Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 609(7927): 552-559, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36045292

RESUMEN

Prostate cancer is characterized by considerable geo-ethnic disparity. African ancestry is a significant risk factor, with mortality rates across sub-Saharan Africa of 2.7-fold higher than global averages1. The contributing genetic and non-genetic factors, and associated mutational processes, are unknown2,3. Here, through whole-genome sequencing of treatment-naive prostate cancer samples from 183 ancestrally (African versus European) and globally distinct patients, we generate a large cancer genomics resource for sub-Saharan Africa, identifying around 2 million somatic variants. Significant African-ancestry-specific findings include an elevated tumour mutational burden, increased percentage of genome alteration, a greater number of predicted damaging mutations and a higher total of mutational signatures, and the driver genes NCOA2, STK19, DDX11L1, PCAT1 and SETBP1. Examining all somatic mutational types, we describe a molecular taxonomy for prostate cancer differentiated by ancestry and defined as global mutational subtypes (GMS). By further including Chinese Asian data, we confirm that GMS-B (copy-number gain) and GMS-D (mutationally noisy) are specific to African populations, GMS-A (mutationally quiet) is universal (all ethnicities) and the African-European-restricted subtype GMS-C (copy-number losses) predicts poor clinical outcomes. In addition to the clinical benefit of including individuals of African ancestry, our GMS subtypes reveal different evolutionary trajectories and mutational processes suggesting that both common genetic and environmental factors contribute to the disparity between ethnicities. Analogous to gene-environment interaction-defined here as a different effect of an environmental surrounding in people with different ancestries or vice versa-we anticipate that GMS subtypes act as a proxy for intrinsic and extrinsic mutational processes in cancers, promoting global inclusion in landmark studies.


Asunto(s)
Población Negra , Neoplasias de la Próstata , África/etnología , África del Sur del Sahara/etnología , Pueblo Asiatico/genética , Población Negra/genética , Proteínas Portadoras/genética , China/etnología , Etnicidad/genética , Europa (Continente)/etnología , Humanos , Masculino , Mutación , Proteínas Nucleares/genética , Coactivador 2 del Receptor Nuclear/genética , Neoplasias de la Próstata/genética , ARN Helicasas/genética , ARN Largo no Codificante/genética
2.
Mod Pathol ; 36(8): 100190, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37080394

RESUMEN

Squamous cell carcinoma is the most common head and neck malignancy arising from the oral mucosa and the skin. The histologic and immunohistochemical features of oral squamous cell carcinoma (OSCC) and head and neck cutaneous squamous cell carcinoma (HNcSCC) are similar, making it difficult to identify the primary site in cases of metastases. With the advent of immunotherapy, reliable distinction of OSCC and HNcSCC at metastatic sites has important treatment and prognostic implications. Here, we investigate and compare the genomic landscape of OSCC and HNcSCC to identify diagnostically useful biomarkers. Whole-genome sequencing data from 57 OSCC and 41 HNcSCC patients were obtained for tumor and matched normal samples. Tumor mutation burden (TMB), Catalogue of Somatic Mutations in Cancer (COSMIC) mutational signatures, frequent chromosomal alterations, somatic single nucleotide, and copy number variations were analyzed. The median TMB of 3.75 in primary OSCC was significantly lower (P < .001) than that of 147.51 mutations/Mb in primary HNcSCC. The COSMIC mutation signatures were significantly different (P < .001) between OSCC and HNcSCC. OSCC showed COSMIC single-base substitution (SBS) mutation signature 1 and AID/APOBEC activity-associated signature 2 and/or 13. All except 1 HNcSCC from hair-bearing scalp showed UV damage-associated COSMIC SBS mutation signature 7. Both OSCC and HNcSCC demonstrated a predominance of tumor suppressor gene mutations, predominantly TP53. The most frequently mutated oncogenes were PIK3CA and MUC4 in OSCC and HNcSCC, respectively. The metastases of OSCC and HNcSCC demonstrated TMB and COSMIC SBS mutation signatures similar to their primary counterparts. The combination of high TMB and UV signature in a metastatic keratinizing squamous cell carcinoma suggests HNcSCC as the primary site and may also facilitate decisions regarding immunotherapy. HNcSCC and OSCC show distinct genomic profiles despite histologic and immunohistochemical similarities. Their genomic characteristics may underlie differences in behavior and guide treatment decisions in recurrent and metastatic settings.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Neoplasias Cutáneas , Humanos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Variaciones en el Número de Copia de ADN , Neoplasias de la Boca/patología , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Neoplasias de Cabeza y Cuello/genética , Mutación , Genómica , Biomarcadores de Tumor/genética
3.
Genes Chromosomes Cancer ; 61(9): 561-571, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35670448

RESUMEN

INTRODUCTION: Oral squamous cell carcinoma (OSCC) in the young (<50 years), without known carcinogenic risk factors, is on the rise globally. Whole genome duplication (WGD) has been shown to occur at higher rates in cancers without an identifiable carcinogenic agent. We aimed to evaluate the prevalence of WGD in a cohort of OSCC patients under the age of 50 years. METHODS: Whole genome sequencing (WGS) was performed on 28 OSCC patients from the Sydney Head and Neck Cancer Institute (SHNCI) biobank. An additional nine cases were obtained from The Cancer Genome Atlas (TCGA). RESULTS: WGD was seen in 27 of 37 (73%) cases. Non-synonymous, somatic TP53 mutations occurred in 25 of 27 (93%) cases of WGD and were predicted to precede WGD in 21 (77%). WGD was significantly associated with larger tumor size (p = 0.01) and was frequent in patients with recurrences (87%, p = 0.36). Overall survival was significantly worse in those with WGD (p = 0.05). CONCLUSIONS: Our data, based on one of the largest WGS datasets of young patients with OSCC, demonstrates a high frequency of WGD and its association with adverse pathologic characteristics and clinical outcomes. TP53 mutations also preceded WGD, as has been described in other tumors without a clear mutagenic driver.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Carcinoma de Células Escamosas/genética , Duplicación de Gen , Neoplasias de Cabeza y Cuello/genética , Humanos , Persona de Mediana Edad , Neoplasias de la Boca/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/genética
4.
PLoS Genet ; 11(3): e1005059, 2015 03.
Artículo en Inglés | MEDLINE | ID: mdl-25798845

RESUMEN

Cleft lip with or without cleft palate (CL/P) is the most commonly occurring craniofacial birth defect. We provide insight into the genetic etiology of this birth defect by performing genome-wide association studies in two species: dogs and humans. In the dog, a genome-wide association study of 7 CL/P cases and 112 controls from the Nova Scotia Duck Tolling Retriever (NSDTR) breed identified a significantly associated region on canine chromosome 27 (unadjusted p=1.1 x 10(-13); adjusted p= 2.2 x 10(-3)). Further analysis in NSDTR families and additional full sibling cases identified a 1.44 Mb homozygous haplotype (chromosome 27: 9.29 - 10.73 Mb) segregating with a more complex phenotype of cleft lip, cleft palate, and syndactyly (CLPS) in 13 cases. Whole-genome sequencing of 3 CLPS cases and 4 controls at 15X coverage led to the discovery of a frameshift mutation within ADAMTS20 (c.1360_1361delAA (p.Lys453Ilefs*3)), which segregated concordant with the phenotype. In a parallel study in humans, a family-based association analysis (DFAM) of 125 CL/P cases, 420 unaffected relatives, and 392 controls from a Guatemalan cohort, identified a suggestive association (rs10785430; p =2.67 x 10-6) with the same gene, ADAMTS20. Sequencing of cases from the Guatemalan cohort was unable to identify a causative mutation within the coding region of ADAMTS20, but four coding variants were found in additional cases of CL/P. In summary, this study provides genetic evidence for a role of ADAMTS20 in CL/P development in dogs and as a candidate gene for CL/P development in humans.


Asunto(s)
Proteínas ADAM/genética , Encéfalo/anomalías , Labio Leporino/genética , Fisura del Paladar/genética , Estudio de Asociación del Genoma Completo , Proteínas ADAMTS , Animales , Encéfalo/patología , Labio Leporino/patología , Fisura del Paladar/patología , Perros , Mutación del Sistema de Lectura , Haplotipos , Humanos , Polimorfismo de Nucleótido Simple
6.
Bioinformatics ; 31(4): 599-601, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25336502

RESUMEN

SUMMARY: Whole-genome sequencing has revolutionized the study of genetics. Genotyping-by-sequencing is now a viable method of genotyping, yet the bioinformatics involved can be daunting if not prohibitive for some laboratories. Here we present ArrayMaker, a user-friendly tool that extracts accurate single nucleotide polymorphism genotypes at pre-defined loci from whole-genome alignments and presents them in a standard genotyping format compatible with association analysis software and datasets genotyped on commercial array platforms. Using this tool, geneticists with only basic computing ability can genotype samples at any desired list of markers, facilitating genome-wide association analysis, fine mapping, candidate variant assessment, data sharing and compatibility of data sourced from multiple technologies. AVAILABILITY AND IMPLEMENTATION: ArrayMaker is licensed under The MIT License and can be freely obtained at https://github.com/cw2014/ArrayMaker/. The program is implemented in Perl and runs on Linux operating systems. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. CONTACT: cali.willet@sydney.edu.au.


Asunto(s)
Genoma Humano , Genotipo , Técnicas de Genotipaje/métodos , Polimorfismo de Nucleótido Simple/genética , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Estudio de Asociación del Genoma Completo , Humanos , Alineación de Secuencia
9.
BMC Genomics ; 16: 791, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26467759

RESUMEN

BACKGROUND: The Tasmanian devil (Sarcophilus harrisii) has undergone a recent, drastic population decline due to the highly contagious devil facial tumor disease. The tumor is one of only two naturally occurring transmissible cancers and is almost inevitably fatal. In 2006 a disease-free insurance population was established to ensure that the Tasmanian devil is protected from extinction. The insurance program is dependent upon preserving as much wild genetic diversity as possible to maximize the success of subsequent reintroductions to the wild. Accurate genotypic data is vital to the success of the program to ensure that loss of genetic diversity does not occur in captivity. Until recently, microsatellite markers have been used to study devil population genetics, however as genetic diversity is low in the devil and potentially decreasing in the captive population, a more sensitive genotyping assay is required. METHODS: Utilising the devil reference genome and whole genome re-sequencing data, we have identified polymorphic regions for use in a custom genotyping assay. These regions were amplified using PCR and sequenced on the Illumina MiSeq platform to refine a set a markers to genotype the Tasmanian devil insurance population. RESULTS: We have developed a set of single nucleotide polymorphic (SNP) markers, assayed by amplicon sequencing, that provide a high-throughput method for monitoring genetic diversity and assessing familial relationships among devils. To date we have used a total of 267 unique SNPs within both putatively neutral and functional loci to genotype 305 individuals in the Tasmanian devil insurance population. We have used these data to assess genetic diversity in the population as well as resolve the parentage of 21 offspring. CONCLUSIONS: Our molecular data has been incorporated with studbook management practices to provide more accurate pedigree information and to inform breeding recommendations. The assay will continue to be used to monitor the genetic diversity of the insurance population of Tasmanian devils with the aim of reducing inbreeding and maximizing success of reintroductions to the wild.


Asunto(s)
Variación Genética , Marsupiales/genética , Repeticiones de Microsatélite/genética , Polimorfismo de Nucleótido Simple/genética , Animales , Bioensayo , Especies en Peligro de Extinción , Neoplasias Faciales/genética , Neoplasias Faciales/patología , Genotipo , Endogamia , Tasmania
10.
BMC Bioinformatics ; 14: 231, 2013 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-23870167

RESUMEN

BACKGROUND: In addition to probe sequence characteristics, noise in hybridization array data is thought to be influenced by competitive hybridization between probes tiled at high densities. Empirical evaluation of competitive hybridization and an estimation of what other non-sequence related features might affect noisy data is currently lacking. RESULTS: A high density array was designed to a 1.5 megabase region of the canine genome to explore the potential for probe competition to introduce noise. Multivariate assessment of the influence of probe, segment and design characteristics on hybridization intensity demonstrate that whilst increased density significantly depresses fluorescence intensities, this effect is largely consistent when an ultra high density offset is applied. Signal variation not attributable to sequence composition resulted from the reduction in competition when large inter-probe spacing was introduced due to long repetitive elements and when a lower density offset was applied. Tiling of probes immediately adjacent to various classes of repeat elements did not generate noise. Comparison of identical probe sets hybridized with DNA extracted from blood or saliva establishes salivary DNA as a source of noise. CONCLUSIONS: This analysis demonstrates the occurrence of competitive hybridization between oligonucleotide probes in high density tiling arrays. It supports that probe competition does not generate random noise when it is maintained across a region. To prevent the introduction of noise from this source, the degree of competition should be regulated by minimizing variation in density across the target region. This finding can make an important contribution to optimizing coverage whilst minimizing sources of noise in the design of high density tiling arrays.


Asunto(s)
Perros/genética , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Animales , ADN/química , Genoma , Sondas de Oligonucleótidos
11.
Nat Commun ; 14(1): 1291, 2023 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-36894532

RESUMEN

Antibiotic overuse has promoted the spread of antimicrobial resistance (AMR) with significant health and economic consequences. Genome sequencing reveals the widespread presence of antimicrobial resistance genes (ARGs) in diverse microbial environments. Hence, surveillance of resistance reservoirs, like the rarely explored oral microbiome, is necessary to combat AMR. Here, we characterise the development of the paediatric oral resistome and investigate its role in dental caries in 221 twin children (124 females and 97 males) sampled at three time points over the first decade of life. From 530 oral metagenomes, we identify 309 ARGs, which significantly cluster by age, with host genetic effects detected from infancy onwards. Our results suggest potential mobilisation of ARGs increases with age as the AMR associated mobile genetic element, Tn916 transposase was co-located with more species and ARGs in older children. We find a depletion of ARGs and species in dental caries compared to health. This trend reverses in restored teeth. Here we show the paediatric oral resistome is an inherent and dynamic component of the oral microbiome, with a potential role in transmission of AMR and dysbiosis.


Asunto(s)
Caries Dental , Microbiota , Masculino , Femenino , Humanos , Niño , Farmacorresistencia Bacteriana/genética , Caries Dental/genética , Antibacterianos/farmacología , Genes Bacterianos , Microbiota/genética
13.
Genes (Basel) ; 13(8)2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35893065

RESUMEN

Chronic superficial keratitis (CSK) is a progressive inflammatory condition of the eye (cornea) that can cause discomfort and blindness. Differential disease risk across dog breeds strongly suggests that CSK has a genetic basis. In addition to genetic risk, the occurrence of CSK is exacerbated by exposure to ultraviolet light. Genome-wide association analysis considered 109 greyhounds, 70 with CSK and the remainder with normal phenotype at an age over four years. Three co-located variants on CFA18 near the 5' region of the Epidermal Growth Factor Receptor (EGFR) gene were associated with genome-wide significance after multiple-test correction (BICF2P579527, CFA18: 6,068,508, praw = 1.77 × 10-7, pgenome = 0.017; BICF2P1310662, CFA18: 6,077,388, praw = 4.09 × 10-7, pgenome = 0.040; BICF2P160719, CFA18: 6,087,347, praw = 4.09 × 10-7, pgenome = 0.040) (canFam4)). Of the top 10 associated markers, eight were co-located with the significantly associated markers on CFA18. The associated haplotype on CFA18 is protective for the CSK condition. EGFR is known to play a role in corneal healing, where it initiates differentiation and proliferation of epithelial cells that in turn signal the involvement of stromal keratocytes to commence apoptosis. Further validation of the putative functional variants is required prior to their use in genetic testing for breeding programs.


Asunto(s)
Enfermedades de los Perros , Queratitis , Animales , Australia , Enfermedades de los Perros/epidemiología , Enfermedades de los Perros/genética , Perros , Receptores ErbB/genética , Estudio de Asociación del Genoma Completo , Queratitis/epidemiología , Queratitis/genética , Queratitis/veterinaria
14.
Genome Med ; 14(1): 100, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-36045381

RESUMEN

BACKGROUND: African ancestry is a significant risk factor for advanced prostate cancer (PCa). Mortality rates in sub-Saharan Africa are 2.5-fold greater than global averages. However, the region has largely been excluded from the benefits of whole genome interrogation studies. Additionally, while structural variation (SV) is highly prevalent, PCa genomic studies are still biased towards small variant interrogation. METHODS: Using whole genome sequencing and best practice workflows, we performed a comprehensive analysis of SVs for 180 (predominantly Gleason score ≥ 8) prostate tumours derived from 115 African, 61 European and four ancestrally admixed patients. We investigated the landscape and relationship of somatic SVs in driving ethnic disparity (African versus European), with a focus on African men from southern Africa. RESULTS: Duplication events showed the greatest ethnic disparity, with a 1.6- (relative frequency) to 2.5-fold (count) increase in African-derived tumours. Furthermore, we found duplication events to be associated with CDK12 inactivation and MYC copy number gain, and deletion events associated with SPOP mutation. Overall, African-derived tumours were 2-fold more likely to present with a hyper-SV subtype. In addition to hyper-duplication and deletion subtypes, we describe a new hyper-translocation subtype. While we confirm a lower TMPRSS2-ERG fusion-positive rate in tumours from African cases (10% versus 33%), novel African-specific PCa ETS family member and TMPRSS2 fusion partners were identified, including LINC01525, FBXO7, GTF3C2, NTNG1 and YPEL5. Notably, we found 74 somatic SV hotspots impacting 18 new candidate driver genes, with CADM2, LSAMP, PTPRD, PDE4D and PACRG having therapeutic implications for African patients. CONCLUSIONS: In this first African-inclusive SV study for high-risk PCa, we demonstrate the power of SV interrogation for the identification of novel subtypes, oncogenic drivers and therapeutic targets. Identifying a novel spectrum of SVs in tumours derived from African patients provides a mechanism that may contribute, at least in part, to the observed ethnic disparity in advanced PCa presentation in men of African ancestry.


Asunto(s)
Neoplasias de la Próstata , Población Negra/genética , Carcinogénesis/genética , Humanos , Masculino , Mutación , Clasificación del Tumor , Proteínas Nucleares/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Proteínas Represoras/genética
15.
Front Oncol ; 11: 750852, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34912708

RESUMEN

There is an increasing worldwide incidence of patients under 50 years of age presenting with oral squamous cell carcinoma (OSCC). The molecular mechanisms driving disease in this emerging cohort remain unclear, limiting impactful treatment options for these patients. To identify common clinically actionable targets in this cohort, we used whole genome and transcriptomic sequencing of OSCC patient samples from 26 individuals under 50 years of age. These molecular profiles were compared with those of OSCC patients over 50 years of age (n=11) available from TCGA. We show for the first time that a molecular signature comprising of EGFR amplification and increased EGFR RNA abundance is specific to the young subset of OSCC patients. Furthermore, through functional assays using patient tumor-derived cell lines, we reveal that this EGFR amplification results in increased activity of the EGFR pathway. Using a panel of clinically relevant EGFR inhibitors we determine that an EGFR-amplified patient-derived cell line is responsive to EGFR inhibition, suggesting EGFR amplification represents a valid therapeutic target in this subset of OSCC patients. In particular, we demonstrate sensitivity to the second-generation EGFR tyrosine kinase inhibitor afatinib, which offers a new and promising therapeutic avenue versus current EGFR-targeting approaches. We propose that testing for EGFR amplification could easily be integrated into current diagnostic workflows and such measures could lead to more personalized treatment approaches and improved outcomes for this younger cohort of OSCC patients.

17.
PLoS One ; 15(9): e0238697, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32970694

RESUMEN

Niemann-Pick type C disease is a lysosomal storage disease affecting primarily the nervous system that results in premature death. Here we present the first report and investigation of Niemann-Pick type C disease in Australian Angus/Angus-cross calves. After a preliminary diagnosis of Niemann-Pick type C, samples from two affected calves and two obligate carriers were analysed using single nucleotide polymorphism genotyping and homozygosity mapping, and NPC1 was considered as a positional candidate gene. A likely causal missense variant on chromosome 24 in the NPC1 gene (NM_174758.2:c.2969C>G) was identified by Sanger sequencing of cDNA. SIFT analysis, protein alignment and protein modelling predicted the variant to be deleterious to protein function. Segregation of the variant with disease was confirmed in two additional affected calves and two obligate carrier dams. Genotyping of 403 animals from the original herd identified an estimated allele frequency of 3.5%. The Niemann-Pick type C phenotype was additionally confirmed via biochemical analysis of Lysotracker Green, cholesterol, sphingosine and glycosphingolipids in fibroblast cell cultures originating from two affected calves. The identification of a novel missense variant for Niemann-Pick type C disease in Angus/Angus-cross cattle will enable improved breeding and management of this disease in at-risk populations. The results from this study offer a unique opportunity to further the knowledge of human Niemann-Pick type C disease through the potential availability of a bovine model of disease.


Asunto(s)
Enfermedad de Niemann-Pick Tipo C/genética , Enfermedad de Niemann-Pick Tipo C/patología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Bovinos , Células Cultivadas , Toxina del Cólera/metabolismo , Colesterol/metabolismo , ADN Complementario/genética , Modelos Animales de Enfermedad , Fibroblastos/patología , Gangliósido G(M1)/metabolismo , Homocigoto , Mutación/genética , Proteína Niemann-Pick C1/química , Proteína Niemann-Pick C1/genética , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Polisacáridos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
19.
Genes (Basel) ; 10(5)2019 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-31058880

RESUMEN

The Kelpie is a breed developed in Australia for use as a livestock herding dog. It has been proposed that the development of the breed included gene flow from the Australian Dingo (Canis dingo), a canid species present on the Australian continent for around 4000 years. The Kelpie breed is split between working and conformation types that have readily recognizable differences in external morphology. We characterize known gene variants relating to external morphology in sequenced representatives of both Kelpie types (Australian Kelpie-conformation; Australian Working Kelpie-herding) and compare the variants present with those in sequenced Australian Dingoes, including 25 canids with locus-constrained data and one with a whole genome sequence. Variants assessed include identified coat color and ear morphology variants. We describe a new variant site in the transcribed region of methionine sulfoxide reductase 3 that may relate to ear phenotype. None of the morphology variants analyzed offer support for co-ancestry of the Kelpie breed with the Australian Dingo.


Asunto(s)
Canidae/genética , Genoma/genética , Genómica , Animales , Australia , Perros , Humanos , Fenotipo , Filogenia , Lobos/genética
20.
Sci Rep ; 7(1): 423, 2017 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-28341828

RESUMEN

Devil facial tumour disease (DFTD) has decimated wild populations of Tasmanian devils (Sarcophilus harrisii) due to its ability to avoid immune detection and pass from host to host by biting. A small number of devils have been observed to spontaneously recover from the disease which is otherwise fatal. We have sequenced the genomes of these rare cases and compared them to the genomes of devils who succumbed to the disease. Genome-wide association, based on this limited sampling, highlighted two key genomic regions potentially associated with ability to survive DFTD. Following targeted genotyping in additional samples, both of these loci remain significantly different between cases and controls, with the PAX3 locus retaining significance at the 0.001 level, though genome-wide significance was not achieved. We propose that PAX3 may be involved in a regulatory pathway that influences the slowing of tumour growth and may allow more time for an immune response to be mounted in animals with regressed tumours. This provides an intriguing hypothesis for further research and could provide a novel route of treatment for this devastating disease.


Asunto(s)
Neoplasias Faciales/genética , Neoplasias Faciales/veterinaria , Marsupiales/genética , Animales , Femenino , Estudio de Asociación del Genoma Completo , Genotipo , Masculino , Mutación , Factor de Transcripción PAX3/genética , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA