Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
EMBO J ; 31(3): 563-75, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22139357

RESUMEN

In fission yeast, the stress-activated MAP kinase, Sty1, is activated via phosphorylation upon exposure to stress and orchestrates an appropriate response. Its activity is attenuated by either serine/threonine PP2C or tyrosine phosphatases. Here, we found that the PP2C phosphatase, Ptc4, plays an important role in inactivating Sty1 specifically upon oxidative stress. Sty1 activity remains high in a ptc4 deletion mutant upon H(2)O(2) but not under other types of stress. Surprisingly, Ptc4 localizes to the mitochondria and is targeted there by an N-terminal mitochondrial targeting sequence (MTS), which is cleaved upon import. A fraction of Sty1 also localizes to the mitochondria suggesting that Ptc4 attenuates the activity of a mitochondrial pool of this MAPK. Cleavage of the Ptc4 MTS is greatly reduced specifically upon H(2)O(2), resulting in the full-length form of the phosphatase; this displays a stronger interaction with Sty1, thus suggesting a novel mechanism by which the negative regulation of MAPK signalling is controlled and providing an explanation for the oxidative stress-specific nature of the regulation of Sty1 by Ptc4.


Asunto(s)
Peróxido de Hidrógeno/metabolismo , Mitocondrias/enzimología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimología , Activación Enzimática , Estrés Oxidativo , Fosforilación , Proteolisis
2.
Trends Cell Biol ; 12(12): 545-6, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12495835

RESUMEN

The foothills of the Rocky Mountains provided a spectacular setting for the American Society for Cell Biology (ASCB) meeting entitled 'Non-traditional functions of ubiquitin and ubiquitin-like proteins', Colorado College, Colorado Springs, CO, USA, on 11-14 August, 2002. Organizers Linda Hicke and Cecile Pickart put together an excellent programme of talks covering functions of ubiquitin other than its well known role in proteasomal targeting. The increasingly diverse biological processes in which the ubiquitin-like proteins (UBLs) are involved, also featured. One of the aims of the meeting was to bring together researchers working directly with ubiquitin and UBLs, and also those who have found that their favourite molecule or process is somehow influenced by these small versatile tags. As a result, delegates were treated to a diverse and highly stimulating meeting.


Asunto(s)
Ubiquitinas/metabolismo , Cisteína/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteína SUMO-1/metabolismo , Transcripción Genética , Ubiquitinas/genética
3.
Eukaryot Cell ; 7(6): 926-37, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18441123

RESUMEN

We undertook a screen to isolate determinants of drug resistance in fission yeast and identified two genes that, when mutated, result in sensitivity to a range of structurally unrelated compounds, some of them commonly used in the clinic. One gene, rav1, encodes the homologue of a budding yeast protein which regulates the assembly of the vacuolar ATPase. The second gene, lac1, encodes a homologue of genes that are required for ceramide synthesis. Both mutants are sensitive to the chemotherapeutic agent doxorubicin, and using the naturally fluorescent properties of this compound, we found that both rav1 and lac1 mutations result in an increased accumulation of the drug in cells. The multidrug-sensitive phenotype of rav1 mutants can be rescued by up-regulation of the lag1 gene which encodes a homologue of lac1, whereas overexpression of either lac1 or lag1 confers multidrug resistance on wild-type cells. These data suggest that changing the amount of ceramide synthase activity in cells can influence innate drug resistance. The function of Rav1 appears to be conserved, as we show that SpRav1 is part of a RAVE-like complex in fission yeast and that loss of rav1 results in defects in vacuolar (H(+))-ATPase activity. Thus, we conclude that loss of normal V-ATPase function results in an increased sensitivity of Schizosaccharomyces pombe cells to drugs. The rav1 and lac1 genes are conserved in both higher eukaryotes and various pathogenic fungi. Thus, our data could provide the basis for strategies to sensitize tumor cells or drug-resistant pathogenic fungi to drugs.


Asunto(s)
Antifúngicos/farmacología , Farmacorresistencia Fúngica , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/efectos de los fármacos , Schizosaccharomyces/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Doxorrubicina/farmacología , Regulación Fúngica de la Expresión Génica , Calor , Mutación , Schizosaccharomyces/citología , Esteroles/análisis , ATPasas de Translocación de Protón Vacuolares/genética
4.
Curr Biol ; 14(24): 2283-8, 2004 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-15620657

RESUMEN

Hub1/Ubl5 is a member of the family of ubiquitin-like proteins (UBLs). The tertiary structure of Hub1 is similar to that of ubiquitin; however, it differs from known modifiers in that there is no conserved glycine residue near the C terminus which, in ubiquitin and UBLs, is required for covalent modification of target proteins. Instead, there is a conserved dityrosine motif proximal to the terminal nonconserved amino acid. In S. cerevisiae, high molecular weight adducts can be formed in vivo from Hub1, but the structure of these adducts is not known, and they could be either covalent or noncovalent. The budding yeast HUB1 gene is not essential, but Delta hub1 mutants display defects in mating. Here, we report that fission yeast hub1 is an essential gene, whose loss results in cell cycle defects and inefficient pre-mRNA splicing. A screen for Hub1 interactors identified Snu66, a component of the U4/U6.U5 tri-snRNP splicing complex. Furthermore, overexpression of Snu66 suppresses the lethality of a hub1ts mutant. In cells lacking functional hub1, the nuclear localization of Snu66 is disrupted, suggesting that an important role for Hub1 is the correct subcellular targeting of Snu66, although our data suggest that Hub1 is likely to perform other roles in splicing as well.


Asunto(s)
Empalme del ARN/fisiología , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ciclo Celular/fisiología , Electroforesis en Gel de Poliacrilamida , Citometría de Flujo , Genes Esenciales/fisiología , Microscopía Fluorescente , Mutación/genética , Oligonucleótidos , Transporte de Proteínas/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Técnicas del Sistema de Dos Híbridos , Complejos de Ubiquitina-Proteína Ligasa/genética , Ubiquitinas
5.
Nat Commun ; 5: 3947, 2014 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-24853205

RESUMEN

Non-coding RNAs (ncRNAs) are frequent and prevalent across the taxa. Although individual non-coding loci have been assigned a function, most are uncharacterized. Their global biological significance is unproven and remains controversial. Here we investigate the role played by ncRNAs in the stress response of Schizosaccharomyces pombe. We integrate global proteomics and RNA sequencing data to identify a systematic programme in which elevated antisense RNA arising both from ncRNAs and from 3'-overlapping convergent gene pairs is directly associated with substantial reductions in protein levels throughout the genome. We describe an extensive array of ncRNAs with trans associations that have the potential to influence multiple pathways. Deletion of one such locus reduces levels of atf1, a transcription factor downstream of the stress-activated mitogen-activated protein kinase (MAPK) pathway, and alters sensitivity to oxidative stress. These non-coding transcripts therefore regulate specific stress responses, adding unanticipated information-processing capacity to the MAPK signalling system.


Asunto(s)
ARN de Hongos/genética , ARN no Traducido/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Estrés Fisiológico/genética , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Sistemas de Lectura Abierta/genética , Presión Osmótica , Estrés Oxidativo/genética , Proteoma/metabolismo , ARN sin Sentido/metabolismo , ARN de Hongos/metabolismo , ARN no Traducido/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Transcriptoma/genética
6.
J Mol Biol ; 404(2): 183-201, 2010 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-20875427

RESUMEN

In fission yeast, Sty1 and Gcn2 are important protein kinases that regulate gene expression in response to amino acid starvation. The translation factor subunit Int6/eIF3e promotes Sty1-dependent response by increasing the abundance of Atf1, a transcription factor targeted by Sty1. While Gcn2 promotes expression of amino acid biosynthesis enzymes, the mechanism and function of Sty1 activation and Int6/eIF3e involvement during this nutrient stress are not understood. Here we show that mutants lacking sty1(+) or gcn2(+) display reduced viabilities during histidine depletion stress in a manner suppressible by the antioxidant N-acetyl cysteine, suggesting that these protein kinases function to alleviate endogenous oxidative damage generated during nutrient starvation. Int6/eIF3e also promotes cell viability by a mechanism involving the stimulation of Sty1 response to oxidative damage. In further support of these observations, microarray data suggest that, during histidine starvation, int6Δ increases the duration of Sty1-activated gene expression linked to oxidative stress due to the initial attenuation of Sty1-dependent transcription. Moreover, loss of gcn2 induces the expression of a new set of genes not activated in wild-type cells starved for histidine. These genes encode heatshock proteins, redox enzymes, and proteins involved in mitochondrial maintenance, in agreement with the idea that oxidative stress is imposed on gcn2Δ cells. Furthermore, early Sty1 activation promotes rapid Gcn2 activation on histidine starvation. These results suggest that Gcn2, Sty1, and Int6/eIF3e are functionally integrated and cooperate to respond to oxidative stress generated during histidine starvation.


Asunto(s)
Factor 3 de Iniciación Eucariótica/metabolismo , Histidina/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Factor de Transcripción Activador 1/genética , Factor de Transcripción Activador 1/metabolismo , Amitrol (Herbicida)/farmacología , Secuencia de Bases , ADN de Hongos/genética , Factor 3 de Iniciación Eucariótica/genética , Retroalimentación Fisiológica , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Sistema de Señalización de MAP Quinasas , Proteínas Quinasas Activadas por Mitógenos/genética , Modelos Biológicos , Mutación , Estrés Oxidativo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Schizosaccharomyces/efectos de los fármacos , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Transcripción Genética
7.
Curr Biol ; 19(22): 1907-11, 2009 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-19836238

RESUMEN

The Atf1 transcription factor is critical for directing stress-induced gene expression in fission yeast [1]. Upon exposure to stress, Atf1 is hyperphosphorylated by the mitogen-activated protein kinase (MAPK) Sty1 [2, 3], which results in its stabilization [4]. The resulting increase in Atf1 is vital for a robust response to certain stresses [4]. Here we investigated the mechanism by which phosphorylation stabilizes Atf1. We show that Atf1 is a target for the ubiquitin-proteasome system and that its degradation is dependent upon an SCF E3 ligase containing the F box protein Fbh1. Turnover of Atf1 requires an intact F box, but not DNA helicase activity of Fbh1. Accordingly, disruption of Fbh1 F box function suppresses phenotypes associated with loss of Atf1 phosphorylation. Atf1 and Fbh1 interact under basal conditions, but this binding is lost upon stress. In contrast, a version of Atf1 lacking all intact MAPK sites still interacts with Fbh1 upon stress, indicating that the association between the F box protein and substrate is disrupted by stress-induced phosphorylation. Most F box protein-substrate interactions described to date are mediated positively by phosphorylation [5]. Thus, our findings represent a novel means of regulating the interaction between an F box protein and its substrate. Moreover, Atf1 is the first target described in any organism for the Fbh1 F box protein.


Asunto(s)
Factor de Transcripción Activador 1/metabolismo , ADN Helicasas/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Estrés Fisiológico , Fosforilación , Unión Proteica
8.
J Biol Chem ; 284(36): 23989-94, 2009 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-19584054

RESUMEN

Fission yeast Atf1 is a member of the ATF/CREB basic leucine zipper (bZIP) family of transcription factors with strong homology to mammalian ATF2. Atf1 regulates transcription in response to stress stimuli and also plays a role in controlling heterochromatin formation and recombination. However, its DNA binding independent role is poorly studied. Here, we report that Atf1 has a distinct role in regulating the anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase. We have identified atf1(+) as a dose-dependent suppressor of apc5-1, a mutation causing mitotic arrest. Remarkably, the suppression is not dependent upon the bZIP domain and is therefore independent of the ability of Atf1 to bind DNA. Interestingly, Atf1 physically binds the APC/C in vivo. Furthermore, we show that addition of purified Atf1 proteins into a cell-free system stimulates ubiquitylation of cyclin B and securin by the APC/C. These results reveal a novel role for Atf1 in cell cycle control through protein-protein interaction.


Asunto(s)
Factor de Transcripción Activador 1/metabolismo , Mitosis/fisiología , Fosfoproteínas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Factor de Transcripción Activador 1/genética , Ciclosoma-Complejo Promotor de la Anafase , Sistema Libre de Células/metabolismo , Ciclina B/genética , Ciclina B/metabolismo , Heterocromatina/genética , Heterocromatina/metabolismo , Fosfoproteínas/genética , Recombinación Genética/fisiología , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Complejos de Ubiquitina-Proteína Ligasa/genética , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ubiquitina-Proteína Ligasas/genética
9.
J Biol Chem ; 283(15): 9945-56, 2008 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-18252721

RESUMEN

The stress-induced expression of many fission yeast genes is dependent upon the Sty1 mitogen-activated protein kinase (MAPK) and Atf1 transcription factor. Atf1 is phosphorylated by Sty1 yet this phosphorylation is not required for stress-induced gene expression, suggesting another mechanism exists whereby Sty1 activates transcription. Here we show that Sty1 associates with Atf1-dependent genes and is recruited to both their promoters and coding regions. This occurs in response to various stress conditions coincident with the kinetics of the activation of Sty1. Association with promoters is not a consequence of increased nuclear accumulation of Sty1 nor does it require the phosphorylation of Atf1. However, recruitment is completely abolished in a mutant lacking Sty1 kinase activity. Both Atf1 and its binding partner Pcr1 are required for association of Sty1 with Atf1-dependent promoters, suggesting that this heterodimer must be intact for optimal recruitment of the MAPK. However, many Atf1-dependent genes are still expressed in a pcr1Delta mutant but with significantly delayed kinetics, thus providing an explanation for the relatively mild stress sensitivity displayed by pcr1Delta. Consistent with this delay, Sty1 and Atf1 cannot be detected at these promoters in this condition, suggesting that their association with chromatin is weak or transient in the absence of Pcr1.


Asunto(s)
Factor de Transcripción Activador 1/metabolismo , Factores de Transcripción Activadores/metabolismo , Núcleo Celular/metabolismo , Regulación Fúngica de la Expresión Génica/fisiología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Factor de Transcripción Activador 1/genética , Factores de Transcripción Activadores/genética , Transporte Activo de Núcleo Celular/fisiología , Núcleo Celular/genética , Cromatina/genética , Cromatina/metabolismo , Eliminación de Gen , Proteínas Quinasas Activadas por Mitógenos/genética , Sistemas de Lectura Abierta/fisiología , Fosfoproteínas/genética , Fosforilación , Regiones Promotoras Genéticas/fisiología , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética
10.
Mol Biol Cell ; 19(1): 308-17, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18003976

RESUMEN

Cellular protection against oxidative damage is relevant to ageing and numerous diseases. We analyzed the diversity of genome-wide gene expression programs and their regulation in response to various types and doses of oxidants in Schizosaccharomyces pombe. A small core gene set, regulated by the AP-1-like factor Pap1p and the two-component regulator Prr1p, was universally induced irrespective of oxidant and dose. Strong oxidative stresses led to a much larger transcriptional response. The mitogen-activated protein kinase (MAPK) Sty1p and the bZIP factor Atf1p were critical for the response to hydrogen peroxide. A newly identified zinc-finger protein, Hsr1p, is uniquely regulated by all three major regulatory systems (Sty1p-Atf1p, Pap1p, and Prr1p) and in turn globally supports gene expression in response to hydrogen peroxide. Although the overall transcriptional responses to hydrogen peroxide and t-butylhydroperoxide were similar, to our surprise, Sty1p and Atf1p were less critical for the response to the latter. Instead, another MAPK, Pmk1p, was involved in surviving this stress, although Pmk1p played only a minor role in regulating the transcriptional response. These data reveal a considerable plasticity and differential control of regulatory pathways in distinct oxidative stress conditions, providing both specificity and backup for protection from oxidative damage.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Estrés Oxidativo/genética , Schizosaccharomyces/genética , Transducción de Señal/genética , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Genes Fúngicos , Peróxido de Hidrógeno/farmacología , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Oxidantes/farmacología , Estrés Oxidativo/efectos de los fármacos , Schizosaccharomyces/efectos de los fármacos , Schizosaccharomyces/enzimología , Proteínas de Schizosaccharomyces pombe/metabolismo , Transducción de Señal/efectos de los fármacos , Vitamina K 3/farmacología , terc-Butilhidroperóxido/farmacología
11.
J Biol Chem ; 283(32): 22063-75, 2008 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-18502752

RESUMEN

int-6 is one of the frequent integration sites for mouse mammary tumor viruses. Although its product is the e-subunit of translation initiation factor eIF3, other evidence indicates that it interacts with proteasomes or other proteins to regulate protein stability. Here we report that the fission yeast int6(+) is required for overcoming stress imposed by histidine starvation, using the drug 3-aminotriazole (3AT). Microarray and complementary Northern studies using wild-type, int6Delta or gcn2Delta mutants indicate that 3AT-treated wild-type yeast induces core environmental stress response (CESR) genes in addition to typical general amino acid control (GAAC) genes whose transcription depends on the eIF2 kinase, Gcn2. In agreement with this, Sty1 MAPK and its target transcription factor Atf1, which signal the CESR, are required for overcoming 3AT-induced starvation. We find that Int6 is required for maintaining the basal level of Atf1 and for rapid transcriptional activation of the CESR on 3AT-insult. Pulse labeling experiments indicate that int6Delta significantly slows down de novo protein synthesis. Moreover, Atf1 protein half-life was reduced in int6Delta cells. These effects would account for the compromised Atf1 activity on 3AT-induced stress. Thus, the robust protein synthesis promoted by intact eIF3 appears to be a part of the requisites for sound Sty1 MAPK-dependent signaling governed by the activity of the Atf1 transcription factor.


Asunto(s)
Factor 3 de Iniciación Eucariótica/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Biosíntesis de Proteínas , Proteínas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Aminoácidos/metabolismo , Amitrol (Herbicida)/farmacología , Factor 3 de Iniciación Eucariótica/genética , Perfilación de la Expresión Génica , Histidina/metabolismo , Familia de Multigenes , Mutación , Proteínas/genética , Schizosaccharomyces/efectos de los fármacos , Transducción de Señal
12.
J Biol Chem ; 282(8): 5160-70, 2007 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-17182615

RESUMEN

The Atf1 transcription factor plays a vital role in the ability of Schizosaccharomyces pombe cells to respond to various stress conditions. It regulates the expression of many genes in a stress-dependent manner, and its function is dependent upon the stress-activated MAPK, Sty1/Spc1. Moreover, Atf1 is directly phosphorylated by Sty1. Here we have investigated the role of such phosphorylation. Atf1 protein accumulates following stress, and this accumulation is lost in a strain defective in the Sty1 signaling pathway. In addition, accumulation of a mutant Atf1 protein that can no longer be phosphorylated is lost. Measurement of the half-life of Atf1 demonstrates that changes in Atf1 stability are responsible for this accumulation. Atf1 stability is also regulated by its heterodimeric partner, Pcr1. Similarly, Pcr1 levels are regulated by Atf1. Thus multiple pathways exist that ensure that Atf1 levels are appropriately regulated. Phosphorylation of Atf1 is important for cells to mount a robust response to H(2)O(2) stress, because the Atf1 phospho-mutant displays sensitivity to this stress, and induction of gene expression is lower than that observed in wild-type cells. Surprisingly, however, loss of Atf1 phosphorylation does not lead to the complete loss of stress-activated expression of Atf1 target genes. Accordingly, the Atf1 phospho-mutant does not display the same overall stress sensitivities as the atf1 deletion mutant. Taken together, these data suggest that Sty1 phosphorylation of Atf1 is not required for activation of Atf1 per se but rather for modulating its stability.


Asunto(s)
Factor de Transcripción Activador 1/metabolismo , Factores de Transcripción Activadores/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosfoproteínas/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Factor de Transcripción Activador 1/genética , Factores de Transcripción Activadores/genética , Dimerización , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Regulación Fúngica de la Expresión Génica/genética , Peróxido de Hidrógeno/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Presión Osmótica/efectos de los fármacos , Oxidantes/farmacología , Fosfoproteínas/genética , Fosforilación/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Procesamiento Proteico-Postraduccional/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Eliminación de Secuencia , Sorbitol/farmacología , Edulcorantes/farmacología
13.
Proteomics ; 6(9): 2772-96, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16548067

RESUMEN

Using an integrated approach incorporating proteomics, metabolomics and published mRNA data, we have investigated the effects of hydrogen peroxide on wild type and a Sty1p-deletion mutant of the fission yeast Schizosaccharomyces pombe. Differential protein expression analysis based on the modification of proteins with matched fluorescent labelling reagents (2-D-DIGE) is the foundation of the quantitative proteomics approach. This study identifies 260 differentially expressed protein isoforms from 2-D-DIGE gels using MALDI MS and reveals the complexity of the cellular response to oxidative stress and the dependency on the Sty1p stress-activated protein kinase. We show the relationship between these protein changes and mRNA expression levels identified in a parallel whole genome study, and discuss the regulatory mechanisms involved in protecting cells against hydrogen peroxide and the involvement of Sty1p-dependent stress-activated protein kinase signalling. Metabolomic profiling of 29 intermediates using 1H NMR was also conducted alongside the protein analysis using the same sample sets, allowing examination of how the protein changes might affect the metabolic pathways and biological processes involved in the oxidative stress response. This combined analysis identifies a number of interlinked metabolic pathways that exhibit stress- and Sty1-dependent patterns of regulation.


Asunto(s)
Peróxido de Hidrógeno/farmacología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Estrés Oxidativo/fisiología , Proteómica , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Electroforesis en Gel Bidimensional , Eliminación de Gen , Regulación de la Expresión Génica , Peróxido de Hidrógeno/metabolismo , Espectrometría de Masas , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/genética , Oxidantes/metabolismo , Oxidantes/farmacología , Estrés Oxidativo/efectos de los fármacos , Isoformas de Proteínas/efectos de los fármacos , Isoformas de Proteínas/metabolismo , Procesamiento Proteico-Postraduccional , ARN Mensajero/biosíntesis , Schizosaccharomyces/efectos de los fármacos , Proteínas de Schizosaccharomyces pombe/efectos de los fármacos , Proteínas de Schizosaccharomyces pombe/genética
14.
Genes Cells ; 10(10): 941-51, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16164595

RESUMEN

In this study, we show that a mutation isolated during a screen for determinants of chemosensitivity in S. pombe results in loss of function of a previously uncharacterized protein kinase now named Hal4. Hal4 shares sequence homology to Hal4 and Hal5 in S. cerevisiae, and previous evidence indicates that these kinases positively regulate the major potassium transporter Trk1,2 and thereby maintain the plasma membrane potential. Disruption of this ion homeostasis pathway results in a hyperpolarized membrane and a concomitant increased sensitivity to cations. We demonstrate that a mutation in hal4+ results in hyperpolarization of the plasma membrane. In addition to the original selection agent, the hal4-1 mutant is sensitive to a variety of chemotherapeutic agents and stress-inducing compounds. Furthermore, this wider chemosensitive phenotype is also displayed by corresponding mutants in S. cerevisiae, and in a trk1deltatrk2delta double deletion mutant in S. pombe. We propose that this pathway and its role in regulating the plasma membrane potential may act as a pleiotropic determinant of sensitivity to chemotherapeutic agents.


Asunto(s)
Farmacorresistencia Fúngica Múltiple/genética , Proteínas Quinasas/genética , Schizosaccharomyces/efectos de los fármacos , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Proteínas de Transporte de Catión/farmacología , Cationes/metabolismo , Cationes/farmacología , Membrana Celular/metabolismo , Relación Dosis-Respuesta a Droga , Escherichia coli/genética , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Potenciales de la Membrana , Mutación/fisiología , Cloruro de Potasio/metabolismo , Cloruro de Potasio/farmacología , Proteínas Quinasas/metabolismo , Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/farmacología , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/farmacología , Homología de Secuencia
15.
Science ; 295(5564): 2442-6, 2002 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-11923536

RESUMEN

Type I ubiquitin-like proteins constitute a family of protein modifiers. Here we report the identification of a posttranslational protein modifier from Saccharomyces cerevisiae, Hub1. Overexpression of Hub1 resulted in enhanced conjugate formation when its carboxyl-terminal residue was deleted, suggesting that mature Hub1 may be produced by proteolytic processing. In vivo targets of Hub1 conjugation included cell polarity factors Sph1 and Hbt1. In the hub1Delta mutant, the subcellular localization of both Hbt1 and Sph1 was disrupted, and cell polarization during the formation of mating projections was defective. Consistent with these polarization defects, the hub1Delta mutant was deficient in mating.


Asunto(s)
Polaridad Celular , Ligasas/metabolismo , Proteínas de Microfilamentos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Secuencia de Aminoácidos , Animales , Evolución Biológica , Electroforesis en Gel Bidimensional , Eliminación de Gen , Genes Fúngicos , Humanos , Ligasas/química , Ligasas/genética , Espectrometría de Masas , Factor de Apareamiento , Datos de Secuencia Molecular , Morfogénesis , Mutación , Péptidos/farmacología , Fenotipo , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Alineación de Secuencia , Fracciones Subcelulares/metabolismo , Ubiquitina/química , Ubiquitina/metabolismo
16.
J Biol Chem ; 278(19): 16791-6, 2003 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-12615927

RESUMEN

Fission yeast Rhp23 and Pus1 represent two families of multiubiquitin chain-binding proteins that associate with the proteasome. We show that both proteins bind to different regions of the proteasome subunit Mts4. The binding site for Pus1 was mapped to a cluster of repetitive sequences also found in the proteasome subunit SpRpn2 and the anaphase-promoting complex/cyclosome (APC/C) subunit Cut4. The putative role of Pus1 as a factor involved in allocation of ubiquitinylated substrates for the proteasome is discussed.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Fúngicas/metabolismo , Hidroliasas/metabolismo , Ligasas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Complejos de Ubiquitina-Proteína Ligasa , Secuencia de Aminoácidos , Ciclosoma-Complejo Promotor de la Anafase , Cisteína Endopeptidasas/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Datos de Secuencia Molecular , Complejos Multienzimáticos/metabolismo , Complejo de la Endopetidasa Proteasomal , Unión Proteica , Schizosaccharomyces/metabolismo , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA