Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Hum Mol Genet ; 31(18): 3095-3106, 2022 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-35531971

RESUMEN

Large-scale genomic studies of schizophrenia implicate genes involved in the epigenetic regulation of transcription by histone methylation and genes encoding components of the synapse. However, the interactions between these pathways in conferring risk to psychiatric illness are unknown. Loss-of-function (LoF) mutations in the gene encoding histone methyltransferase, SETD1A, confer substantial risk to schizophrenia. Among several roles, SETD1A is thought to be involved in the development and function of neuronal circuits. Here, we employed a multi-omics approach to study the effects of heterozygous Setd1a LoF on gene expression and synaptic composition in mouse cortex across five developmental timepoints from embryonic day 14 to postnatal day 70. Using RNA sequencing, we observed that Setd1a LoF resulted in the consistent downregulation of genes enriched for mitochondrial pathways. This effect extended to the synaptosome, in which we found age-specific disruption to both mitochondrial and synaptic proteins. Using large-scale patient genomics data, we observed no enrichment for genetic association with schizophrenia within differentially expressed transcripts or proteins, suggesting they derive from a distinct mechanism of risk from that implicated by genomic studies. This study highlights biological pathways through which SETD1A LOF may confer risk to schizophrenia. Further work is required to determine whether the effects observed in this model reflect human pathology.


Asunto(s)
N-Metiltransferasa de Histona-Lisina , Histonas , Animales , Epigénesis Genética , Histona Metiltransferasas/genética , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Humanos , Ratones , Sinaptosomas/metabolismo , Transcriptoma/genética
2.
Acta Neuropathol ; 147(1): 64, 2024 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-38556574

RESUMEN

Prader-Willi Syndrome (PWS) is a rare neurodevelopmental disorder of genetic etiology, characterized by paternal deletion of genes located at chromosome 15 in 70% of cases. Two distinct genetic subtypes of PWS deletions are characterized, where type I (PWS T1) carries four extra haploinsufficient genes compared to type II (PWS T2). PWS T1 individuals display more pronounced physiological and cognitive abnormalities than PWS T2, yet the exact neuropathological mechanisms behind these differences remain unclear. Our study employed postmortem hypothalamic tissues from PWS T1 and T2 individuals, conducting transcriptomic analyses and cell-specific protein profiling in white matter, neurons, and glial cells to unravel the cellular and molecular basis of phenotypic severity in PWS sub-genotypes. In PWS T1, key pathways for cell structure, integrity, and neuronal communication are notably diminished, while glymphatic system activity is heightened compared to PWS T2. The microglial defect in PWS T1 appears to stem from gene haploinsufficiency, as global and myeloid-specific Cyfip1 haploinsufficiency in murine models demonstrated. Our findings emphasize microglial phagolysosome dysfunction and altered neural communication as crucial contributors to the severity of PWS T1's phenotype.


Asunto(s)
Síndrome de Prader-Willi , Humanos , Ratones , Animales , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/psicología , Microglía , Proteínas Portadoras/genética , Fenotipo , Fagosomas , Proteínas Adaptadoras Transductoras de Señales/genética
3.
Brain Behav Immun ; 99: 70-82, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34543680

RESUMEN

Complement is a key component of the immune system with roles in inflammation and host-defence. Here we reveal novel functions of complement pathways impacting on emotional reactivity of potential relevance to the emerging links between complement and risk for psychiatric disorder. We used mouse models to assess the effects of manipulating components of the complement system on emotionality. Mice lacking the complement C3a Receptor (C3aR-/-) demonstrated a selective increase in unconditioned (innate) anxiety whilst mice deficient in the central complement component C3 (C3-/-) showed a selective increase in conditioned (learned) fear. The dissociable behavioural phenotypes were linked to different signalling mechanisms. Effects on innate anxiety were independent of C3a, the canonical ligand for C3aR, consistent with the existence of an alternative ligand mediating innate anxiety, whereas effects on learned fear were due to loss of iC3b/CR3 signalling. Our findings show that specific elements of the complement system and associated signalling pathways contribute differentially to heightened states of anxiety and fear commonly seen in psychopathology.


Asunto(s)
Complemento C3 , Trastornos Mentales , Receptores de Complemento , Animales , Complemento C3/genética , Complemento C3/metabolismo , Modelos Animales de Enfermedad , Inflamación , Ratones , Transducción de Señal
4.
Mol Psychiatry ; 26(6): 1748-1760, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33597718

RESUMEN

Genetic variation in CACNA1C, which encodes the alpha-1 subunit of CaV1.2 L-type voltage-gated calcium channels, is strongly linked to risk for psychiatric disorders including schizophrenia and bipolar disorder. To translate genetics to neurobiological mechanisms and rational therapeutic targets, we investigated the impact of mutations of one copy of Cacna1c on rat cognitive, synaptic and circuit phenotypes implicated by patient studies. We show that rats hemizygous for Cacna1c harbour marked impairments in learning to disregard non-salient stimuli, a behavioural change previously associated with psychosis. This behavioural deficit is accompanied by dys-coordinated network oscillations during learning, pathway-selective disruption of hippocampal synaptic plasticity, attenuated Ca2+ signalling in dendritic spines and decreased signalling through the Extracellular-signal Regulated Kinase (ERK) pathway. Activation of the ERK pathway by a small-molecule agonist of TrkB/TrkC neurotrophin receptors rescued both behavioural and synaptic plasticity deficits in Cacna1c+/- rats. These results map a route through which genetic variation in CACNA1C can disrupt experience-dependent synaptic signalling and circuit activity, culminating in cognitive alterations associated with psychiatric disorders. Our findings highlight targeted activation of neurotrophin signalling pathways with BDNF mimetic drugs as a genetically informed therapeutic approach for rescuing behavioural abnormalities in psychiatric disorder.


Asunto(s)
Trastorno Bipolar , Esquizofrenia , Animales , Canales de Calcio Tipo L/genética , Cognición , Humanos , Factores de Crecimiento Nervioso , Ratas
5.
Hum Mol Genet ; 28(18): 3013-3023, 2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-31087031

RESUMEN

Prader-Willi syndrome (PWS) is a neurodevelopmental disorder caused by deletion or inactivation of paternally expressed imprinted genes on human chromosome 15q11-q13. In addition to endocrine and developmental issues, PWS presents with behavioural problems including stereotyped behaviour, impulsiveness and cognitive deficits. The PWS genetic interval contains several brain-expressed small nucleolar (sno) RNA species that are subject to genomic imprinting, including snord115 that negatively regulates post-transcriptional modification of the serotonin 2C receptor (5-HT2CR) pre-mRNA potentially leading to a reduction in 5-HT2CR function. Using the imprinting centre deletion mouse model for PWS (PWSICdel) we have previously shown impairments in a number of behaviours, some of which are abnormally sensitive to 5-HT2CR-selective drugs. In the stop-signal reaction time task test of impulsivity, PWSICdel mice showed increased impulsivity relative to wild-type (WT) littermates. Challenge with the selective 5-HT2CR agonist WAY163909 reduced impulsivity in PWSICdel mice but had no effect on WT behaviour. This behavioural dissociation in was also reflected in differential patterns of immunoreactivity of the immediate early gene c-Fos, with a blunted response to the drug in the orbitofrontal cortex of PWSICdel mice, but no difference in c-Fos activation in the nucleus accumbens. These findings suggest specific facets of response inhibition are impaired in PWSICdel mice and that abnormal 5-HT2CR function may mediate this dissociation. These data have implications for our understanding of the aetiology of PWS-related behavioural traits and translational relevance for individuals with PWS who may seek to control appetite with the new obesity treatment 5-HT2CR agonist lorcaserin.


Asunto(s)
Impresión Genómica , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/metabolismo , Receptor de Serotonina 5-HT2C/metabolismo , Eliminación de Secuencia , Animales , Encéfalo/metabolismo , Encéfalo/fisiopatología , Modelos Animales de Enfermedad , Femenino , Humanos , Inmunohistoquímica , Masculino , Ratones , Ratones Noqueados , Fenotipo , Síndrome de Prader-Willi/diagnóstico , Proteínas Proto-Oncogénicas c-fos/metabolismo , Receptor de Serotonina 5-HT2C/genética , Agonistas del Receptor de Serotonina 5-HT2/farmacología
6.
Brain Behav Immun ; 98: 136-150, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34403734

RESUMEN

Adult hippocampal neurogenesis (AHN) is a form of ongoing plasticity in the brain that supports specific aspects of cognition. Disruptions in AHN have been observed in neuropsychiatric conditions presenting with inflammatory components and are associated with impairments in cognition and mood. Recent evidence highlights important roles of the complement system in synaptic plasticity and neurogenesis during neurodevelopment and in acute learning and memory processes. In this work we investigated the impact of the complement C3/C3aR pathway on AHN and its functional implications for AHN-related behaviours. In C3-/- mice, we found increased numbers and accelerated migration of adult born granule cells, indicating that absence of C3 leads to abnormal survival and distribution of adult born neurons. Loss of either C3 or C3aR affected the morphology of immature neurons, reducing morphological complexity, though these effects were more pronounced in the absence of C3aR. We assessed functional impacts of the cellular phenotypes in an operant spatial discrimination task that assayed AHN sensitive behaviours. Again, we observed differences in the effects of manipulating C3 or C3aR, in that whilst C3aR-/- mice showed evidence of enhanced pattern separation abilities, C3-/- mice instead demonstrated impaired behavioural flexibility. Our findings show that C3 and C3aR manipulation have distinct effects on AHN that impact at different stages in the development and maturation of newly born neurons, and that the dissociable cellular phenotypes are associated with specific alterations in AHN-related behaviours.


Asunto(s)
Complemento C3 , Hipocampo , Animales , Cognición , Complemento C3/genética , Complemento C3/metabolismo , Hipocampo/metabolismo , Masculino , Ratones , Neurogénesis , Neuronas/metabolismo
7.
Nature ; 469(7331): 534-8, 2011 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-21270893

RESUMEN

Imprinted genes, defined by their preferential expression of a single parental allele, represent a subset of the mammalian genome and often have key roles in embryonic development, but also postnatal functions including energy homeostasis and behaviour. When the two parental alleles are unequally represented within a social group (when there is sex bias in dispersal and/or variance in reproductive success), imprinted genes may evolve to modulate social behaviour, although so far no such instance is known. Predominantly expressed from the maternal allele during embryogenesis, Grb10 encodes an intracellular adaptor protein that can interact with several receptor tyrosine kinases and downstream signalling molecules. Here we demonstrate that within the brain Grb10 is expressed from the paternal allele from fetal life into adulthood and that ablation of this expression engenders increased social dominance specifically among other aspects of social behaviour, a finding supported by the observed increase in allogrooming by paternal Grb10-deficient animals. Grb10 is, therefore, the first example of an imprinted gene that regulates social behaviour. It is also currently alone in exhibiting imprinted expression from each of the parental alleles in a tissue-specific manner, as loss of the peripherally expressed maternal allele leads to significant fetal and placental overgrowth. Thus Grb10 is, so far, a unique imprinted gene, able to influence distinct physiological processes, fetal growth and adult behaviour, owing to actions of the two parental alleles in different tissues.


Asunto(s)
Alelos , Conducta Animal/fisiología , Proteína Adaptadora GRB10/genética , Proteína Adaptadora GRB10/metabolismo , Impresión Genómica/genética , Animales , Sistema Nervioso Central/embriología , Femenino , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Predominio Social
8.
Eur J Neurosci ; 42(4): 2105-13, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26040449

RESUMEN

Prader-Willi syndrome (PWS) is a neurodevelopmental disorder caused by deletion or inactivation of paternally expressed imprinted genes on human chromosome 15q11-q13, the most recognised feature of which is hyperphagia. This is thought to arise as a consequence of abnormalities in both the physiological drive for food and the rewarding properties of food. Although a number of mouse models for PWS exist, the underlying variables dictating maladaptive feeding remain unknown. Here, feeding behaviour in a mouse model in which the imprinting centre (IC) of the syntenic PWS interval has been deleted (PWS(ICdel) mice) is characterised. It is demonstrated that PWS(ICdel) mice show hyperghrelinaemia and increased consumption of food both following overnight fasting and when made more palatable with sucrose. However, hyperphagia in PWS(ICdel) mice was not accompanied by any changes in reactivity to the hedonic properties of palatable food (sucrose or saccharin), as measured by lick-cluster size. Nevertheless, overall consumption by PWS(ICdel) mice for non-caloric saccharin in the licking test was significantly reduced. Combined with converging findings from a continuous reinforcement schedule, these data indicate that PWS(ICdel) mice show a marked heightened sensitivity to the calorific value of food. Overall, these data indicate that any impact of the rewarding properties of food on the hyperphagia seen in PWS(ICdel) mice is driven primarily by calorie content and is unlikely to involve hedonic processes. This has important implications for understanding the neural systems underlying the feeding phenotype of PWS and the contribution of imprinted genes to abnormal feeding behaviour more generally.


Asunto(s)
Ansiedad/fisiopatología , Ingestión de Energía/fisiología , Hiperfagia/etiología , Motivación/fisiología , Síndrome de Prader-Willi/complicaciones , Animales , Apatía/fisiología , Condicionamiento Operante , Modelos Animales de Enfermedad , Ingestión de Alimentos/genética , Ingestión de Energía/genética , Femenino , Preferencias Alimentarias/fisiología , Ghrelina/sangre , Hiperfagia/genética , Masculino , Ratones , Ratones Transgénicos , Motivación/genética , Fenotipo , Síndrome de Prader-Willi/sangre , Síndrome de Prader-Willi/genética
9.
Nat Genet ; 37(6): 625-9, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15908950

RESUMEN

Imprinted genes show differential expression between maternal and paternal alleles as a consequence of epigenetic modification that can result in 'parent-of-origin' effects on phenotypic traits. There is increasing evidence from mouse and human studies that imprinted genes may influence behavior and cognitive functioning. Previous work in girls with Turner syndrome (45,XO) has suggested that there are X-linked parent-of-origin effects on brain development and cognitive functioning, although the interpretation of these data in terms of imprinted gene effects has been questioned. We used a 39,XO mouse model to examine the influence of the parental origin of the X chromosome on cognitive behaviors and expression of X-linked genes in brain. Our findings confirm the existence of X-linked imprinted effects on cognitive processes and identify a new maternally expressed imprinted gene candidate on the X chromosome, Xlr3b, which may be of importance in mediating the behavioral effects.


Asunto(s)
Cognición , Impresión Genómica , Proteínas Nucleares/genética , Cromosoma X , Animales , Femenino , Masculino , Ratones
10.
Transl Psychiatry ; 14(1): 256, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38876996

RESUMEN

Impaired behavioural flexibility is a core feature of neuropsychiatric disorders and is associated with underlying dysfunction of fronto-striatal circuitry. Reduced dosage of Cyfip1 is a risk factor for neuropsychiatric disorder, as evidenced by its involvement in the 15q11.2 (BP1-BP2) copy number variant: deletion carriers are haploinsufficient for CYFIP1 and exhibit a two- to four-fold increased risk of schizophrenia, autism and/or intellectual disability. Here, we model the contributions of Cyfip1 to behavioural flexibility and related fronto-striatal neural network function using a recently developed haploinsufficient, heterozygous knockout rat line. Using multi-site local field potential (LFP) recordings during resting state, we show that Cyfip1 heterozygous rats (Cyfip1+/-) harbor disrupted network activity spanning medial prefrontal cortex, hippocampal CA1 and ventral striatum. In particular, Cyfip1+/- rats showed reduced influence of nucleus accumbens and increased dominance of prefrontal and hippocampal inputs, compared to wildtype controls. Adult Cyfip1+/- rats were able to learn a single cue-response association, yet unable to learn a conditional discrimination task that engages fronto-striatal interactions during flexible pairing of different levers and cue combinations. Together, these results implicate Cyfip1 in development or maintenance of cortico-limbic-striatal network integrity, further supporting the hypothesis that alterations in this circuitry contribute to behavioural inflexibility observed in neuropsychiatric diseases including schizophrenia and autism.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Haploinsuficiencia , Corteza Prefrontal , Esquizofrenia , Animales , Ratas , Esquizofrenia/genética , Esquizofrenia/fisiopatología , Masculino , Proteínas Adaptadoras Transductoras de Señales/genética , Corteza Prefrontal/fisiopatología , Trastorno Autístico/genética , Trastorno Autístico/fisiopatología , Región CA1 Hipocampal/fisiopatología , Modelos Animales de Enfermedad , Red Nerviosa/fisiopatología , Conducta Animal/fisiología , Cuerpo Estriado/fisiopatología , Estriado Ventral/fisiopatología
11.
Genes Brain Behav ; 22(6): e12865, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37705179

RESUMEN

Variations in the Dlg2 gene have been linked to increased risk for psychiatric disorders, including schizophrenia, autism spectrum disorders, intellectual disability, bipolar disorder, attention deficit hyperactivity disorder, and pubertal disorders. Recent studies have reported disrupted brain circuit function and behaviour in models of Dlg2 knockout and haploinsufficiency. Specifically, deficits in hippocampal synaptic plasticity were found in heterozygous Dlg2+/- rats suggesting impacts on hippocampal dependent learning and cognitive flexibility. Here, we tested these predicted effects with a behavioural characterisation of the heterozygous Dlg2+/- rat model. Dlg2+/- rats exhibited a specific, mild impairment in reversal learning in a substrate deterministic bowl-digging reversal learning task. The performance of Dlg2+/- rats in other bowl digging task, visual discrimination and reversal, novel object preference, novel location preference, spontaneous alternation, modified progressive ratio, and novelty-suppressed feeding test were not impaired. These findings suggest that despite altered brain circuit function, behaviour across different domains is relatively intact in Dlg2+/- rats, with the deficits being specific to only one test of cognitive flexibility. The specific behavioural phenotype seen in this Dlg2+/- model may capture features of the clinical presentation associated with variation in the Dlg2 gene.


Asunto(s)
Guanilato-Quinasas , Aprendizaje , Proteínas de la Membrana , Trastornos Mentales , Humanos , Animales , Ratas , Proteínas de la Membrana/genética , Guanilato-Quinasas/genética , Cognición , Masculino , Femenino , Animales no Consanguíneos , Heterocigoto , Trastornos Mentales/genética , Hipocampo/fisiopatología
12.
Nat Rev Neurosci ; 8(11): 832-43, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17925812

RESUMEN

In a small fraction of mammalian genes--at present estimated at less than 1% of the total--one of the two alleles that is inherited by the offspring is partially or completely switched off. The decision as to which one is silenced depends on which allele was inherited from the mother and which from the father. These idiosyncratic loci are known as imprinted genes, and their existence is an evolutionary enigma, as they effectively nullify the advantages of diploidy. Although they are small in number, these genes have important effects on physiology and behaviour, and many are expressed in the brain. There is increasing evidence that imprinted genes influence brain function and behaviour by affecting neurodevelopmental processes.


Asunto(s)
Encéfalo/embriología , Encéfalo/fisiología , Impresión Genómica , Animales , Humanos
13.
Front Neurosci ; 16: 840266, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35600620

RESUMEN

We now know that the immune system plays a major role in the complex processes underlying brain development throughout the lifespan, carrying out a number of important homeostatic functions under physiological conditions in the absence of pathological inflammation or infection. In particular, complement-mediated synaptic pruning during critical periods of early life may play a key role in shaping brain development and subsequent risk for psychopathology, including neurodevelopmental disorders such as schizophrenia and autism spectrum disorders. However, these disorders vary greatly in their onset, disease course, and prevalence amongst sexes suggesting complex interactions between the immune system, sex and the unique developmental trajectories of circuitries underlying different brain functions which are yet to be fully understood. Perturbations of homeostatic neuroimmune interactions during different critical periods in which regional circuits mature may have a plethora of long-term consequences for psychiatric phenotypes, but at present there is a gap in our understanding of how these mechanisms may impact on the structural and functional changes occurring in the brain at different developmental stages. In this article we will consider the latest developments in the field of complement mediated synaptic pruning where our understanding is beginning to move beyond the visual system where this process was first described, to brain areas and developmental periods of potential relevance to psychiatric disorders.

14.
Genes Brain Behav ; 21(4): e12799, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35118804

RESUMEN

Mutations affecting DLG2 are emerging as a genetic risk factor associated with neurodevelopmental psychiatric disorders including schizophrenia, autism spectrum disorder, and bipolar disorder. Discs large homolog 2 (DLG2) is a member of the membrane-associated guanylate kinase protein superfamily of scaffold proteins, a component of the post-synaptic density in excitatory neurons and regulator of synaptic function and plasticity. It remains an important question whether and how haploinsuffiency of DLG2 contributes to impairments in basic behavioural and cognitive functions that may underlie symptomatic domains in patients that cross diagnostic boundaries. Using a heterozygous Dlg2 mouse model we examined the impact of reduced Dlg2 expression on functions commonly impaired in neurodevelopmental psychiatric disorders including motor co-ordination and learning, pre-pulse inhibition and habituation to novel stimuli. The heterozygous Dlg2 mice exhibited behavioural impairments in long-term motor learning and long-term habituation to a novel context, but not motor co-ordination, initial responses to a novel context, PPI of acoustic startle or anxiety. We additionally showed evidence for the reduced regulation of the synaptic plasticity-associated protein cFos in the motor cortex during motor learning. The sensitivity of selective behavioural and cognitive functions, particularly those dependent on synaptic plasticity, to reduced expression of DLG2 give further credence for DLG2 playing a critical role in specific brain functions but also a mechanistic understanding of symptom expression shared across psychiatric disorders.


Asunto(s)
Trastorno del Espectro Autista , Animales , Ansiedad/genética , Guanilato-Quinasas/genética , Guanilato-Quinasas/metabolismo , Heterocigoto , Humanos , Proteínas de la Membrana , Ratones , Plasticidad Neuronal , Proteínas Supresoras de Tumor
15.
Biol Psychiatry ; 92(5): 341-361, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35659384

RESUMEN

Genomic copy number variants (CNVs) are associated with a high risk of neurodevelopmental disorders. A growing body of genetic studies suggests that these high-risk genetic variants converge in common molecular pathways and that common pathways also exist across clinically distinct disorders, such as schizophrenia and autism spectrum disorder. A key question is how common molecular mechanisms converge into similar clinical outcomes. We review emerging evidence for convergent cognitive and brain phenotypes across distinct CNVs. Multiple CNVs were shown to have similar effects on core sensory, cognitive, and motor traits. Emerging data from multisite neuroimaging studies have provided valuable information on how these CNVs affect brain structure and function. However, most of these studies examined one CNV at a time, making it difficult to fully understand the proportion of shared brain effects. Recent studies have started to combine neuroimaging data from multiple CNV carriers and identified similar brain effects across CNVs. Some early findings also support convergence in CNV animal models. Systems biology, through integration of multilevel data, provides new insights into convergent molecular mechanisms across genetic risk variants (e.g., altered synaptic activity). However, the link between such key molecular mechanisms and convergent psychiatric phenotypes is still unknown. To better understand this link, we need new approaches that integrate human molecular data with neuroimaging, cognitive, and animal model data, while taking into account critical developmental time points. Identifying risk mechanisms across genetic loci can elucidate the pathophysiology of neurodevelopmental disorders and identify new therapeutic targets for cross-disorder applications.


Asunto(s)
Trastorno del Espectro Autista , Trastornos del Neurodesarrollo , Animales , Trastorno del Espectro Autista/diagnóstico por imagen , Trastorno del Espectro Autista/genética , Variaciones en el Número de Copia de ADN/genética , Predisposición Genética a la Enfermedad , Humanos , Trastornos del Neurodesarrollo/diagnóstico por imagen , Trastornos del Neurodesarrollo/genética , Neuroimagen , Fenotipo
16.
Neuropsychopharmacology ; 47(7): 1367-1378, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35115661

RESUMEN

Copy number variants indicating loss of function in the DLG2 gene have been associated with markedly increased risk for schizophrenia, autism spectrum disorder, and intellectual disability. DLG2 encodes the postsynaptic scaffolding protein DLG2 (PSD93) that interacts with NMDA receptors, potassium channels, and cytoskeletal regulators but the net impact of these interactions on synaptic plasticity, likely underpinning cognitive impairments associated with these conditions, remains unclear. Here, hippocampal CA1 neuronal excitability and synaptic function were investigated in a novel clinically relevant heterozygous Dlg2+/- rat model using ex vivo patch-clamp electrophysiology, pharmacology, and computational modelling. Dlg2+/- rats had reduced supra-linear dendritic integration of synaptic inputs resulting in impaired associative long-term potentiation. This impairment was not caused by a change in synaptic input since NMDA receptor-mediated synaptic currents were, conversely, increased and AMPA receptor-mediated currents were unaffected. Instead, the impairment in associative long-term potentiation resulted from an increase in potassium channel function leading to a decrease in input resistance, which reduced supra-linear dendritic integration. Enhancement of dendritic excitability by blockade of potassium channels or activation of muscarinic M1 receptors with selective allosteric agonist 77-LH-28-1 reduced the threshold for dendritic integration and 77-LH-28-1 rescued the associative long-term potentiation impairment in the Dlg2+/- rats. These findings demonstrate a biological phenotype that can be reversed by compound classes used clinically, such as muscarinic M1 receptor agonists, and is therefore a potential target for therapeutic intervention.


Asunto(s)
Trastorno del Espectro Autista , Guanilato-Quinasas/metabolismo , Animales , Trastorno del Espectro Autista/metabolismo , Hipocampo/metabolismo , Potenciación a Largo Plazo/genética , Proteínas de la Membrana/metabolismo , Plasticidad Neuronal/genética , Canales de Potasio/metabolismo , Ratas , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/fisiología , Transmisión Sináptica/fisiología
17.
Genes Brain Behav ; 21(4): e12797, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35075790

RESUMEN

Genetic studies implicate disruption to the DLG2 gene in copy number variants as increasing risk for schizophrenia, autism spectrum disorders and intellectual disability. To investigate psychiatric endophenotypes associated with DLG2 haploinsufficiency (and concomitant PSD-93 protein reduction) a novel clinically relevant Dlg2+/- rat was assessed for abnormalities in anxiety, sensorimotor gating, hedonic reactions, social behaviour, and locomotor response to the N-Methyl-D-aspartic acid receptor antagonist phencyclidine. Dlg gene and protein expression were also investigated to assess model validity. Reductions in PSD-93 messenger RNA and protein were observed in the absence of compensation by other related genes or proteins. Behaviourally Dlg2+/- rats show a potentiated locomotor response to phencyclidine, as is typical of psychotic disorder models, in the absence of deficits in the other behavioural phenotypes assessed here. This shows that the behavioural effects of Dlg2 haploinsufficiency may specifically relate to psychosis vulnerability but are subtle, and partially dissimilar to behavioural deficits previously reported in Dlg2+/- mouse models demonstrating issues surrounding the comparison of models with different aetiology and species. Intact performance on many of the behavioural domains assessed here, such as anxiety and reward processing, will remove these as confounds when continuing investigation into this model using more complex cognitive tasks.


Asunto(s)
Guanilato-Quinasas , Haploinsuficiencia , Esquizofrenia , Proteínas Supresoras de Tumor , Animales , Modelos Animales de Enfermedad , Guanilato-Quinasas/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana , Ratones , Fenciclidina/farmacología , Ratas , Esquizofrenia/genética , Esquizofrenia/metabolismo , Conducta Social , Proteínas Supresoras de Tumor/genética
18.
Hum Mol Genet ; 18(12): 2140-8, 2009 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-19304781

RESUMEN

The Prader-Willi syndrome (PWS) genetic interval contains several brain-expressed small nucleolar (sno)RNA species that are subject to genomic imprinting. In vitro studies have shown that one of these snoRNA molecules, h/mbii-52, negatively regulates editing and alternative splicing of the serotonin 2C receptor (5htr2c) pre-RNA. However, the functional consequences of loss of h/mbii-52 and subsequent increased post-transcriptional modification of 5htr2c are unknown. 5HT2CRs are important in controlling aspects of cognition and the cessation of feeding, and disruption of their function may underlie some of the psychiatric and feeding abnormalities seen in PWS. In a mouse model for PWS lacking expression of mbii-52 (PWS-IC+/-), we show an increase in editing, but not alternative splicing, of the 5htr2c pre-RNA. This change in post-transcriptional modification is associated with alterations in a number of 5HT2CR-related behaviours, including impulsive responding, locomotor activity and reactivity to palatable foodstuffs. In a non-5HT2CR-related behaviour, marble burying, loss of mbii-52 was without effect. The specificity of the behavioural effects to changes in 5HT2CR function was further confirmed using drug challenges. These data illustrate, for the first time, the physiological consequences of altered RNA editing of 5htr2c linked to mbii-52 loss that may underlie specific aspects of the complex PWS phenotype and point to an important functional role for this imprinted snoRNA.


Asunto(s)
Impresión Genómica , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/fisiopatología , Edición de ARN , ARN Nucleolar Pequeño/genética , Receptor de Serotonina 5-HT2C/genética , Empalme Alternativo , Animales , Conducta Animal , Encéfalo/metabolismo , Encéfalo/fisiopatología , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Síndrome de Prader-Willi/metabolismo , ARN Nucleolar Pequeño/metabolismo , Receptor de Serotonina 5-HT2C/metabolismo
19.
Proc Natl Acad Sci U S A ; 105(11): 4483-8, 2008 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-18334636

RESUMEN

The small GTPase Rac controls cell morphology, gene expression, and reactive oxygen species formation. Manipulations of Rac activity levels in the cerebellum result in motor coordination defects, but activators of Rac in the cerebellum are unknown. P-Rex family guanine-nucleotide exchange factors activate Rac. We show here that, whereas P-Rex1 expression within the brain is widespread, P-Rex2 is specifically expressed in the Purkinje neurons of the cerebellum. We have generated P-Rex2(-/-) and P-Rex1(-/-)/P-Rex2(-/-) mice, analyzed their Purkinje cell morphology, and assessed their motor functions in behavior tests. The main dendrite is thinned in Purkinje cells of P-Rex2(-/-) pups and dendrite structure appears disordered in Purkinje cells of adult P-Rex2(-/-) and P-Rex1(-/-)/P-Rex2(-/-) mice. P-Rex2(-/-) mice show a mild motor coordination defect that progressively worsens with age and is more pronounced in females than in males. P-Rex1(-/-)/P-Rex2(-/-) mice are ataxic, with reduced basic motor activity and abnormal posture and gait, as well as impaired motor coordination even at a young age. We conclude that P-Rex1 and P-Rex2 are important regulators of Purkinje cell morphology and cerebellar function.


Asunto(s)
Dendritas/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Regulación de la Expresión Génica , Actividad Motora , Células de Purkinje/citología , Células de Purkinje/metabolismo , Envejecimiento/fisiología , Animales , Conducta Animal , Encéfalo/metabolismo , Fertilidad , Proteínas Activadoras de GTPasa/deficiencia , Proteínas Activadoras de GTPasa/genética , Salud , Pulmón/metabolismo , Ratones , Ratones Noqueados , Especificidad de Órganos
20.
Transl Psychiatry ; 11(1): 313, 2021 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-34031371

RESUMEN

Genetic risk factors can significantly increase chances of developing psychiatric disorders, but the underlying biological processes through which this risk is effected remain largely unknown. Here we show that haploinsufficiency of Cyfip1, a candidate risk gene present in the pathogenic 15q11.2(BP1-BP2) deletion may impact on psychopathology via abnormalities in cell survival and migration of newborn neurons during postnatal hippocampal neurogenesis. We demonstrate that haploinsufficiency of Cyfip1 leads to increased numbers of adult-born hippocampal neurons due to reduced apoptosis, without altering proliferation. We show this is due to a cell autonomous failure of microglia to induce apoptosis through the secretion of the appropriate factors, a previously undescribed mechanism. Furthermore, we show an abnormal migration of adult-born neurons due to altered Arp2/3 mediated actin dynamics. Together, our findings throw new light on how the genetic risk candidate Cyfip1 may influence the hippocampus, a brain region with strong evidence for involvement in psychopathology.


Asunto(s)
Trastorno Autístico , Esquizofrenia , Actinas , Proteínas Adaptadoras Transductoras de Señales/genética , Adulto , Haploinsuficiencia , Hipocampo , Humanos , Recién Nacido , Microglía , Neurogénesis/genética , Esquizofrenia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA