Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Mol Carcinog ; 62(10): 1531-1545, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37378415

RESUMEN

Many cancers, including melanoma, have a higher requirement for l-methionine in comparison with noncancerous cells. In this study, we show that administration of an engineered human methionine-γ-lyase (hMGL) significantly reduced the survival of both human and mouse melanoma cells in vitro. A multiomics approach was utilized to identify global changes in gene expression and in metabolite levels with hMGL treatment in melanoma cells. There was considerable overlap in the perturbed pathways identified in the two data sets. Common pathways were flagged for further investigation to understand their mechanistic importance. In this regard, hMGL treatment induced S and G2 phase cell cycle arrest, decreased nucleotide levels, and increased DNA double-strand breaks suggesting an important role for replication stress in the mechanism of hMGL effects on melanoma cells. Further, hMGL treatment resulted in increased cellular reactive oxygen species levels and increased apoptosis as well as uncharged transfer RNA pathway upregulation. Finally, treatment with hMGL significantly inhibited the growth of both mouse and human melanoma cells in orthotopic tumor models in vivo. Overall, the results of this study provide a strong rationale for further mechanistic evaluation and clinical development of hMGL for the treatment of melanoma skin cancer and other cancers.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Animales , Ratones , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/patología , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/metabolismo , Puntos de Control de la Fase G2 del Ciclo Celular , Apoptosis , Línea Celular Tumoral
2.
Mol Carcinog ; 61(2): 127-152, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34534385

RESUMEN

Cancer cells undergo metabolic reprogramming to support increased demands in bioenergetics and biosynthesis and to maintain reactive oxygen species at optimum levels. As metabolic alterations are broadly observed across many cancer types, metabolic reprogramming is considered a hallmark of cancer. A metabolic alteration commonly seen in cancer cells is an increased demand for certain amino acids. Amino acids are involved in a wide range of cellular functions, including proliferation, redox balance, bioenergetic and biosynthesis support, and homeostatic functions. Thus, targeting amino acid dependency in cancer is an attractive strategy for a number of cancers. In particular, pharmacologically mediated amino acid depletion has been evaluated as a cancer treatment option for several cancers. Amino acids that have been investigated for the feasibility of drug-induced depletion in preclinical and clinical studies for cancer treatment include arginine, asparagine, cysteine, glutamine, lysine, and methionine. In this review, we will summarize the status of current research on pharmacologically mediated amino acid depletion as a strategy for cancer treatment and potential chemotherapeutic combinations that synergize with amino acid depletion to further inhibit tumor growth and progression.


Asunto(s)
Aminoácidos , Neoplasias , Aminoácidos/metabolismo , Arginina/metabolismo , Glutamina/metabolismo , Humanos , Neoplasias/tratamiento farmacológico , Oxidación-Reducción
3.
Appl Environ Microbiol ; 83(2)2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27836847

RESUMEN

In a longitudinal agricultural community cohort sampling of 65 adult farmworkers and 52 adult nonfarmworkers, we investigated agricultural pesticide exposure-associated changes in the oral buccal microbiota. We found a seasonally persistent association between the detected blood concentration of the insecticide azinphos-methyl and the taxonomic composition of the buccal swab oral microbiome. Blood and buccal samples were collected concurrently from individual subjects in two seasons, spring/summer 2005 and winter 2006. Mass spectrometry quantified blood concentrations of the organophosphate insecticide azinphos-methyl. Buccal oral microbiome samples were 16S rRNA gene DNA sequenced, assigned to the bacterial taxonomy, and analyzed after "centered-log-ratio" transformation to handle the compositional nature of the proportional abundances of bacteria per sample. Nonparametric analysis of the transformed microbiome data for individuals with and without azinphos-methyl blood detection showed significant perturbations in seven common bacterial taxa (>0.5% of sample mean read depth), including significant reductions in members of the common oral bacterial genus Streptococcus Diversity in centered-log-ratio composition between individuals' microbiomes was also investigated using principal-component analysis (PCA) to reveal two primary PCA clusters of microbiome types. The spring/summer "exposed" microbiome cluster with significantly less bacterial diversity was enriched for farmworkers and contained 27 of the 30 individuals who also had azinphos-methyl agricultural pesticide exposure detected in the blood. IMPORTANCE: In this study, we show in human subjects that organophosphate pesticide exposure is associated with large-scale significant alterations of the oral buccal microbiota composition, with extinctions of whole taxa suggested in some individuals. The persistence of this association from the spring/summer to the winter also suggests that long-lasting effects on the commensal microbiota have occurred. The important health-related outcomes of these agricultural community individuals' pesticide-associated microbiome perturbations are not understood at this time. Future investigations should index medical and dental records for common and chronic diseases that may be interactively caused by this association between pesticide exposure and microbiome alteration.


Asunto(s)
Azinfosmetilo/efectos adversos , Bacterias/aislamiento & purificación , Agricultores , Microbiota , Boca/microbiología , Exposición Profesional , Plaguicidas/efectos adversos , Adulto , Bacterias/clasificación , Humanos , Estudios Longitudinales , Persona de Mediana Edad , Washingtón , Adulto Joven
4.
Biomarkers ; 20(5): 299-305, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26329526

RESUMEN

CONTEXT: Characterization of stress exposure requires understanding seasonal variability in stress biomarkers. OBJECTIVE: To compare acute and chronic stress biomarkers between two seasons in a cohort of rural, Hispanic mothers. METHODS: Stress questionnaires and cortisol measurements (hair, blood and saliva) were collected in the summer and fall. RESULTS: Cortisol biomarkers were significantly different and stress questionnaires were significantly correlated between seasons. DISCUSSION: The variability in cortisol and relative stability of questionnaires between seasons may indicate that cortisol responds to subtle stressors not addressed in questionnaires. CONCLUSIONS: There are significant differences in stress biomarkers in our cohort between seasons.


Asunto(s)
Agricultura , Biomarcadores/análisis , Hispánicos o Latinos , Hidrocortisona/análisis , Madres , Estaciones del Año , Biomarcadores/sangre , Estudios de Cohortes , Exposición a Riesgos Ambientales , Femenino , Cabello/química , Humanos , Hidrocortisona/sangre , Saliva/química , Estrés Fisiológico
5.
J Exp Clin Cancer Res ; 42(1): 119, 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37170264

RESUMEN

BACKGROUND: Prostate Cancer (PCa) represents one of the most commonly diagnosed neoplasms in men and is associated with significant morbidity and mortality. Therapy resistance and significant side effects of current treatment strategies indicate the need for more effective agents to treat both androgen-dependent and androgen-independent PCa. In earlier studies, we demonstrated that depletion of L-cysteine/cystine with an engineered human enzyme, Cyst(e)inase, increased intracellular ROS levels and inhibited PCa growth in vitro and in vivo. The current study was conducted to further explore the mechanisms and potential combinatorial approaches with Cyst(e)inase for treatment of PCa. METHODS: DNA single strand breaks and clustered oxidative DNA damage were evaluated by alkaline comet assay and pulsed field gel electrophoresis, respectively. Neutral comet assay and immunofluorescence staining was used to measure DNA double strand breaks. Cell survival and reactive oxygen species level were measured by crystal violet assay and DCFDA staining, respectively. Western blot was used to determine protein expression. FACS analyses were preformed for immune cell phenotyping. Allograft and xenograft tumor models were used for assessing effects on tumor growth. RESULTS: PCa cells treated with Cyst(e)inase lead to DNA single and double strand breaks resulted from clustered oxidative DNA damage (SSBs and DSBs). Cyst(e)inase in combination with Auranofin, a thioredoxin reductase inhibitor, further increased intracellular ROS and DNA DSBs and synergistically inhibited PCa cell growth in vitro and in vivo. A combination of Cyst(e)inase with a PARP inhibitor (Olaparib) also increased DNA DSBs and synergistically inhibited PCa cell growth in vitro and in vivo without additional ROS induction. Knockdown of BRCA2 in PCa cells increased DSBs and enhanced sensitivity to Cyst(e)inase. Finally, Cyst(e)inase treatment altered tumor immune infiltrates and PD-L1 expression and sensitized PCa cells to anti-PD-L1 treatment. CONCLUSIONS: The current results demonstrate the importance of oxidative DNA damage either alone or in combination for Cyst(e)inase-induced anticancer activity. Furthermore, cysteine/cystine depletion alters the tumor immune landscape favoring enhanced immune checkpoint inhibition targeting PD-L1. Thus, combinatorial approaches with Cyst(e)inase could lead to novel therapeutic strategies for PCa.


Asunto(s)
Quistes , Neoplasias de la Próstata , Masculino , Humanos , Cisteína/farmacología , Cisteína/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Cistina/genética , Cistina/uso terapéutico , Andrógenos , Línea Celular Tumoral , Daño del ADN , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , ADN , Quistes/tratamiento farmacológico
6.
Int J Hyg Environ Health ; 248: 114090, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36516690

RESUMEN

Our prior work shows that azinphos-methyl pesticide exposure is associated with altered oral microbiomes in exposed farmworkers. Here we extend this analysis to show the same association pattern is also evident in their children. Oral buccal swab samples were analyzed at two time points, the apple thinning season in spring-summer 2005 for 78 children and 101 adults and the non-spray season in winter 2006 for 62 children and 82 adults. The pesticide exposure for the children were defined by the farmworker occupation of the cohabitating household adult and the blood azinphos-methyl detection of the cohabitating adult. Oral buccal swab 16S rRNA sequencing determined taxonomic microbiota proportional composition from concurrent samples from both adults and children. Analysis of the identified bacteria showed significant proportional changes for 12 of 23 common oral microbiome genera in association with azinphos-methyl detection and farmworker occupation. The most common significantly altered genera had reductions in the abundance of Streptococcus, suggesting an anti-microbial effect of the pesticide. Principal component analysis of the microbiome identified two primary clusters, with association of principal component 1 to azinphos-methyl blood detection and farmworker occupational status of the household. The children's buccal microbiota composition clustered with their household adult in ∼95% of the households. Household adult farmworker occupation and household pesticide exposure is associated with significant alterations in their children's oral microbiome composition. This suggests that parental occupational exposure and pesticide take-home exposure pathways elicit alteration of their children's microbiomes.


Asunto(s)
Microbiota , Exposición Profesional , Plaguicidas , Adulto , Humanos , Niño , Plaguicidas/análisis , Agricultores , Azinfosmetilo/análisis , ARN Ribosómico 16S , Agricultura , Exposición Profesional/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA