Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
bioRxiv ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38766004

RESUMEN

Haplotype phasing, the process of determining which genetic variants are physically located on the same chromosome, is crucial for various genetic analyses. In this study, we first benchmark SHAPEIT and Beagle, two state-of-the-art phasing methods, on two large datasets: > 8 million diverse, research-consented 23andMe, Inc. customers and the UK Biobank (UKB). We find that both perform exceptionally well. Beagle's median switch error rate (SER) (after excluding single SNP switches) in white British trios from UKB is 0.026% compared to 0.00% for European ancestry 23andMe research participants; 55.6% of European ancestry 23andMe research participants have zero non-single SNP switches, compared to 42.4% of white British trios. South Asian ancestry 23andMe research participants have the highest median SER amongst the 23andMe populations, but it is still remarkably low at 0.46%. We also investigate the relationship between identity-by-descent (IBD) and SER, finding that switch errors tend to occur in regions of little or no IBD segment coverage. SHAPEIT and Beagle excel at 'intra-chromosomal' phasing, but lack the ability to phase across chromosomes, motivating us to develop an inter-chromosomal phasing method, called HAPTIC ( HAP lotype TI ling and C lustering), that assigns paternal and maternal variants discretely genome-wide. Our approach uses identity-by-descent (IBD) segments to phase blocks of variants on different chromosomes. HAPTIC represents the segments a focal individual shares with their relatives as nodes in a signed graph and performs bipartite clustering on the signed graph using spectral clustering. We test HAPTIC on 1022 UKB trios, yielding a median phase error of 0.08% in regions covered by IBD segments (33.5% of sites). We also ran HAPTIC in the 23andMe database and found a median phase error rate (the rate of mismatching alleles between the inferred and true phase) of 0.92% in Europeans (93.8% of sites) and 0.09% in admixed Africans (92.7% of sites). HAPTIC's precision depends heavily on data from relatives, so will increase as datasets grow larger and more diverse. HAPTIC enables analyses that require the parent-of-origin of variants, such as association studies and ancestry inference of untyped parents.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA