembly. For most of their protein remodeling activities Hsp104 and ClpB work in collaboration with the Hsp70 or DnaK chaperone systems. Together, the two chaperones catalyze protein disaggregation and reactivation by a mechanism probably involving the extraction of polypeptides from aggregates by forced unfolding and translocation through the Hsp104/ClpB central cavity. The polypeptides are then released back into the cellular milieu for spontaneous or chaperone-mediated refolding.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Choque Térmico/química , Proteínas de Saccharomyces cerevisiae/química , Secuencias de Aminoácidos , Bioquímica/métodos , Endopeptidasa Clp , Proteínas HSP70 de Choque Térmico/química , Modelos Biológicos , Modelos Moleculares , Chaperonas Moleculares/química , Conformación Molecular , Unión Proteica , Desnaturalización Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína , Transporte de Proteínas , Thermus thermophilus/metabolismo
16.
Microbiol Mol Biol Rev ; 88(2): e0017622, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38534118

RESUMEN

SUMMARYHeat shock protein 90 (Hsp90) participates in proteostasis by facilitating protein folding, activation, disaggregation, prevention of aggregation, degradation, and protection against degradation of various cellular proteins. It is highly conserved from bacteria to humans. In bacteria, protein remodeling by Hsp90 involves collaboration with the Hsp70 molecular chaperone and Hsp70 cochaperones. In eukaryotes, protein folding by Hsp90 is more complex and involves collaboration with many Hsp90 cochaperones as well as Hsp70 and Hsp70 cochaperones. This review focuses primarily on bacterial Hsp90 and highlights similarities and differences between bacterial and eukaryotic Hsp90. Seminal research findings that elucidate the structure and the mechanisms of protein folding, disaggregation, and reactivation promoted by Hsp90 are discussed. Understanding the mechanisms of bacterial Hsp90 will provide fundamental insight into the more complex eukaryotic chaperone systems.


Asunto(s)
Bacterias , Proteínas Bacterianas , Proteínas HSP90 de Choque Térmico , Pliegue de Proteína , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas Bacterianas/metabolismo , Bacterias/metabolismo , Humanos , Estrés Fisiológico , Proteostasis/fisiología , Proteínas HSP70 de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo
17.
bioRxiv ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38915721

RESUMEN

Proteostasis, the maintenance of cellular protein balance, is essential for cell viability and is highly conserved across all organisms. Newly synthesized proteins, or "clients," undergo sequential processing by Hsp40, Hsp70, and Hsp90 chaperones to achieve proper folding and functionality. Despite extensive characterization of post-translational modifications (PTMs) on Hsp70 and Hsp90, the modifications on Hsp40 remain less understood. This study aims to elucidate the role of lysine acetylation on the yeast Hsp40, Ydj1. By mutating acetylation sites on Ydj1's J-domain to either abolish or mimic constitutive acetylation, we observed that preventing acetylation had no noticeable phenotypic impact, whereas acetyl-mimic mutants exhibited various defects indicative of impaired Ydj1 function. Proteomic analysis revealed several Ydj1 interactions affected by J-domain acetylation, notably with proteins involved in translation. Further investigation uncovered a novel role for Ydj1 acetylation in stabilizing ribosomal subunits and ensuring translational fidelity. Our data suggest that acetylation may facilitate the transfer of Ydj1 between Ssa1 and Hsp82. Collectively, this work highlights the critical role of Ydj1 acetylation in proteostasis and translational fidelity.

18.
J Biol Chem ; 287(34): 28470-9, 2012 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-22745126

RESUMEN

Protein disaggregation in Escherichia coli is carried out by ClpB, an AAA(+) (ATPases associated with various cellular activities) molecular chaperone, together with the DnaK chaperone system. Conformational changes in ClpB driven by ATP binding and hydrolysis promote substrate binding, unfolding, and translocation. Conserved pore tyrosines in both nucleotide-binding domain-1 (NBD-1) and -2 (NBD-2), which reside in flexible loops extending into the central pore of the ClpB hexamer, bind substrates. When the NBD-1 pore loop tyrosine is substituted with alanine (Y251A), ClpB can collaborate with the DnaK system in disaggregation, although activity is reduced. The N-domain has also been implicated in substrate binding, and like the NBD-1 pore loop tyrosine, it is not essential for disaggregation activity. To further probe the function and interplay of the ClpB N-domain and the NBD-1 pore loop, we made a double mutant with an N-domain deletion and a Y251A substitution. This ClpB double mutant is inactive in substrate disaggregation with the DnaK system, although each single mutant alone can function with DnaK. Our data suggest that this loss in activity is primarily due to a decrease in substrate engagement by ClpB prior to substrate unfolding and translocation and indicate an overlapping function for the N-domain and NBD-1 pore tyrosine. Furthermore, the functional overlap seen in the presence of the DnaK system is not observed in the absence of DnaK. For innate ClpB unfolding activity, the NBD-1 pore tyrosine is required, and the presence of the N-domain is insufficient to overcome the defect of the ClpB Y251A mutant.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/metabolismo , Pliegue de Proteína , Multimerización de Proteína , Tirosina/metabolismo , Sustitución de Aminoácidos , Endopeptidasa Clp , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas HSP70 de Choque Térmico/genética , Proteínas de Choque Térmico/genética , Mutación Missense , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Tirosina/genética
19.
J Mol Biol ; 435(17): 168184, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37348754

RESUMEN

Hsp90 and Hsp70 are highly conserved molecular chaperones that help maintain proteostasis by participating in protein folding, unfolding, remodeling and activation of proteins. Both chaperones are also important for cellular recovery following environmental stresses. Hsp90 and Hsp70 function collaboratively for the remodeling and activation of some client proteins. Previous studies using E. coli and S. cerevisiae showed that residues in the Hsp90 middle domain directly interact with a region in the Hsp70 nucleotide binding domain, in the same region known to bind J-domain proteins. Importantly, J-domain proteins facilitate and stabilize the interaction between Hsp90 and Hsp70 both in E. coli and S. cerevisiae. To further explore the role of J-domain proteins in protein reactivation, we tested the hypothesis that J-domain proteins participate in the collaboration between Hsp90 and Hsp70 by simultaneously interacting with Hsp90 and Hsp70. Using E. coli Hsp90, Hsp70 (DnaK), and a J-domain protein (CbpA), we detected a ternary complex containing all three proteins. The interaction involved the J-domain of CbpA, the DnaK binding region of E. coli Hsp90, and the J-domain protein binding region of DnaK where Hsp90 also binds. Additionally, results show that E. coli Hsp90 interacts with E. coli J-domain proteins, DnaJ and CbpA, and that yeast Hsp90, Hsp82, interacts with a yeast J-domain protein, Ydj1. Together these results suggest that the complexes may be transient intermediates in the pathway of collaborative protein remodeling by Hsp90 and Hsp70.


Asunto(s)
Proteínas de Escherichia coli , Proteínas HSP70 de Choque Térmico , Proteínas HSP90 de Choque Térmico , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas del Choque Térmico HSP40/química , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Dominios Proteicos
20.
Proteins ; 80(12): 2758-68, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22890624

RESUMEN

ClpB reactivates aggregated proteins in cooperation with DnaK/J. The ClpB monomer contains two nucleotide-binding domains (D1, D2), a coiled-coil domain, and an N-terminal domain attached to D1 with a 17-residue-long unstructured linker containing a Gly-Gly motif. The ClpB-mediated protein disaggregation is linked to translocation of substrates through the central channel in the hexameric ClpB, but the events preceding the translocation are poorly understood. The N-terminal domains form a ring surrounding the entrance to the channel and contribute to the aggregate binding. It was suggested that the N-terminal domain's mobility that is maintained by the unstructured linker might control the efficiency of aggregate reactivation. We produced seven variants of ClpB with modified sequence of the N-terminal linker. To increase the linker's conformational flexibility, we inserted up to four Gly next to the GG motif. To decrease the linker's flexibility, we deleted the GG motif and converted it into GP and PP. We found that none of the linker modifications inhibited the basal ClpB ATPase activity or its capability to form oligomers. However, the modified linker ClpB variants showed lower reactivation rates for aggregated glucose-6-phosphate dehydrogenase and firefly luciferase and a lower aggregate-binding efficiency than wt ClpB. We conclude that the linker does not merely connect the N-terminal domain, but it supports the chaperone activity of ClpB by contributing to the efficiency of aggregate binding and disaggregation. Moreover, our results suggest that selective pressure on the linker sequence may be crucial for maintaining the optimal efficiency of aggregate reactivation by ClpB.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Endopeptidasa Clp , Proteínas de Escherichia coli/genética , Glucosafosfato Deshidrogenasa/metabolismo , Proteínas de Choque Térmico/genética , Luciferasas/metabolismo , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA